Previously unicode codepoints would be incorrectly shown in windows
terminals, such as with u2503(┃):
```ps
❯ "print('\u{2503}')" | luau.exe
Γöâ
```
This change fixes the issue by setting the console's codepage on
windows, resulting in fixed behaviour:
```ps
❯ "print('\u{2503}')" | luau.exe
┃
```
Right now, you can index an intersection of tables fine when using
`x.prop` syntax, but not when using `x["prop"]` syntax.
This fixes it for the latter case
```lua
type Foo = {
Bar: string,
} & { Baz: number }
local x: Foo = { Bar = "1", Baz = 2 }
local y = x["Bar"] -- TypeError: Expected type table, got '{| Bar: string |} & {| Baz: number |}' instead
```
Part of a fix to
https://github.com/Roblox/luau/issues/533#issuecomment-1291779353
* Optimized operations like instantiation and module export for very
large types
In our new typechecker:
* Typechecking of function calls was rewritten to handle more cases
correctly
* Fixed a crash that can happen after self-referential type is exported
from a module
* Fixed a false positive error in string comparison
* Added handling of `for...in` variable type annotations and fixed
issues with the iterator call inside
* Self-referential 'hasProp' and 'setProp' constraints are now handled
correctly
In our native code generation (jit):
* Added '--target' argument to luau-compile to test multiple
architectures different from host architecture
* GC barrier tag check is skipped if type is already known to be
GC-collectable
* Added GET_TYPE/GET_TYPEOF instructions for type/typeof fast-calls
* Improved code size of interrupt handlers on X64
* Definition files can now ascribe indexers to class types.
(https://github.com/Roblox/luau/pull/949)
* Remove --compile support from the REPL. You can just use luau-compile
instead.
* When an exception is thrown during parallel typechecking (usually an
ICE), we now gracefully stop typechecking and drain active workers
before rethrowing the exception.
New solver
* Include more source location information when we hit an internal
compiler error
* Improve the logic that simplifies intersections of tables
JIT
* Save testable type annotations to bytecode
* Improve block placement for linearized blocks
* Add support for lea reg, [rip+offset] for labels
* Unify X64 and A64 codegen for RETURN
* Outline interrupt handlers for X64
* Remove global rArgN in favor of build.abi
* Change A64 INTERRUPT lowering to match X64
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
The existing instruction is incorrect, the luau package exists on the
Arch Linux User Repository (AUR), not at the official repository.
Feel free to suggest edits if something is wrong/missing, thanks!
(I also have a pkgbuild that builds every executable possible excluding
tests (repl, analyze, ast, reduce), however I did not include this since
releases only include repl and analyze)
* Added luau-compile executable target to build/test compilation without
having full REPL included.
In our new typechecker:
* Fixed the order in which constraints are checked to get more
deterministic errors in different environments
* Fixed `isNumber`/`isString` checks to fix false positive errors in
binary comparisons
* CannotCallNonFunction error is reported when calling an intersection
type of non-functions
In our native code generation (jit):
* Outlined X64 return instruction code to improve code size
* Improved performance of return instruction on A64
* Added construction of a dominator tree for future optimizations
We haven't updated this document in a while and yet there was a fair
amount of performance work, some of which can be documented here.
Note that this is not fully comprehensive in that it excludes a lot of
internal tuning that is difficult to describe other than with "we made
things faster".
Fixes#935:
* String literals that include `\z` escape sequence followed by newline
characters are now correctly highlighted.
* Unescaped backslash (`\`) character at the end of the line no longer
acts like the `\z` escape sequence inside string literals when
highlighting.
A pretty small changelist this week:
* When type inference fails to find any matching overload for a
function, we were declining to commit any changes to the type graph at
all. This was resulting in confusing type errors in certain cases. Now,
when a matching overload cannot be found, we always commit to the first
overload we tried.
JIT
* Fix missing variadic register invalidation in FALLBACK_GETVARARGS
* Add a missing null pointer check for the result of luaT_gettm
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* Fixed gcc warning about uninitialized `std::optional`
* Fixed inlining of functions when they are used to compute their own
arguments
In the new type solver:
* Type families that are not part of a function signature cannot be
resolved at instantiation time and will now produce an error. This will
be relaxed in the future when we get constraint clauses on function
signatures (internally)
* `never` type is now comparable
* Improved typechecking of `for..in` statements
* Fixed checks for number type in `Add` type family
* Performance was improved, with particularly large gains on large
projects
And in native code generation (jit):
* We eliminated the call instruction overhead when native code support
is enabled in the VM
* Small optimizations to arm64 lowering
* Reworked LOP_GETIMPORT handling to reduce assembly code size
* Fixed non-deterministic binary output
* Fixed bad code generation caused by incorrect SSA to VM register links
invalidation
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Lots of things going on this week:
* Fix a crash that could occur in the presence of a cyclic union. We
shouldn't be creating cyclic unions, but we shouldn't be crashing when
they arise either.
* Minor cleanup of `luau_precall`
* Internal change to make L->top handling slightly more uniform
* Optimize SETGLOBAL & GETGLOBAL fallback C functions.
* https://github.com/Roblox/luau/pull/929
* The syntax to the `luau-reduce` commandline tool has changed. It now
accepts a script, a command to execute, and an error to search for. It
no longer automatically passes the script to the command which makes it
a lot more flexible. Also be warned that it edits the script it is
passed **in place**. Do not point it at something that is not in source
control!
New solver
* Switch to a greedier but more fallible algorithm for simplifying union
and intersection types that are created as part of refinement
calculation. This has much better and more predictable performance.
* Fix a constraint cycle in recursive function calls.
* Much improved inference of binary addition. Functions like `function
add(x, y) return x + y end` can now be inferred without annotations. We
also accurately typecheck calls to functions like this.
* Many small bugfixes surrounding things like table indexers
* Add support for indexers on class types. This was previously added to
the old solver; we now add it to the new one for feature parity.
JIT
* https://github.com/Roblox/luau/pull/931
* Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64
* Implement remaining aliases of BFM for A64
* Implement new callinfo flag for A64
* Add instruction simplification for int->num->int conversion chains
* Don't even load execdata for X64 calls
* Treat opcode fallbacks the same as manually written fallbacks
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* `ClassType` can now have an indexer defined on it. This allows custom
types to be used in `t[x]` expressions.
* Fixed search for closest executable breakpoint line. Previously,
breakpoints might have been skipped in `else` blocks at the end of a
function
* Fixed how unification is performed for two optional types `a? <: b?`,
previously it might have unified either 'a' or 'b' with 'nil'. Note that
this fix is not enabled by default yet (see the list in
`ExperimentalFlags.h`)
In the new type solver, a concept of 'Type Families' has been
introduced.
Type families can be thought of as type aliases with custom type
inference/reduction logic included with them.
For example, we can have an `Add<T, U>` type family that will resolve
the type that is the result of adding two values together.
This will help type inference to figure out what 'T' and 'U' might be
when explicit type annotations are not provided.
In this update we don't define any type families, but they will be added
in the near future.
It is also possible for Luau embedders to define their own type families
in the global/environment scope.
Other changes include:
* Fixed scope used to find out which generic types should be included in
the function generic type list
* Fixed a crash after cyclic bound types were created during unification
And in native code generation (jit):
* Use of arm64 target on M1 now requires macOS 13
* Entry into native code has been optimized. This is especially
important for coroutine call/pcall performance as they involve going
through a C call frame
* LOP_LOADK(X) translation into IR has been improved to enable type
tag/constant propagation
* arm64 can use integer immediate values to synthesize floating-point
values
* x64 assembler removes duplicate 64bit numbers from the data section to
save space
* Linux `perf` can now be used to profile native Luau code (when running
with --codegen-perf CLI argument)
* `Luau.Analyze.CLI` now has experimental support for concurrent type
checking. Use the option `-jN` where `N` is the number of threads to
spawn.
* Improve typechecking performance by ~17% by making the function
`Luau::follow` much more efficient.
* Tighten up the type of `os.date`
* Removed `ParseOptions::allowTypeAnnotations` and
`ParseOptions::supportContinueStatement`
New solver
* Improve the reliability of function overload resolution
* More work toward supporting parallel type checking
* Fix a bug in inference of `==` and `~=` which would erroneously infer
that the operands were `boolean`
* Better error reporting when `for...in` loops are used incorrectly.
CodeGen
* Fix unwind registration when libunwind is used on Linux
* Fixed replaced IR instruction use count
* Convert X64 unwind info generation to standard prologue
* Implement A64 unwind info support for Dwarf2
* Live in/out data for linear blocks is now created
* Add side-exit VM register requirements to the IR dump
* Reuse ConstPropState between block chains
* Remove redundant base update
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
- The type list for function declarations does not accept defaults, but
the grammar incorrectly allowed this.
- Allow the empty table type `{}`
- Allow composite types and types surrounded by parentheses (e.g.
`string??`, `(string)`, `(string | number) & boolean`)
---------
Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
* Added a limit on how many instructions the Compiler can safely produce
(reported by @TheGreatSageEqualToHeaven)
C++ API Changes:
* With work started on read-only and write-only properties,
`Property::type` member variable has been replaced with `TypeId type()`
and `setType(TypeId)` functions.
* New `LazyType` unwrap callback now has a `void` return type, all
that's required from the callback is to write into `unwrapped` field.
In our work on the new type solver, the following issues were fixed:
* Work has started to support https://github.com/Roblox/luau/pull/77 and
https://github.com/Roblox/luau/pull/79
* Refinements are no longer applied on l-values, removing some
false-positive errors
* Improved overload resolution against expected result type
* `Frontend::prepareModuleScope` now works in the new solver
* Cofinite strings are now comparable
And these are the changes in native code generation (JIT):
* Fixed MIN_NUM and MAX_NUM constant fold when one of the arguments is
NaN
* Added constant folding for number conversions and bit operations
* Value spilling and rematerialization is now supported on arm64
* Improved FASTCALL2K IR generation to support second argument constant
* Added value numbering and load/store propagation optimizations
* Added STORE_VECTOR on arm64, completing the IR lowering on this target
* Work toward affording parallel type checking
* The interface to `LazyType` has changed:
* `LazyType` now takes a second callback that is passed the `LazyType&`
itself. This new callback is responsible for populating the field
`TypeId LazyType::unwrapped`. Multithreaded implementations should
acquire a lock in this callback.
* Modules now retain their `humanReadableNames`. This reduces the number
of cases where type checking has to call back to a `ModuleResolver`.
* https://github.com/Roblox/luau/pull/902
* Add timing info to the Luau REPL compilation output
We've also fixed some bugs and crashes in the new solver as we march
toward readiness.
* Thread ICEs (Internal Compiler Errors) back to the Frontend properly
* Refinements are no longer applied to lvalues
* More miscellaneous stability improvements
Lots of activity in the new JIT engine:
* Implement register spilling/restore for A64
* Correct Luau IR value restore location tracking
* Fixed use-after-free in x86 register allocator spill restore
* Use btz for bit tests
* Finish branch assembly support for A64
* Codesize and performance improvements for A64
* The bit32 library has been implemented for arm and x64
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* Fixed exported types not being suggested in autocomplete
* `T...` is now convertible to `...any` (Fixes
https://github.com/Roblox/luau/issues/767)
* Fixed issue with `T?` not being convertible to `T | T` or `T?`
(sometimes when internal pointer identity is different)
* Fixed potential crash in missing table key error suggestion to use a
similar existing key
* `lua_topointer` now returns a pointer for strings
C++ API Changes:
* `prepareModuleScope` callback has moved from TypeChecker to Frontend
* For LSPs, AstQuery functions (and `isWithinComment`) can be used
without full Frontend data
A lot of changes in our two experimental components as well.
In our work on the new type-solver, the following issues were fixed:
* Fixed table union and intersection indexing
* Correct custom type environments are now used
* Fixed issue with values of `free & number` type not accepted in
numeric operations
And these are the changes in native code generation (JIT):
* arm64 lowering is almost complete with support for 99% of IR commands
and all fastcalls
* Fixed x64 assembly encoding for extended byte registers
* More external x64 calls are aware of register allocator
* `math.min`/`math.max` with more than 2 arguments are now lowered to IR
as well
* Fixed correctness issues with `math` library calls with multiple
results in variadic context and with x64 register conflicts
* x64 register allocator learnt to restore values from VM memory instead
of always using stack spills
* x64 exception unwind information now supports multiple functions and
fixes function start offset in Dwarf2 info
Some userdata objects may need to support manual destruction in addition
to automatic GC. For example, files, threads, GPU resources and objects
with large external allocations.
With Lua, a finalizer can be _generically_ called by invoking the __gc
metamethod manually, but this is currently not possible with tagged
userdata in Luau because it's not possible to query the destructor
associated with an userdata. While it is possible to workaround this by
duplicating the destructor table locally on client side (*), it's more
convenient to deduplicate the data and get the destructor using the API
instead.
(*) Note: a separate destructor table for each VM may be required if the
VMs use different set of tags.
Implementation notes:
1. I first considered adding a typedef for lua_Destructor but
unfortunately there are two kinds of destructors, one with and one
without the lua_State* argument, so I decided against it at this point.
Maybe it should be added later if the destructor API is unified (by
dropping the Lua state pointer argument?).
2. For some reason the conformance test produced warning "qualifier
applied to function type has no meaning; ignored" on VS2017 (possibly
because the test framework does not like function pointers for some
reason?). I silenced this by pulling out the test expressions from those
CHECKs.
* `table.sort` was improved further. It now guarentees N*log(N) time
complexity in the worst case.
* Fix https://github.com/Roblox/luau/issues/880
We are also working on fixing final bugs and crashes in the new type
solver.
On the CodeGen front we have a few things going on:
* We have a smarter register allocator for the x86 JIT
* We lower more instructions on arm64
* The vector constructor builtin is now translated to IR
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
Once again, all of our changes this week are for new type solver and the
JIT.
In the new type solver, we fixed cyclic type alias handling and multiple
stability issues.
In the JIT, our main progress was for arm64, where, after lowering 36%
of instructions, we start seeing first Luau functions executing
natively.
For x64, we performed code cleanup and refactoring to allow for future
optimizations.
All of our changes this week have been focused on the new type solver
and the JIT.
As we march toward feature parity with the old solver, we've tightened
up a bunch of lingering issues with overload resolution, unsealed
tables, and type normalization. We've also fixed a bunch of crashes and
assertion failures in the new solver.
On the JIT front, we've started work on an A64 backend, improved the IR
analysis in a bunch of cases, and implemented assembly generation for
the builtin functions `type()` and `typeof()`.
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* A small subset of control-flow refinements have been added to
recognize type options that are unreachable after a
conditional/unconditional code block. (Fixes
https://github.com/Roblox/luau/issues/356).
Some examples:
```lua
local function f(x: string?)
if not x then return end
-- x is 'string' here
end
```
Throwing calls like `error` or `assert(false)` instead of 'return' are
also recognized.
Existing complex refinements like type/typeof and tagged union checks
are expected to work, among others.
To enable this feature, `LuauTinyControlFlowAnalysis` exclusion has to
be removed from `ExperimentalFlags.h`.
If will become enabled unconditionally in the near future.
* Linter has been integrated into the typechecker analysis so that
type-aware lint warnings can work in any mode
`Frontend::lint` methods were deprecated, `Frontend::check` has to be
used instead with `runLintChecks` option set.
Resulting lint warning are located inside `CheckResult`.
* Fixed large performance drop and increased memory consumption when
array is filled at an offset (Fixes
https://github.com/Roblox/luau/issues/590)
* Part of [Type error suppression
RFC](https://github.com/Roblox/luau/blob/master/rfcs/type-error-suppression.md)
was implemented making subtyping checks with `any` type transitive.
---
In our work on the new type-solver:
* `--!nocheck` mode no longer reports type errors
* New solver will not be used for `--!nonstrict` modules until all
issues with strict mode typechecking are fixed
* Added control-flow aware type refinements mentioned earlier
In native code generation:
* `LOP_NAMECALL` has been translated to IR
* `type` and `typeof` builtin fastcalls have been translated to
IR/assembly
* Additional steps were taken towards arm64 support
For now just do this in strict mode. This will help us track performance
over time, although for now the behavior is going to keep changing so
it's not going to be a fully solid metric for a few weeks.
* Fix#817
* Fix#850
* Optimize math.floor/ceil/round with SSE4.1
* Results in a ~7-9% speedup on the math-cordic benchmark.
* Optimized table.sort.
* table.sort is now ~4.1x faster (when not using a predicate) and ~2.1x
faster when using a simple predicate. Performance may improve further in
the future.
* Reorganize the memory ownership of builtin type definitions.
* This is a small initial step toward affording parallel typechecking.
The new type solver is coming along nicely. We are working on fixing
crashes and bugs.
A few major changes to native codegen landed this week:
* Fixed lowering of Luau IR mod instruction when first argument is a
constant
* Added VM register data-flow/capture analysis
* Fixed issues with optimizations in unreachable blocks
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
* Fixed incorrect lexeme generated for string parts in the middle of an
interpolated string (Fixes https://github.com/Roblox/luau/issues/744)
* DeprecatedApi lint can report some issues without type inference
information
* Fixed performance of autocomplete requests when suggestions have large
intersection types (Solves
https://github.com/Roblox/luau/discussions/847)
* Marked `table.getn`/`foreach`/`foreachi` as deprecated ([RFC:
Deprecate
table.getn/foreach/foreachi](https://github.com/Roblox/luau/blob/master/rfcs/deprecate-table-getn-foreach.md))
* With -O2 optimization level, we now optimize builtin calls based on
known argument/return count.
Note that this change can be observable if `getfenv/setfenv` is used to
substitute a builtin, especially if arity is different.
Fastcall heavy tests show a 1-2% improvement.
* Luau can now be built with clang-cl (Fixes
https://github.com/Roblox/luau/issues/736)
We also made many improvements to our experimental components.
For our new type solver:
* Overhauled data flow analysis system, fixed issues with 'repeat'
loops, global variables and type annotations
* Type refinements now work on generic table indexing with a string
literal
* Type refinements will properly track potentially 'nil' values (like
t[x] for a missing key) and their further refinements
* Internal top table type is now isomorphic to `{}` which fixes issues
when `typeof(v) == 'table'` type refinement is handled
* References to non-existent types in type annotations no longer resolve
to 'error' type like in old solver
* Improved handling of class unions in property access expressions
* Fixed default type packs
* Unsealed tables can now have metatables
* Restored expected types for function arguments
And for native code generation:
* Added min and max IR instructions mapping to vminsd/vmaxsd on x64
* We now speculatively extract direct execution fast-paths based on
expected types of expressions which provides better optimization
opportunities inside a single basic block
* Translated existing math fastcalls to IR form to improve tag guard
removal and constant propagation
Note that native code gen is currently exempt from any security guarantees as it's a pre-production R&D component right now. This will change in the future as we deploy it to production.
It looks like all three functions actually have been deprecated in Lua
5.1, and removed in Lua 5.2.
We do not plan to remove them to retain backwards compatibility, but the
RFC should be more precise.
We've made a few small changes to reduce the amount of stack we use when
typechecking nested method calls (eg `foo:bar():baz():quux()`).
We've also fixed a small bytecode compiler issue that caused us to emit
redundant jump instructions in code that conditionally uses `break` or
`continue`.
On the new solver, we've switched to a new, better way to handle
augmentations to unsealed tables. We've also made some substantial
improvements to type inference and error reporting on function calls.
These things should both be on par with the old solver now.
The main improvements to the native code generator have been elimination
of some redundant type tag checks. Also, we are starting to inline
particular fastcalls directly to IR.
---------
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
1. Added information about Homebrew installation (based off this
information [here](https://formulae.brew.sh/formula/luau#default))
2. Added details related to installing binary files that are downloaded
3. Rearranged and added titles for easier reading
Fixes#791.
Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
This week we only have updates to new type solver and JIT. Both projects
are still in the process of being built out. Neither are ready for
general use yet.
In the new solver, we fixed issues with recursive type aliases.
Duplicated type parameters are once again reported, exported types are
being recorder and function argument names are placed inside function
types.
We also made improvements to restore parts of bidirectional type
tracking.
On native code generation side, namecall instruction lowering was fixed,
we fixed inconsistencies in IR command definitions and added utility
function to help with constant folding.