2022-02-09 23:14:29 +00:00
|
|
|
|
module Luau.Type where
|
|
|
|
|
|
2022-03-02 22:02:51 +00:00
|
|
|
|
open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv)
|
|
|
|
|
open import Agda.Builtin.Equality using (_≡_; refl)
|
|
|
|
|
open import Properties.Dec using (Dec; yes; no)
|
|
|
|
|
open import Properties.Equality using (cong)
|
2022-02-11 20:38:35 +00:00
|
|
|
|
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
|
|
|
|
|
2022-02-09 23:14:29 +00:00
|
|
|
|
data Type : Set where
|
|
|
|
|
nil : Type
|
|
|
|
|
_⇒_ : Type → Type → Type
|
|
|
|
|
none : Type
|
|
|
|
|
any : Type
|
2022-03-02 22:02:51 +00:00
|
|
|
|
boolean : Type
|
2022-02-18 19:09:00 +00:00
|
|
|
|
number : Type
|
2022-02-09 23:14:29 +00:00
|
|
|
|
_∪_ : Type → Type → Type
|
|
|
|
|
_∩_ : Type → Type → Type
|
|
|
|
|
|
2022-03-02 22:02:51 +00:00
|
|
|
|
lhs : Type → Type
|
|
|
|
|
lhs (T ⇒ _) = T
|
|
|
|
|
lhs (T ∪ _) = T
|
|
|
|
|
lhs (T ∩ _) = T
|
|
|
|
|
lhs nil = nil
|
|
|
|
|
lhs none = none
|
|
|
|
|
lhs any = any
|
|
|
|
|
lhs number = number
|
|
|
|
|
lhs boolean = boolean
|
|
|
|
|
|
|
|
|
|
rhs : Type → Type
|
|
|
|
|
rhs (_ ⇒ T) = T
|
|
|
|
|
rhs (_ ∪ T) = T
|
|
|
|
|
rhs (_ ∩ T) = T
|
|
|
|
|
rhs nil = nil
|
|
|
|
|
rhs none = none
|
|
|
|
|
rhs any = any
|
|
|
|
|
rhs number = number
|
|
|
|
|
rhs boolean = boolean
|
|
|
|
|
|
|
|
|
|
_≡ᵀ_ : ∀ (T U : Type) → Dec(T ≡ U)
|
|
|
|
|
nil ≡ᵀ nil = yes refl
|
|
|
|
|
nil ≡ᵀ (S ⇒ T) = no (λ ())
|
|
|
|
|
nil ≡ᵀ none = no (λ ())
|
|
|
|
|
nil ≡ᵀ any = no (λ ())
|
|
|
|
|
nil ≡ᵀ number = no (λ ())
|
|
|
|
|
nil ≡ᵀ boolean = no (λ ())
|
|
|
|
|
nil ≡ᵀ (S ∪ T) = no (λ ())
|
|
|
|
|
nil ≡ᵀ (S ∩ T) = no (λ ())
|
|
|
|
|
(S ⇒ T) ≡ᵀ nil = no (λ ())
|
|
|
|
|
(S ⇒ T) ≡ᵀ (U ⇒ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
|
|
|
|
|
(S ⇒ T) ≡ᵀ (S ⇒ T) | yes refl | yes refl = yes refl
|
|
|
|
|
(S ⇒ T) ≡ᵀ (U ⇒ V) | _ | no p = no (λ q → p (cong rhs q))
|
|
|
|
|
(S ⇒ T) ≡ᵀ (U ⇒ V) | no p | _ = no (λ q → p (cong lhs q))
|
|
|
|
|
(S ⇒ T) ≡ᵀ none = no (λ ())
|
|
|
|
|
(S ⇒ T) ≡ᵀ any = no (λ ())
|
|
|
|
|
(S ⇒ T) ≡ᵀ number = no (λ ())
|
|
|
|
|
(S ⇒ T) ≡ᵀ boolean = no (λ ())
|
|
|
|
|
(S ⇒ T) ≡ᵀ (U ∪ V) = no (λ ())
|
|
|
|
|
(S ⇒ T) ≡ᵀ (U ∩ V) = no (λ ())
|
|
|
|
|
none ≡ᵀ nil = no (λ ())
|
|
|
|
|
none ≡ᵀ (U ⇒ V) = no (λ ())
|
|
|
|
|
none ≡ᵀ none = yes refl
|
|
|
|
|
none ≡ᵀ any = no (λ ())
|
|
|
|
|
none ≡ᵀ number = no (λ ())
|
|
|
|
|
none ≡ᵀ boolean = no (λ ())
|
|
|
|
|
none ≡ᵀ (U ∪ V) = no (λ ())
|
|
|
|
|
none ≡ᵀ (U ∩ V) = no (λ ())
|
|
|
|
|
any ≡ᵀ nil = no (λ ())
|
|
|
|
|
any ≡ᵀ (U ⇒ V) = no (λ ())
|
|
|
|
|
any ≡ᵀ none = no (λ ())
|
|
|
|
|
any ≡ᵀ any = yes refl
|
|
|
|
|
any ≡ᵀ number = no (λ ())
|
|
|
|
|
any ≡ᵀ boolean = no (λ ())
|
|
|
|
|
any ≡ᵀ (U ∪ V) = no (λ ())
|
|
|
|
|
any ≡ᵀ (U ∩ V) = no (λ ())
|
|
|
|
|
number ≡ᵀ nil = no (λ ())
|
|
|
|
|
number ≡ᵀ (T ⇒ U) = no (λ ())
|
|
|
|
|
number ≡ᵀ none = no (λ ())
|
|
|
|
|
number ≡ᵀ any = no (λ ())
|
|
|
|
|
number ≡ᵀ number = yes refl
|
|
|
|
|
number ≡ᵀ boolean = no (λ ())
|
|
|
|
|
number ≡ᵀ (T ∪ U) = no (λ ())
|
|
|
|
|
number ≡ᵀ (T ∩ U) = no (λ ())
|
|
|
|
|
boolean ≡ᵀ nil = no (λ ())
|
|
|
|
|
boolean ≡ᵀ (T ⇒ U) = no (λ ())
|
|
|
|
|
boolean ≡ᵀ none = no (λ ())
|
|
|
|
|
boolean ≡ᵀ any = no (λ ())
|
|
|
|
|
boolean ≡ᵀ boolean = yes refl
|
|
|
|
|
boolean ≡ᵀ number = no (λ ())
|
|
|
|
|
boolean ≡ᵀ (T ∪ U) = no (λ ())
|
|
|
|
|
boolean ≡ᵀ (T ∩ U) = no (λ ())
|
|
|
|
|
(S ∪ T) ≡ᵀ nil = no (λ ())
|
|
|
|
|
(S ∪ T) ≡ᵀ (U ⇒ V) = no (λ ())
|
|
|
|
|
(S ∪ T) ≡ᵀ none = no (λ ())
|
|
|
|
|
(S ∪ T) ≡ᵀ any = no (λ ())
|
|
|
|
|
(S ∪ T) ≡ᵀ number = no (λ ())
|
|
|
|
|
(S ∪ T) ≡ᵀ boolean = no (λ ())
|
|
|
|
|
(S ∪ T) ≡ᵀ (U ∪ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
|
|
|
|
|
(S ∪ T) ≡ᵀ (S ∪ T) | yes refl | yes refl = yes refl
|
|
|
|
|
(S ∪ T) ≡ᵀ (U ∪ V) | _ | no p = no (λ q → p (cong rhs q))
|
|
|
|
|
(S ∪ T) ≡ᵀ (U ∪ V) | no p | _ = no (λ q → p (cong lhs q))
|
|
|
|
|
(S ∪ T) ≡ᵀ (U ∩ V) = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ nil = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ (U ⇒ V) = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ none = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ any = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ number = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ boolean = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ (U ∪ V) = no (λ ())
|
|
|
|
|
(S ∩ T) ≡ᵀ (U ∩ V) with (S ≡ᵀ U) | (T ≡ᵀ V)
|
|
|
|
|
(S ∩ T) ≡ᵀ (U ∩ V) | yes refl | yes refl = yes refl
|
|
|
|
|
(S ∩ T) ≡ᵀ (U ∩ V) | _ | no p = no (λ q → p (cong rhs q))
|
|
|
|
|
(S ∩ T) ≡ᵀ (U ∩ V) | no p | _ = no (λ q → p (cong lhs q))
|
|
|
|
|
|
|
|
|
|
_≡ᴹᵀ_ : ∀ (T U : Maybe Type) → Dec(T ≡ U)
|
|
|
|
|
nothing ≡ᴹᵀ nothing = yes refl
|
|
|
|
|
nothing ≡ᴹᵀ just U = no (λ ())
|
|
|
|
|
just T ≡ᴹᵀ nothing = no (λ ())
|
|
|
|
|
just T ≡ᴹᵀ just U with T ≡ᵀ U
|
|
|
|
|
(just T ≡ᴹᵀ just T) | yes refl = yes refl
|
|
|
|
|
(just T ≡ᴹᵀ just U) | no p = no (λ q → p (just-inv q))
|
|
|
|
|
|
|
|
|
|
data Mode : Set where
|
|
|
|
|
strict : Mode
|
|
|
|
|
nonstrict : Mode
|
|
|
|
|
|
|
|
|
|
src : Mode → Type → Type
|
|
|
|
|
src m nil = none
|
|
|
|
|
src m number = none
|
|
|
|
|
src m boolean = none
|
|
|
|
|
src m (S ⇒ T) = S
|
|
|
|
|
-- In nonstrict mode, functions are covaraiant, in strict mode they're contravariant
|
|
|
|
|
src strict (S ∪ T) = (src strict S) ∩ (src strict T)
|
|
|
|
|
src nonstrict (S ∪ T) = (src nonstrict S) ∪ (src nonstrict T)
|
|
|
|
|
src strict (S ∩ T) = (src strict S) ∪ (src strict T)
|
|
|
|
|
src nonstrict (S ∩ T) = (src nonstrict S) ∩ (src nonstrict T)
|
|
|
|
|
src strict none = any
|
|
|
|
|
src nonstrict none = none
|
|
|
|
|
src strict any = none
|
|
|
|
|
src nonstrict any = any
|
2022-02-11 20:38:35 +00:00
|
|
|
|
|
|
|
|
|
tgt : Type → Type
|
|
|
|
|
tgt nil = none
|
|
|
|
|
tgt (S ⇒ T) = T
|
|
|
|
|
tgt none = none
|
|
|
|
|
tgt any = any
|
2022-02-18 19:09:00 +00:00
|
|
|
|
tgt number = none
|
2022-03-02 22:02:51 +00:00
|
|
|
|
tgt boolean = none
|
2022-02-11 20:38:35 +00:00
|
|
|
|
tgt (S ∪ T) = (tgt S) ∪ (tgt T)
|
|
|
|
|
tgt (S ∩ T) = (tgt S) ∩ (tgt T)
|
|
|
|
|
|
|
|
|
|
optional : Type → Type
|
|
|
|
|
optional nil = nil
|
|
|
|
|
optional (T ∪ nil) = (T ∪ nil)
|
|
|
|
|
optional T = (T ∪ nil)
|
|
|
|
|
|
|
|
|
|
normalizeOptional : Type → Type
|
|
|
|
|
normalizeOptional (S ∪ T) with normalizeOptional S | normalizeOptional T
|
|
|
|
|
normalizeOptional (S ∪ T) | (S′ ∪ nil) | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
|
|
|
|
|
normalizeOptional (S ∪ T) | S′ | (T′ ∪ nil) = (S′ ∪ T′) ∪ nil
|
|
|
|
|
normalizeOptional (S ∪ T) | (S′ ∪ nil) | T′ = (S′ ∪ T′) ∪ nil
|
|
|
|
|
normalizeOptional (S ∪ T) | S′ | nil = optional S′
|
|
|
|
|
normalizeOptional (S ∪ T) | nil | T′ = optional T′
|
|
|
|
|
normalizeOptional (S ∪ T) | S′ | T′ = S′ ∪ T′
|
|
|
|
|
normalizeOptional T = T
|