luau/Analysis/src/TableLiteralInference.cpp
ayoungbloodrbx 6b33251b89
Sync to upstream/release/667 (#1754)
After a very auspicious release last week, we have a new bevy of changes
for you!

## What's Changed

### Deprecated Attribute

This release includes an implementation of the `@deprecated` attribute
proposed in [this
RFC](https://rfcs.luau.org/syntax-attribute-functions-deprecated.html).
It relies on the new type solver to propagate deprecation information
from function and method AST nodes to the corresponding type objects.
These objects are queried by a linter pass when it encounters local,
global, or indexed variables, to issue deprecation warnings. Uses of
deprecated functions and methods in recursion are ignored. To support
deprecation of class methods, the parser has been extended to allow
attribute declarations on class methods. The implementation does not
support parameters, so it is not currently possible for users to
customize deprecation messages.

### General

- Add a limit for normalization of function types.

### New Type Solver

- Fix type checker to accept numbers as concat operands (Fixes #1671).
- Fix user-defined type functions failing when used inside type
aliases/nested calls (Fixes #1738, Fixes #1679).
- Improve constraint generation for overloaded functions (in part thanks
to @vvatheus in #1694).
- Improve type inference for indexers on table literals, especially when
passing table literals directly as a function call argument.
- Equate regular error type and intersection with a negation of an error
type.
- Avoid swapping types in 2-part union when RHS is optional.
- Use simplification when doing `~nil` refinements.
- `len<>` now works on metatables without `__len` function.

### AST

- Retain source information for `AstTypeUnion` and
`AstTypeIntersection`.

### Transpiler

- Print attributes on functions.

### Parser

- Allow types in indexers to begin with string literals by @jackdotink
in #1750.

### Autocomplete

- Evaluate user-defined type functions in ill-formed source code to
provide autocomplete.
- Fix the start location of functions that have attributes.
- Implement better fragment selection.

### Internal Contributors

Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Sora Kanosue <skanosue@roblox.com>
Co-authored-by: Talha Pathan <tpathan@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

**Full Changelog**:
https://github.com/luau-lang/luau/compare/0.666...0.667

---------

Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <61795485+vrn-sn@users.noreply.github.com>
Co-authored-by: Menarul Alam <malam@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Vighnesh <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
2025-03-28 16:15:46 -07:00

578 lines
22 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/TableLiteralInference.h"
#include "Luau/Ast.h"
#include "Luau/Common.h"
#include "Luau/Normalize.h"
#include "Luau/Simplify.h"
#include "Luau/Subtyping.h"
#include "Luau/Type.h"
#include "Luau/ToString.h"
#include "Luau/TypeArena.h"
#include "Luau/TypeUtils.h"
#include "Luau/Unifier2.h"
LUAU_FASTFLAGVARIABLE(LuauBidirectionalInferenceUpcast)
LUAU_FASTFLAGVARIABLE(LuauBidirectionalInferenceCollectIndexerTypes)
LUAU_FASTFLAGVARIABLE(LuauBidirectionalFailsafe)
namespace Luau
{
// A fast approximation of subTy <: superTy
static bool fastIsSubtype(TypeId subTy, TypeId superTy)
{
Relation r = relate(superTy, subTy);
return r == Relation::Coincident || r == Relation::Superset;
}
static bool isRecord(const AstExprTable::Item& item)
{
if (item.kind == AstExprTable::Item::Record)
return true;
else if (item.kind == AstExprTable::Item::General && item.key->is<AstExprConstantString>())
return true;
else
return false;
}
static std::optional<TypeId> extractMatchingTableType(std::vector<TypeId>& tables, TypeId exprType, NotNull<BuiltinTypes> builtinTypes)
{
if (tables.empty())
return std::nullopt;
const TableType* exprTable = get<TableType>(follow(exprType));
if (!exprTable)
return std::nullopt;
size_t tableCount = 0;
std::optional<TypeId> firstTable;
for (TypeId ty : tables)
{
ty = follow(ty);
if (auto tt = get<TableType>(ty))
{
// If the expected table has a key whose type is a string or boolean
// singleton and the corresponding exprType property does not match,
// then skip this table.
if (!firstTable)
firstTable = ty;
++tableCount;
for (const auto& [name, expectedProp] : tt->props)
{
if (!expectedProp.readTy)
continue;
const TypeId expectedType = follow(*expectedProp.readTy);
auto st = get<SingletonType>(expectedType);
if (!st)
continue;
auto it = exprTable->props.find(name);
if (it == exprTable->props.end())
continue;
const auto& [_name, exprProp] = *it;
if (!exprProp.readTy)
continue;
const TypeId propType = follow(*exprProp.readTy);
const FreeType* ft = get<FreeType>(propType);
if (ft && get<SingletonType>(ft->lowerBound))
{
if (fastIsSubtype(builtinTypes->booleanType, ft->upperBound) && fastIsSubtype(expectedType, builtinTypes->booleanType))
{
return ty;
}
if (fastIsSubtype(builtinTypes->stringType, ft->upperBound) && fastIsSubtype(expectedType, ft->lowerBound))
{
return ty;
}
}
}
}
}
if (tableCount == 1)
{
LUAU_ASSERT(firstTable);
return firstTable;
}
return std::nullopt;
}
TypeId matchLiteralType(
NotNull<DenseHashMap<const AstExpr*, TypeId>> astTypes,
NotNull<DenseHashMap<const AstExpr*, TypeId>> astExpectedTypes,
NotNull<BuiltinTypes> builtinTypes,
NotNull<TypeArena> arena,
NotNull<Unifier2> unifier,
NotNull<Subtyping> subtyping,
TypeId expectedType,
TypeId exprType,
const AstExpr* expr,
std::vector<TypeId>& toBlock
)
{
/*
* Table types that arise from literal table expressions have some
* properties that make this algorithm much simpler.
*
* Most importantly, the parts of the type that arise directly from the
* table expression are guaranteed to be acyclic. This means we can do all
* kinds of naive depth first traversal shenanigans and not worry about
* nasty details like aliasing or reentrancy.
*
* We are therefore completely free to mutate these portions of the
* TableType however we choose! We'll take advantage of this property to do
* things like replace explicit named properties with indexers as required
* by the expected type.
*/
if (!isLiteral(expr))
{
if (FFlag::LuauBidirectionalInferenceUpcast)
{
auto result = subtyping->isSubtype(/*subTy=*/exprType, /*superTy=*/expectedType, unifier->scope);
return result.isSubtype ? expectedType : exprType;
}
else
return exprType;
}
expectedType = follow(expectedType);
exprType = follow(exprType);
if (FFlag::LuauBidirectionalInferenceCollectIndexerTypes)
{
// The intent of `matchLiteralType` is to upcast values when it's safe
// to do so. it's always safe to upcast to `any` or `unknown`, so we
// can unconditionally do so here.
if (is<AnyType, UnknownType>(expectedType))
return expectedType;
}
else
{
if (get<AnyType>(expectedType) || get<UnknownType>(expectedType))
{
// "Narrowing" to unknown or any is not going to do anything useful.
return exprType;
}
}
if (expr->is<AstExprConstantString>())
{
auto ft = get<FreeType>(exprType);
if (ft && get<SingletonType>(ft->lowerBound) && fastIsSubtype(builtinTypes->stringType, ft->upperBound) &&
fastIsSubtype(ft->lowerBound, builtinTypes->stringType))
{
// if the upper bound is a subtype of the expected type, we can push the expected type in
Relation upperBoundRelation = relate(ft->upperBound, expectedType);
if (upperBoundRelation == Relation::Subset || upperBoundRelation == Relation::Coincident)
{
emplaceType<BoundType>(asMutable(exprType), expectedType);
return exprType;
}
// likewise, if the lower bound is a subtype, we can force the expected type in
// if this is the case and the previous relation failed, it means that the primitive type
// constraint was going to have to select the lower bound for this type anyway.
Relation lowerBoundRelation = relate(ft->lowerBound, expectedType);
if (lowerBoundRelation == Relation::Subset || lowerBoundRelation == Relation::Coincident)
{
emplaceType<BoundType>(asMutable(exprType), expectedType);
return exprType;
}
}
}
else if (expr->is<AstExprConstantBool>())
{
auto ft = get<FreeType>(exprType);
if (ft && get<SingletonType>(ft->lowerBound) && fastIsSubtype(builtinTypes->booleanType, ft->upperBound) &&
fastIsSubtype(ft->lowerBound, builtinTypes->booleanType))
{
// if the upper bound is a subtype of the expected type, we can push the expected type in
Relation upperBoundRelation = relate(ft->upperBound, expectedType);
if (upperBoundRelation == Relation::Subset || upperBoundRelation == Relation::Coincident)
{
emplaceType<BoundType>(asMutable(exprType), expectedType);
return exprType;
}
// likewise, if the lower bound is a subtype, we can force the expected type in
// if this is the case and the previous relation failed, it means that the primitive type
// constraint was going to have to select the lower bound for this type anyway.
Relation lowerBoundRelation = relate(ft->lowerBound, expectedType);
if (lowerBoundRelation == Relation::Subset || lowerBoundRelation == Relation::Coincident)
{
emplaceType<BoundType>(asMutable(exprType), expectedType);
return exprType;
}
}
}
if (expr->is<AstExprConstantString>() || expr->is<AstExprConstantNumber>() || expr->is<AstExprConstantBool>() || expr->is<AstExprConstantNil>())
{
if (auto ft = get<FreeType>(exprType); ft && fastIsSubtype(ft->upperBound, expectedType))
{
emplaceType<BoundType>(asMutable(exprType), expectedType);
return exprType;
}
Relation r = relate(exprType, expectedType);
if (r == Relation::Coincident || r == Relation::Subset)
return expectedType;
return exprType;
}
if (FFlag::LuauBidirectionalInferenceUpcast && expr->is<AstExprFunction>())
{
// TODO: Push argument / return types into the lambda. For now, just do
// the non-literal thing: check for a subtype and upcast if valid.
auto result = subtyping->isSubtype(/*subTy=*/exprType, /*superTy=*/expectedType, unifier->scope);
return result.isSubtype
? expectedType
: exprType;
}
if (auto exprTable = expr->as<AstExprTable>())
{
TableType* const tableTy = getMutable<TableType>(exprType);
// This can occur if we have an expression like:
//
// { x = {}, x = 42 }
//
// The type of this will be `{ x: number }`
if (FFlag::LuauBidirectionalFailsafe && !tableTy)
return exprType;
LUAU_ASSERT(tableTy);
const TableType* expectedTableTy = get<TableType>(expectedType);
if (!expectedTableTy)
{
if (auto utv = get<UnionType>(expectedType))
{
std::vector<TypeId> parts{begin(utv), end(utv)};
std::optional<TypeId> tt = extractMatchingTableType(parts, exprType, builtinTypes);
if (tt)
{
TypeId res = matchLiteralType(astTypes, astExpectedTypes, builtinTypes, arena, unifier, subtyping, *tt, exprType, expr, toBlock);
parts.push_back(res);
return arena->addType(UnionType{std::move(parts)});
}
}
return exprType;
}
DenseHashSet<AstExprConstantString*> keysToDelete{nullptr};
DenseHashSet<TypeId> indexerKeyTypes{nullptr};
DenseHashSet<TypeId> indexerValueTypes{nullptr};
for (const AstExprTable::Item& item : exprTable->items)
{
if (isRecord(item))
{
const AstArray<char>& s = item.key->as<AstExprConstantString>()->value;
std::string keyStr{s.data, s.data + s.size};
auto it = tableTy->props.find(keyStr);
// This can occur, potentially, if we are re-entrant.
if (FFlag::LuauBidirectionalFailsafe && it == tableTy->props.end())
continue;
LUAU_ASSERT(it != tableTy->props.end());
Property& prop = it->second;
// If we encounter a duplcate property, we may have already
// set it to be read-only. If that's the case, the only thing
// that will definitely crash is trying to access a write
// only property.
LUAU_ASSERT(!prop.isWriteOnly());
TypeId propTy = *prop.readTy;
auto it2 = expectedTableTy->props.find(keyStr);
if (it2 == expectedTableTy->props.end())
{
// expectedType may instead have an indexer. This is
// kind of interesting because it means we clip the prop
// from the exprType and fold it into the indexer.
if (expectedTableTy->indexer && isString(expectedTableTy->indexer->indexType))
{
(*astExpectedTypes)[item.key] = expectedTableTy->indexer->indexType;
(*astExpectedTypes)[item.value] = expectedTableTy->indexer->indexResultType;
TypeId matchedType = matchLiteralType(
astTypes,
astExpectedTypes,
builtinTypes,
arena,
unifier,
subtyping,
expectedTableTy->indexer->indexResultType,
propTy,
item.value,
toBlock
);
if (FFlag::LuauBidirectionalInferenceCollectIndexerTypes)
{
indexerKeyTypes.insert(arena->addType(SingletonType{StringSingleton{keyStr}}));
indexerValueTypes.insert(matchedType);
}
else
{
if (tableTy->indexer)
unifier->unify(matchedType, tableTy->indexer->indexResultType);
else
tableTy->indexer = TableIndexer{expectedTableTy->indexer->indexType, matchedType};
}
keysToDelete.insert(item.key->as<AstExprConstantString>());
}
// If it's just an extra property and the expected type
// has no indexer, there's no work to do here.
continue;
}
LUAU_ASSERT(it2 != expectedTableTy->props.end());
const Property& expectedProp = it2->second;
std::optional<TypeId> expectedReadTy = expectedProp.readTy;
std::optional<TypeId> expectedWriteTy = expectedProp.writeTy;
TypeId matchedType = nullptr;
// Important optimization: If we traverse into the read and
// write types separately even when they are shared, we go
// quadratic in a hurry.
if (expectedProp.isShared())
{
matchedType =
matchLiteralType(astTypes, astExpectedTypes, builtinTypes, arena, unifier, subtyping, *expectedReadTy, propTy, item.value, toBlock);
prop.readTy = matchedType;
prop.writeTy = matchedType;
}
else if (expectedReadTy)
{
matchedType =
matchLiteralType(astTypes, astExpectedTypes, builtinTypes, arena, unifier, subtyping, *expectedReadTy, propTy, item.value, toBlock);
prop.readTy = matchedType;
prop.writeTy.reset();
}
else if (expectedWriteTy)
{
matchedType =
matchLiteralType(astTypes, astExpectedTypes, builtinTypes, arena, unifier, subtyping, *expectedWriteTy, propTy, item.value, toBlock);
prop.readTy.reset();
prop.writeTy = matchedType;
}
else
{
// Also important: It is presently the case that all
// table properties are either read-only, or have the
// same read and write types.
LUAU_ASSERT(!"Should be unreachable");
}
LUAU_ASSERT(prop.readTy || prop.writeTy);
LUAU_ASSERT(matchedType);
(*astExpectedTypes)[item.value] = matchedType;
// NOTE: We do *not* add to the potential indexer types here.
// I think this is correct to support something like:
//
// { [string]: number, foo: boolean }
//
}
else if (item.kind == AstExprTable::Item::List)
{
LUAU_ASSERT(tableTy->indexer);
if (expectedTableTy->indexer)
{
const TypeId* propTy = astTypes->find(item.value);
LUAU_ASSERT(propTy);
unifier->unify(expectedTableTy->indexer->indexType, builtinTypes->numberType);
TypeId matchedType = matchLiteralType(
astTypes,
astExpectedTypes,
builtinTypes,
arena,
unifier,
subtyping,
expectedTableTy->indexer->indexResultType,
*propTy,
item.value,
toBlock
);
if (FFlag::LuauBidirectionalInferenceCollectIndexerTypes)
{
indexerKeyTypes.insert(builtinTypes->numberType);
indexerValueTypes.insert(matchedType);
}
else
{
// if the index result type is the prop type, we can replace it with the matched type here.
if (tableTy->indexer->indexResultType == *propTy)
tableTy->indexer->indexResultType = matchedType;
}
}
}
else if (item.kind == AstExprTable::Item::General)
{
// We have { ..., [blocked] : somePropExpr, ...}
// If blocked resolves to a string, we will then take care of this above
// If it resolves to some other kind of expression, we don't have a way of folding this information into indexer
// because there is no named prop to remove
// We should just block here
const TypeId* keyTy = astTypes->find(item.key);
LUAU_ASSERT(keyTy);
TypeId tKey = follow(*keyTy);
LUAU_ASSERT(!is<BlockedType>(tKey));
const TypeId* propTy = astTypes->find(item.value);
LUAU_ASSERT(propTy);
TypeId tProp = follow(*propTy);
LUAU_ASSERT(!is<BlockedType>(tProp));
// Populate expected types for non-string keys declared with [] (the code below will handle the case where they are strings)
if (!item.key->as<AstExprConstantString>() && expectedTableTy->indexer)
(*astExpectedTypes)[item.key] = expectedTableTy->indexer->indexType;
if (FFlag::LuauBidirectionalInferenceCollectIndexerTypes)
{
indexerKeyTypes.insert(tKey);
indexerValueTypes.insert(tProp);
}
}
else
LUAU_ASSERT(!"Unexpected");
}
for (const auto& key : keysToDelete)
{
const AstArray<char>& s = key->value;
std::string keyStr{s.data, s.data + s.size};
tableTy->props.erase(keyStr);
}
// Keys that the expectedType says we should have, but that aren't
// specified by the AST fragment.
//
// If any such keys are options, then we'll add them to the expression
// type.
//
// We use std::optional<std::string> here because the empty string is a
// perfectly reasonable value to insert into the set. We'll use
// std::nullopt as our sentinel value.
Set<std::optional<std::string>> missingKeys{{}};
for (const auto& [name, _] : expectedTableTy->props)
missingKeys.insert(name);
for (const AstExprTable::Item& item : exprTable->items)
{
if (item.key)
{
if (const auto str = item.key->as<AstExprConstantString>())
{
missingKeys.erase(std::string(str->value.data, str->value.size));
}
}
}
for (const auto& key : missingKeys)
{
LUAU_ASSERT(key.has_value());
auto it = expectedTableTy->props.find(*key);
LUAU_ASSERT(it != expectedTableTy->props.end());
const Property& expectedProp = it->second;
Property exprProp;
if (expectedProp.readTy && isOptional(*expectedProp.readTy))
exprProp.readTy = *expectedProp.readTy;
if (expectedProp.writeTy && isOptional(*expectedProp.writeTy))
exprProp.writeTy = *expectedProp.writeTy;
// If the property isn't actually optional, do nothing.
if (exprProp.readTy || exprProp.writeTy)
tableTy->props[*key] = std::move(exprProp);
}
// If the expected table has an indexer, then the provided table can
// have one too.
// TODO: If the expected table also has an indexer, we might want to
// push the expected indexer's types into it.
if (FFlag::LuauBidirectionalInferenceCollectIndexerTypes && expectedTableTy->indexer)
{
if (indexerValueTypes.size() > 0 && indexerKeyTypes.size() > 0)
{
TypeId inferredKeyType = builtinTypes->neverType;
TypeId inferredValueType = builtinTypes->neverType;
for (auto kt: indexerKeyTypes)
{
auto simplified = simplifyUnion(builtinTypes, arena, inferredKeyType, kt);
inferredKeyType = simplified.result;
}
for (auto vt: indexerValueTypes)
{
auto simplified = simplifyUnion(builtinTypes, arena, inferredValueType, vt);
inferredValueType = simplified.result;
}
tableTy->indexer = TableIndexer{inferredKeyType, inferredValueType};
auto keyCheck = subtyping->isSubtype(inferredKeyType, expectedTableTy->indexer->indexType, unifier->scope);
if (keyCheck.isSubtype)
tableTy->indexer->indexType = expectedTableTy->indexer->indexType;
auto valueCheck = subtyping->isSubtype(inferredValueType, expectedTableTy->indexer->indexResultType, unifier->scope);
if (valueCheck.isSubtype)
tableTy->indexer->indexResultType = expectedTableTy->indexer->indexResultType;
}
else
LUAU_ASSERT(indexerKeyTypes.empty() && indexerValueTypes.empty());
}
else
{
if (expectedTableTy->indexer && !tableTy->indexer)
{
tableTy->indexer = expectedTableTy->indexer;
}
}
}
return exprType;
}
} // namespace Luau