mirror of
https://github.com/luau-lang/luau.git
synced 2024-12-13 21:40:43 +00:00
c5477d522d
* First cut of strict mode Co-authored-by: Lily Brown <lily@lily.fyi>
164 lines
5.4 KiB
Agda
164 lines
5.4 KiB
Agda
module Luau.Type where
|
||
|
||
open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv)
|
||
open import Agda.Builtin.Equality using (_≡_; refl)
|
||
open import Properties.Dec using (Dec; yes; no)
|
||
open import Properties.Equality using (cong)
|
||
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
||
|
||
data Type : Set where
|
||
nil : Type
|
||
_⇒_ : Type → Type → Type
|
||
none : Type
|
||
any : Type
|
||
boolean : Type
|
||
number : Type
|
||
_∪_ : Type → Type → Type
|
||
_∩_ : Type → Type → Type
|
||
|
||
lhs : Type → Type
|
||
lhs (T ⇒ _) = T
|
||
lhs (T ∪ _) = T
|
||
lhs (T ∩ _) = T
|
||
lhs nil = nil
|
||
lhs none = none
|
||
lhs any = any
|
||
lhs number = number
|
||
lhs boolean = boolean
|
||
|
||
rhs : Type → Type
|
||
rhs (_ ⇒ T) = T
|
||
rhs (_ ∪ T) = T
|
||
rhs (_ ∩ T) = T
|
||
rhs nil = nil
|
||
rhs none = none
|
||
rhs any = any
|
||
rhs number = number
|
||
rhs boolean = boolean
|
||
|
||
_≡ᵀ_ : ∀ (T U : Type) → Dec(T ≡ U)
|
||
nil ≡ᵀ nil = yes refl
|
||
nil ≡ᵀ (S ⇒ T) = no (λ ())
|
||
nil ≡ᵀ none = no (λ ())
|
||
nil ≡ᵀ any = no (λ ())
|
||
nil ≡ᵀ number = no (λ ())
|
||
nil ≡ᵀ boolean = no (λ ())
|
||
nil ≡ᵀ (S ∪ T) = no (λ ())
|
||
nil ≡ᵀ (S ∩ T) = no (λ ())
|
||
(S ⇒ T) ≡ᵀ nil = no (λ ())
|
||
(S ⇒ T) ≡ᵀ (U ⇒ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
|
||
(S ⇒ T) ≡ᵀ (S ⇒ T) | yes refl | yes refl = yes refl
|
||
(S ⇒ T) ≡ᵀ (U ⇒ V) | _ | no p = no (λ q → p (cong rhs q))
|
||
(S ⇒ T) ≡ᵀ (U ⇒ V) | no p | _ = no (λ q → p (cong lhs q))
|
||
(S ⇒ T) ≡ᵀ none = no (λ ())
|
||
(S ⇒ T) ≡ᵀ any = no (λ ())
|
||
(S ⇒ T) ≡ᵀ number = no (λ ())
|
||
(S ⇒ T) ≡ᵀ boolean = no (λ ())
|
||
(S ⇒ T) ≡ᵀ (U ∪ V) = no (λ ())
|
||
(S ⇒ T) ≡ᵀ (U ∩ V) = no (λ ())
|
||
none ≡ᵀ nil = no (λ ())
|
||
none ≡ᵀ (U ⇒ V) = no (λ ())
|
||
none ≡ᵀ none = yes refl
|
||
none ≡ᵀ any = no (λ ())
|
||
none ≡ᵀ number = no (λ ())
|
||
none ≡ᵀ boolean = no (λ ())
|
||
none ≡ᵀ (U ∪ V) = no (λ ())
|
||
none ≡ᵀ (U ∩ V) = no (λ ())
|
||
any ≡ᵀ nil = no (λ ())
|
||
any ≡ᵀ (U ⇒ V) = no (λ ())
|
||
any ≡ᵀ none = no (λ ())
|
||
any ≡ᵀ any = yes refl
|
||
any ≡ᵀ number = no (λ ())
|
||
any ≡ᵀ boolean = no (λ ())
|
||
any ≡ᵀ (U ∪ V) = no (λ ())
|
||
any ≡ᵀ (U ∩ V) = no (λ ())
|
||
number ≡ᵀ nil = no (λ ())
|
||
number ≡ᵀ (T ⇒ U) = no (λ ())
|
||
number ≡ᵀ none = no (λ ())
|
||
number ≡ᵀ any = no (λ ())
|
||
number ≡ᵀ number = yes refl
|
||
number ≡ᵀ boolean = no (λ ())
|
||
number ≡ᵀ (T ∪ U) = no (λ ())
|
||
number ≡ᵀ (T ∩ U) = no (λ ())
|
||
boolean ≡ᵀ nil = no (λ ())
|
||
boolean ≡ᵀ (T ⇒ U) = no (λ ())
|
||
boolean ≡ᵀ none = no (λ ())
|
||
boolean ≡ᵀ any = no (λ ())
|
||
boolean ≡ᵀ boolean = yes refl
|
||
boolean ≡ᵀ number = no (λ ())
|
||
boolean ≡ᵀ (T ∪ U) = no (λ ())
|
||
boolean ≡ᵀ (T ∩ U) = no (λ ())
|
||
(S ∪ T) ≡ᵀ nil = no (λ ())
|
||
(S ∪ T) ≡ᵀ (U ⇒ V) = no (λ ())
|
||
(S ∪ T) ≡ᵀ none = no (λ ())
|
||
(S ∪ T) ≡ᵀ any = no (λ ())
|
||
(S ∪ T) ≡ᵀ number = no (λ ())
|
||
(S ∪ T) ≡ᵀ boolean = no (λ ())
|
||
(S ∪ T) ≡ᵀ (U ∪ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
|
||
(S ∪ T) ≡ᵀ (S ∪ T) | yes refl | yes refl = yes refl
|
||
(S ∪ T) ≡ᵀ (U ∪ V) | _ | no p = no (λ q → p (cong rhs q))
|
||
(S ∪ T) ≡ᵀ (U ∪ V) | no p | _ = no (λ q → p (cong lhs q))
|
||
(S ∪ T) ≡ᵀ (U ∩ V) = no (λ ())
|
||
(S ∩ T) ≡ᵀ nil = no (λ ())
|
||
(S ∩ T) ≡ᵀ (U ⇒ V) = no (λ ())
|
||
(S ∩ T) ≡ᵀ none = no (λ ())
|
||
(S ∩ T) ≡ᵀ any = no (λ ())
|
||
(S ∩ T) ≡ᵀ number = no (λ ())
|
||
(S ∩ T) ≡ᵀ boolean = no (λ ())
|
||
(S ∩ T) ≡ᵀ (U ∪ V) = no (λ ())
|
||
(S ∩ T) ≡ᵀ (U ∩ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
|
||
(S ∩ T) ≡ᵀ (U ∩ V) | yes refl | yes refl = yes refl
|
||
(S ∩ T) ≡ᵀ (U ∩ V) | _ | no p = no (λ q → p (cong rhs q))
|
||
(S ∩ T) ≡ᵀ (U ∩ V) | no p | _ = no (λ q → p (cong lhs q))
|
||
|
||
_≡ᴹᵀ_ : ∀ (T U : Maybe Type) → Dec(T ≡ U)
|
||
nothing ≡ᴹᵀ nothing = yes refl
|
||
nothing ≡ᴹᵀ just U = no (λ ())
|
||
just T ≡ᴹᵀ nothing = no (λ ())
|
||
just T ≡ᴹᵀ just U with T ≡ᵀ U
|
||
(just T ≡ᴹᵀ just T) | yes refl = yes refl
|
||
(just T ≡ᴹᵀ just U) | no p = no (λ q → p (just-inv q))
|
||
|
||
data Mode : Set where
|
||
strict : Mode
|
||
nonstrict : Mode
|
||
|
||
src : Mode → Type → Type
|
||
src m nil = none
|
||
src m number = none
|
||
src m boolean = none
|
||
src m (S ⇒ T) = S
|
||
-- In nonstrict mode, functions are covaraiant, in strict mode they're contravariant
|
||
src strict (S ∪ T) = (src strict S) ∩ (src strict T)
|
||
src nonstrict (S ∪ T) = (src nonstrict S) ∪ (src nonstrict T)
|
||
src strict (S ∩ T) = (src strict S) ∪ (src strict T)
|
||
src nonstrict (S ∩ T) = (src nonstrict S) ∩ (src nonstrict T)
|
||
src strict none = any
|
||
src nonstrict none = none
|
||
src strict any = none
|
||
src nonstrict any = any
|
||
|
||
tgt : Type → Type
|
||
tgt nil = none
|
||
tgt (S ⇒ T) = T
|
||
tgt none = none
|
||
tgt any = any
|
||
tgt number = none
|
||
tgt boolean = none
|
||
tgt (S ∪ T) = (tgt S) ∪ (tgt T)
|
||
tgt (S ∩ T) = (tgt S) ∩ (tgt T)
|
||
|
||
optional : Type → Type
|
||
optional nil = nil
|
||
optional (T ∪ nil) = (T ∪ nil)
|
||
optional T = (T ∪ nil)
|
||
|
||
normalizeOptional : Type → Type
|
||
normalizeOptional (S ∪ T) with normalizeOptional S | normalizeOptional T
|
||
normalizeOptional (S ∪ T) | (S′ ∪ nil) | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
|
||
normalizeOptional (S ∪ T) | S′ | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
|
||
normalizeOptional (S ∪ T) | (S′ ∪ nil) | T′ = (S′ ∪ T′) ∪ nil
|
||
normalizeOptional (S ∪ T) | S′ | nil = optional S′
|
||
normalizeOptional (S ∪ T) | nil | T′ = optional T′
|
||
normalizeOptional (S ∪ T) | S′ | T′ = S′ ∪ T′
|
||
normalizeOptional T = T
|