mirror of
https://github.com/luau-lang/luau.git
synced 2024-12-14 14:11:08 +00:00
0bd21762ae
Prototypes booleans and relational operators. As part of this I removed `FFI/Data/Bool.agda`, because it was getting in the way - we already use `Agda.Builtin.Bool` instead for other cases.
163 lines
5.8 KiB
Agda
163 lines
5.8 KiB
Agda
module Luau.OpSem where
|
||
|
||
open import Agda.Builtin.Equality using (_≡_)
|
||
open import Agda.Builtin.Float using (Float; primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv; primFloatEquality; primFloatLess; primFloatInequality)
|
||
open import Agda.Builtin.Bool using (Bool; true; false)
|
||
open import Utility.Bool using (not; _or_; _and_)
|
||
open import Agda.Builtin.Nat using (_==_)
|
||
open import FFI.Data.Maybe using (just)
|
||
open import Luau.Heap using (Heap; _≡_⊕_↦_; _[_]; function_is_end)
|
||
open import Luau.Substitution using (_[_/_]ᴮ)
|
||
open import Luau.Syntax using (Expr; Stat; Block; nil; addr; var; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name; fun; arg; binexp; BinaryOperator; +; -; *; /; <; >; ≡; ≅; ≤; ≥; number)
|
||
open import Luau.Value using (addr; val; number; Value; bool)
|
||
open import Luau.RuntimeType using (RuntimeType; valueType)
|
||
|
||
evalNumOp : Float → BinaryOperator → Float → Value
|
||
evalNumOp x + y = number (primFloatPlus x y)
|
||
evalNumOp x - y = number (primFloatMinus x y)
|
||
evalNumOp x * y = number (primFloatTimes x y)
|
||
evalNumOp x / y = number (primFloatDiv x y)
|
||
evalNumOp x < y = bool (primFloatLess x y)
|
||
evalNumOp x > y = bool (primFloatLess y x)
|
||
evalNumOp x ≡ y = bool (primFloatEquality x y)
|
||
evalNumOp x ≅ y = bool (primFloatInequality x y)
|
||
evalNumOp x ≤ y = bool ((primFloatLess x y) or (primFloatEquality x y))
|
||
evalNumOp x ≥ y = bool ((primFloatLess y x) or (primFloatEquality x y))
|
||
|
||
evalEqOp : Value → Value → Value
|
||
evalEqOp Value.nil Value.nil = bool true
|
||
evalEqOp (addr x) (addr y) = bool (x == y)
|
||
evalEqOp (number x) (number y) = bool (primFloatEquality x y)
|
||
evalEqOp (bool true) (bool y) = bool y
|
||
evalEqOp (bool false) (bool y) = bool (not y)
|
||
evalEqOp _ _ = bool false
|
||
|
||
evalNeqOp : Value → Value → Value
|
||
evalNeqOp Value.nil Value.nil = bool false
|
||
evalNeqOp (addr x) (addr y) = bool (not (x == y))
|
||
evalNeqOp (number x) (number y) = bool (primFloatInequality x y)
|
||
evalNeqOp (bool true) (bool y) = bool (not y)
|
||
evalNeqOp (bool false) (bool y) = bool y
|
||
evalNeqOp _ _ = bool true
|
||
|
||
coerceToBool : Value → Bool
|
||
coerceToBool Value.nil = false
|
||
coerceToBool (addr x) = true
|
||
coerceToBool (number x) = true
|
||
coerceToBool (bool x) = x
|
||
|
||
data _⊢_⟶ᴮ_⊣_ {a} : Heap a → Block a → Block a → Heap a → Set
|
||
data _⊢_⟶ᴱ_⊣_ {a} : Heap a → Expr a → Expr a → Heap a → Set
|
||
|
||
data _⊢_⟶ᴱ_⊣_ where
|
||
|
||
nil : ∀ {H} →
|
||
|
||
-------------------
|
||
H ⊢ nil ⟶ᴱ nil ⊣ H
|
||
|
||
function : ∀ {H H′ a F B} →
|
||
|
||
H′ ≡ H ⊕ a ↦ (function F is B end) →
|
||
-------------------------------------------
|
||
H ⊢ (function F is B end) ⟶ᴱ (addr a) ⊣ H′
|
||
|
||
app₁ : ∀ {H H′ M M′ N} →
|
||
|
||
H ⊢ M ⟶ᴱ M′ ⊣ H′ →
|
||
-----------------------------
|
||
H ⊢ (M $ N) ⟶ᴱ (M′ $ N) ⊣ H′
|
||
|
||
app₂ : ∀ {H H′ V N N′} →
|
||
|
||
H ⊢ N ⟶ᴱ N′ ⊣ H′ →
|
||
-----------------------------
|
||
H ⊢ (val V $ N) ⟶ᴱ (val V $ N′) ⊣ H′
|
||
|
||
beta : ∀ {H a F B V} →
|
||
|
||
H [ a ] ≡ just(function F is B end) →
|
||
-----------------------------------------------------------------------------
|
||
H ⊢ (addr a $ val V) ⟶ᴱ (block (fun F) is (B [ V / name(arg F) ]ᴮ) end) ⊣ H
|
||
|
||
block : ∀ {H H′ B B′ b} →
|
||
|
||
H ⊢ B ⟶ᴮ B′ ⊣ H′ →
|
||
----------------------------------------------------
|
||
H ⊢ (block b is B end) ⟶ᴱ (block b is B′ end) ⊣ H′
|
||
|
||
return : ∀ {H V B b} →
|
||
|
||
--------------------------------------------------------
|
||
H ⊢ (block b is return (val V) ∙ B end) ⟶ᴱ (val V) ⊣ H
|
||
|
||
done : ∀ {H b} →
|
||
|
||
---------------------------------
|
||
H ⊢ (block b is done end) ⟶ᴱ nil ⊣ H
|
||
|
||
binOpEquality :
|
||
∀ {H x y} →
|
||
---------------------------------------------------------------------------
|
||
H ⊢ (binexp (val x) BinaryOperator.≡ (val y)) ⟶ᴱ (val (evalEqOp x y)) ⊣ H
|
||
|
||
binOpInequality :
|
||
∀ {H x y} →
|
||
----------------------------------------------------------------------------
|
||
H ⊢ (binexp (val x) BinaryOperator.≅ (val y)) ⟶ᴱ (val (evalNeqOp x y)) ⊣ H
|
||
|
||
binOpNumbers :
|
||
∀ {H x op y} →
|
||
-----------------------------------------------------------------------
|
||
H ⊢ (binexp (number x) op (number y)) ⟶ᴱ (val (evalNumOp x op y)) ⊣ H
|
||
|
||
binOp₁ :
|
||
∀ {H H′ x x′ op y} →
|
||
H ⊢ x ⟶ᴱ x′ ⊣ H′ →
|
||
---------------------------------------------
|
||
H ⊢ (binexp x op y) ⟶ᴱ (binexp x′ op y) ⊣ H′
|
||
|
||
binOp₂ :
|
||
∀ {H H′ x op y y′} →
|
||
H ⊢ y ⟶ᴱ y′ ⊣ H′ →
|
||
---------------------------------------------
|
||
H ⊢ (binexp x op y) ⟶ᴱ (binexp x op y′) ⊣ H′
|
||
|
||
|
||
data _⊢_⟶ᴮ_⊣_ where
|
||
|
||
local : ∀ {H H′ x M M′ B} →
|
||
|
||
H ⊢ M ⟶ᴱ M′ ⊣ H′ →
|
||
-------------------------------------------------
|
||
H ⊢ (local x ← M ∙ B) ⟶ᴮ (local x ← M′ ∙ B) ⊣ H′
|
||
|
||
subst : ∀ {H x v B} →
|
||
|
||
------------------------------------------------------
|
||
H ⊢ (local x ← val v ∙ B) ⟶ᴮ (B [ v / name x ]ᴮ) ⊣ H
|
||
|
||
function : ∀ {H H′ a F B C} →
|
||
|
||
H′ ≡ H ⊕ a ↦ (function F is C end) →
|
||
--------------------------------------------------------------
|
||
H ⊢ (function F is C end ∙ B) ⟶ᴮ (B [ addr a / fun F ]ᴮ) ⊣ H′
|
||
|
||
return : ∀ {H H′ M M′ B} →
|
||
|
||
H ⊢ M ⟶ᴱ M′ ⊣ H′ →
|
||
--------------------------------------------
|
||
H ⊢ (return M ∙ B) ⟶ᴮ (return M′ ∙ B) ⊣ H′
|
||
|
||
data _⊢_⟶*_⊣_ {a} : Heap a → Block a → Block a → Heap a → Set where
|
||
|
||
refl : ∀ {H B} →
|
||
|
||
----------------
|
||
H ⊢ B ⟶* B ⊣ H
|
||
|
||
step : ∀ {H H′ H″ B B′ B″} →
|
||
H ⊢ B ⟶ᴮ B′ ⊣ H′ →
|
||
H′ ⊢ B′ ⟶* B″ ⊣ H″ →
|
||
------------------
|
||
H ⊢ B ⟶* B″ ⊣ H″
|