luau/prototyping/Properties/Step.agda
Lily Brown 0bd21762ae
Prototype bools and relational operators (#387)
Prototypes booleans and relational operators.

As part of this I removed `FFI/Data/Bool.agda`, because it was getting in the way - we already use `Agda.Builtin.Bool` instead for other cases.
2022-02-24 11:17:46 -08:00

85 lines
5.8 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv)
open import Agda.Builtin.Bool using (true; false)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; _[_]; alloc; ok; function_is_end)
open import Luau.Syntax using (Block; Expr; nil; var; addr; true; false; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; )
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOpNumbers; evalNumOp; binOp₁; binOp₂; evalEqOp; evalNeqOp; binOpEquality; binOpInequality)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; TypeMismatch; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂)
open import Luau.RuntimeType using (function; number)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Value using (nil; addr; val; number; bool)
open import Properties.Remember using (remember; _,_)
data StepResultᴮ {a} (H : Heap a) (B : Block a) : Set
data StepResultᴱ {a} (H : Heap a) (M : Expr a) : Set
data StepResultᴮ H B where
step : H B (H B ⟶ᴮ B H) StepResultᴮ H B
return : V {B} (B (return (val V) B)) StepResultᴮ H B
done : (B done) StepResultᴮ H B
error : (RuntimeErrorᴮ H B) StepResultᴮ H B
data StepResultᴱ H M where
step : H M (H M ⟶ᴱ M H) StepResultᴱ H M
value : V (M val V) StepResultᴱ H M
error : (RuntimeErrorᴱ H M) StepResultᴱ H M
stepᴱ : {a} H M StepResultᴱ {a} H M
stepᴮ : {a} H B StepResultᴮ {a} H B
stepᴱ H nil = value nil refl
stepᴱ H (var x) = error (UnboundVariable x)
stepᴱ H (addr a) = value (addr a) refl
stepᴱ H (number x) = value (number x) refl
stepᴱ H (true) = value (bool true) refl
stepᴱ H (false) = value (bool false) refl
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H M D = step H (M $ N) (app₁ D)
stepᴱ H (_ $ N) | value V refl with stepᴱ H N
stepᴱ H (_ $ N) | value V refl | step H N s = step H (val V $ N) (app₂ s)
stepᴱ H (_ $ _) | value nil refl | value W refl = error (app₁ (TypeMismatch function nil λ()))
stepᴱ H (_ $ _) | value (number n) refl | value W refl = error (app₁ (TypeMismatch function (number n) λ()))
stepᴱ H (_ $ _) | value (bool x) refl | value W refl = error (app₁ (TypeMismatch function (bool x) λ()))
stepᴱ H (_ $ _) | value (addr a) refl | value W refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value W refl | (nothing , p) = error (app₁ (SEGV a p))
stepᴱ H (_ $ _) | value (addr a) refl | value W refl | (just(function F is B end) , p) = step H (block fun F is B [ W / name (arg F) ]ᴮ end) (beta p)
stepᴱ H (M $ N) | value V p | error E = error (app₂ E)
stepᴱ H (M $ N) | error E = error (app₁ E)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H B D = step H (block b is B end) (block D)
stepᴱ H (block b is (return _ B) end) | return V refl = step H (val V) return
stepᴱ H (block b is done end) | done refl = step H nil done
stepᴱ H (block b is B end) | error E = error (block b E)
stepᴱ H (function F is C end) with alloc H (function F is C end)
stepᴱ H function F is C end | ok a H p = step H (addr a) (function p)
stepᴱ H (binexp x op y) with stepᴱ H x
stepᴱ H (binexp x op y) | value x refl with stepᴱ H y
-- Have to use explicit form for ≡ here because it's a heavily overloaded symbol
stepᴱ H (binexp x Luau.Syntax.≡ y) | value x refl | value y refl = step H (val (evalEqOp x y)) binOpEquality
stepᴱ H (binexp x y) | value x refl | value y refl = step H (val (evalNeqOp x y)) binOpInequality
stepᴱ H (binexp x op y) | value (number x) refl | value (number y) refl = step H (val (evalNumOp x op y)) binOpNumbers
stepᴱ H (binexp x op y) | value (number x) refl | step H y s = step H (binexp (number x) op y) (binOp₂ s)
stepᴱ H (binexp x op y) | value (number x) refl | error E = error (bin₂ E)
stepᴱ H (binexp x op y) | value nil refl | _ = error (bin₁ (TypeMismatch number nil λ()))
stepᴱ H (binexp x op y) | _ | value nil refl = error (bin₂ (TypeMismatch number nil λ()))
stepᴱ H (binexp x op y) | value (addr a) refl | _ = error (bin₁ (TypeMismatch number (addr a) λ()))
stepᴱ H (binexp x op y) | _ | value (addr a) refl = error (bin₂ (TypeMismatch number (addr a) λ()))
stepᴱ H (binexp x op y) | value (bool x) refl | _ = error (bin₁ (TypeMismatch number (bool x) λ()))
stepᴱ H (binexp x op y) | _ | value (bool y) refl = error (bin₂ (TypeMismatch number (bool y) λ()))
stepᴱ H (binexp x op y) | step H x s = step H (binexp x op y) (binOp₁ s)
stepᴱ H (binexp x op y) | error E = error (bin₁ E)
stepᴮ H (function F is C end B) with alloc H (function F is C end)
stepᴮ H (function F is C end B) | ok a H p = step H (B [ addr a / fun F ]ᴮ) (function p)
stepᴮ H (local x M B) with stepᴱ H M
stepᴮ H (local x M B) | step H M D = step H (local x M B) (local D)
stepᴮ H (local x _ B) | value V refl = step H (B [ V / name x ]ᴮ) subst
stepᴮ H (local x M B) | error E = error (local x E)
stepᴮ H (return M B) with stepᴱ H M
stepᴮ H (return M B) | step H M D = step H (return M B) (return D)
stepᴮ H (return _ B) | value V refl = return V refl
stepᴮ H (return M B) | error E = error (return E)
stepᴮ H done = done refl