mirror of
https://github.com/luau-lang/luau.git
synced 2025-05-04 10:33:46 +01:00
Added more properties of subtyping
This commit is contained in:
parent
e0a6461173
commit
3bc13bf27a
1 changed files with 157 additions and 24 deletions
|
@ -4,9 +4,10 @@ module Properties.Subtyping where
|
|||
|
||||
open import Agda.Builtin.Equality using (_≡_; refl)
|
||||
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
|
||||
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
||||
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
|
||||
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src; tgt)
|
||||
open import Properties.Contradiction using (CONTRADICTION; ¬)
|
||||
open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥)
|
||||
open import Properties.Equality using (_≢_)
|
||||
open import Properties.Functions using (_∘_)
|
||||
open import Properties.Product using (_×_; _,_)
|
||||
|
@ -73,6 +74,11 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp
|
|||
<:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U)
|
||||
<:-impl-¬≮: p (witness t q r) = language-comp t r (p t q)
|
||||
|
||||
<:-impl-⊇ : ∀ {T U} → (T <: U) → ∀ t → ¬Language U t → ¬Language T t
|
||||
<:-impl-⊇ {T} p t q with dec-language T t
|
||||
<:-impl-⊇ {_} p t q | Left r = r
|
||||
<:-impl-⊇ {_} p t q | Right r = CONTRADICTION (language-comp t q (p t r))
|
||||
|
||||
-- reflexivity
|
||||
≮:-refl : ∀ {T} → ¬(T ≮: T)
|
||||
≮:-refl (witness t p q) = language-comp t q p
|
||||
|
@ -91,7 +97,93 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp
|
|||
≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t)
|
||||
|
||||
<:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U)
|
||||
<:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans)
|
||||
<:-trans p q t r = q t (p t r)
|
||||
|
||||
<:-trans-≮: : ∀ {S T U} → (S <: T) → (S ≮: U) → (T ≮: U)
|
||||
<:-trans-≮: p (witness t q r) = witness t (p t q) r
|
||||
|
||||
-- Properties of union
|
||||
|
||||
<:-union : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∪ S) <: (T ∪ U))
|
||||
<:-union p q t (left r) = left (p t r)
|
||||
<:-union p q t (right r) = right (q t r)
|
||||
|
||||
<:-∪-left : ∀ {S T} → S <: (S ∪ T)
|
||||
<:-∪-left t p = left p
|
||||
|
||||
<:-∪-right : ∀ {S T} → T <: (S ∪ T)
|
||||
<:-∪-right t p = right p
|
||||
|
||||
<:-∪-lub : ∀ {S T U} → (S <: U) → (T <: U) → ((S ∪ T) <: U)
|
||||
<:-∪-lub p q t (left r) = p t r
|
||||
<:-∪-lub p q t (right r) = q t r
|
||||
|
||||
≮:-∪-left : ∀ {S T U} → (S ≮: U) → ((S ∪ T) ≮: U)
|
||||
≮:-∪-left (witness t p q) = witness t (left p) q
|
||||
|
||||
≮:-∪-right : ∀ {S T U} → (T ≮: U) → ((S ∪ T) ≮: U)
|
||||
≮:-∪-right (witness t p q) = witness t (right p) q
|
||||
|
||||
-- Properties of intersection
|
||||
|
||||
<:-intersect : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∩ S) <: (T ∩ U))
|
||||
<:-intersect p q t (r₁ , r₂) = (p t r₁ , q t r₂)
|
||||
|
||||
<:-∩-left : ∀ {S T} → (S ∩ T) <: S
|
||||
<:-∩-left t (p , _) = p
|
||||
|
||||
<:-∩-right : ∀ {S T} → (S ∩ T) <: T
|
||||
<:-∩-right t (_ , p) = p
|
||||
|
||||
<:-∩-glb : ∀ {S T U} → (S <: T) → (S <: U) → (S <: (T ∩ U))
|
||||
<:-∩-glb p q t r = (p t r , q t r)
|
||||
|
||||
≮:-∩-left : ∀ {S T U} → (S ≮: T) → (S ≮: (T ∩ U))
|
||||
≮:-∩-left (witness t p q) = witness t p (left q)
|
||||
|
||||
≮:-∩-right : ∀ {S T U} → (S ≮: U) → (S ≮: (T ∩ U))
|
||||
≮:-∩-right (witness t p q) = witness t p (right q)
|
||||
|
||||
-- Distribution properties
|
||||
<:-∩-dist-∪ : ∀ {S T U} → (S ∩ (T ∪ U)) <: ((S ∩ T) ∪ (S ∩ U))
|
||||
<:-∩-dist-∪ t (p₁ , left p₂) = left (p₁ , p₂)
|
||||
<:-∩-dist-∪ t (p₁ , right p₂) = right (p₁ , p₂)
|
||||
|
||||
∩-dist-∪-<: : ∀ {S T U} → ((S ∩ T) ∪ (S ∩ U)) <: (S ∩ (T ∪ U))
|
||||
∩-dist-∪-<: t (left (p₁ , p₂)) = (p₁ , left p₂)
|
||||
∩-dist-∪-<: t (right (p₁ , p₂)) = (p₁ , right p₂)
|
||||
|
||||
<:-∪-dist-∩ : ∀ {S T U} → (S ∪ (T ∩ U)) <: ((S ∪ T) ∩ (S ∪ U))
|
||||
<:-∪-dist-∩ t (left p) = (left p , left p)
|
||||
<:-∪-dist-∩ t (right (p₁ , p₂)) = (right p₁ , right p₂)
|
||||
|
||||
∪-dist-∩-<: : ∀ {S T U} → ((S ∪ T) ∩ (S ∪ U)) <: (S ∪ (T ∩ U))
|
||||
∪-dist-∩-<: t (left p₁ , p₂) = left p₁
|
||||
∪-dist-∩-<: t (right p₁ , left p₂) = left p₂
|
||||
∪-dist-∩-<: t (right p₁ , right p₂) = right (p₁ , p₂)
|
||||
|
||||
-- Properties of functions
|
||||
<:-function : ∀ {R S T U} → (R <: S) → (T <: U) → (S ⇒ T) <: (R ⇒ U)
|
||||
<:-function p q function function = function
|
||||
<:-function p q (function-ok t) (function-ok r) = function-ok (q t r)
|
||||
<:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r)
|
||||
|
||||
<:-function-∩-∪ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∪ S) ⇒ (T ∪ U))
|
||||
<:-function-∩-∪ function (function , function) = function
|
||||
<:-function-∩-∪ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (right p₂)
|
||||
<:-function-∩-∪ (function-err _) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂)
|
||||
|
||||
<:-function-∩ : ∀ {S T U} → ((S ⇒ T) ∩ (S ⇒ U)) <: (S ⇒ (T ∩ U))
|
||||
<:-function-∩ function (function , function) = function
|
||||
<:-function-∩ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (p₁ , p₂)
|
||||
<:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂
|
||||
|
||||
<:-function-∪-∩ : ∀ {R S T U} → ((R ∩ S) ⇒ (T ∪ U)) <: ((R ⇒ T) ∪ (S ⇒ U))
|
||||
<:-function-∪-∩ function function = left function
|
||||
<:-function-∪-∩ (function-ok t) (function-ok (left p)) = left (function-ok p)
|
||||
<:-function-∪-∩ (function-ok t) (function-ok (right p)) = right (function-ok p)
|
||||
<:-function-∪-∩ (function-err s) (function-err (left p)) = left (function-err p)
|
||||
<:-function-∪-∩ (function-err s) (function-err (right p)) = right (function-err p)
|
||||
|
||||
-- Properties of scalars
|
||||
skalar = number ∪ (string ∪ (nil ∪ boolean))
|
||||
|
@ -111,6 +203,15 @@ scalar-≮:-never s = witness (scalar s) (scalar s) never
|
|||
scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U)
|
||||
scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p)
|
||||
|
||||
skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t))
|
||||
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
|
||||
|
||||
skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s))
|
||||
skalar-scalar number = left (scalar number)
|
||||
skalar-scalar boolean = right (right (right (scalar boolean)))
|
||||
skalar-scalar string = right (left (scalar string))
|
||||
skalar-scalar nil = right (right (left (scalar nil)))
|
||||
|
||||
-- Properties of tgt
|
||||
tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t)
|
||||
tgt-function-ok {T = nil} (scalar ())
|
||||
|
@ -131,15 +232,6 @@ function-ok-tgt (right p) = right (function-ok-tgt p)
|
|||
function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂)
|
||||
function-ok-tgt unknown = unknown
|
||||
|
||||
skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t))
|
||||
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
|
||||
|
||||
skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s))
|
||||
skalar-scalar number = left (scalar number)
|
||||
skalar-scalar boolean = right (right (right (scalar boolean)))
|
||||
skalar-scalar string = right (left (scalar string))
|
||||
skalar-scalar nil = right (right (left (scalar nil)))
|
||||
|
||||
tgt-never-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (never ⇒ U)))
|
||||
tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q)
|
||||
|
||||
|
@ -219,6 +311,29 @@ unknown-≮:-never = witness (scalar nil) unknown never
|
|||
function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never)
|
||||
function-≮:-never = witness function function never
|
||||
|
||||
<:-never : ∀ {T} → (never <: T)
|
||||
<:-never t (scalar ())
|
||||
<:-never t (scalar-function-err ())
|
||||
|
||||
≮:-never-left : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: T) → (S ∩ U) ≮: never
|
||||
≮:-never-left p (witness t q₁ q₂) with p t q₁
|
||||
≮:-never-left p (witness t q₁ q₂) | left r = CONTRADICTION (language-comp t q₂ r)
|
||||
≮:-never-left p (witness t q₁ q₂) | right r = witness t (q₁ , r) never
|
||||
|
||||
≮:-never-right : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: U) → (S ∩ T) ≮: never
|
||||
≮:-never-right p (witness t q₁ q₂) with p t q₁
|
||||
≮:-never-right p (witness t q₁ q₂) | left r = witness t (q₁ , r) never
|
||||
≮:-never-right p (witness t q₁ q₂) | right r = CONTRADICTION (language-comp t q₂ r)
|
||||
|
||||
<:-unknown : ∀ {T} → (T <: unknown)
|
||||
<:-unknown t p = unknown
|
||||
|
||||
<:-everything : unknown <: ((never ⇒ unknown) ∪ skalar)
|
||||
<:-everything (scalar s) p = right (skalar-scalar s)
|
||||
<:-everything function p = left function
|
||||
<:-everything (function-ok t) p = left (function-ok unknown)
|
||||
<:-everything (function-err s) p = left (function-err never)
|
||||
|
||||
-- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf)
|
||||
-- defines a "set-theoretic" model (sec 2.5)
|
||||
-- Unfortunately we don't quite have this property, due to uninhabited types,
|
||||
|
@ -234,13 +349,21 @@ _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set)
|
|||
Comp : ∀ {A : Set} → (A → Set) → (A → Set)
|
||||
Comp P a = ¬(P a)
|
||||
|
||||
Lift : ∀ {A : Set} → (A → Set) → (Maybe A → Set)
|
||||
Lift P nothing = ⊥
|
||||
Lift P (just a) = P a
|
||||
|
||||
set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} →
|
||||
|
||||
-- This is the "if" part of being a set-theoretic model
|
||||
-- though it uses the definition from Frisch's thesis
|
||||
-- rather than from the Gentle Introduction. The difference
|
||||
-- being the presence of Lift, (written D_Ω in Defn 4.2 of
|
||||
-- https://www.cduce.org/papers/frisch_phd.pdf).
|
||||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) →
|
||||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂)))
|
||||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂))))
|
||||
|
||||
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where
|
||||
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , just u) Qtu (S₂t , ¬T₂u) = q (t , just u) Qtu (S₁t , ¬T₁u) where
|
||||
|
||||
S₁t : Language S₁ t
|
||||
S₁t with dec-language S₁ t
|
||||
|
@ -252,6 +375,14 @@ set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u)
|
|||
¬T₁u T₁u with p (function-ok u) (function-ok T₁u)
|
||||
¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u
|
||||
|
||||
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _) = q (t , nothing) Qt- (S₁t , λ ()) where
|
||||
|
||||
S₁t : Language S₁ t
|
||||
S₁t with dec-language S₁ t
|
||||
S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t)
|
||||
S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t)
|
||||
S₁t | Right r = r
|
||||
|
||||
not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} →
|
||||
|
||||
-- We don't quite have that this is a set-theoretic model
|
||||
|
@ -260,30 +391,32 @@ not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} →
|
|||
∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ →
|
||||
|
||||
-- This is the "only if" part of being a set-theoretic model
|
||||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) →
|
||||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) →
|
||||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂))
|
||||
|
||||
not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where
|
||||
|
||||
Q : (Tree × Tree) → Set
|
||||
Q (t , u) = Either (¬Language S₁ t) (Language T₁ u)
|
||||
Q : (Tree × Maybe Tree) → Set
|
||||
Q (t , just u) = Either (¬Language S₁ t) (Language T₁ u)
|
||||
Q (t , nothing) = ¬Language S₁ t
|
||||
|
||||
q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁))
|
||||
q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t
|
||||
q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u
|
||||
q : Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁)))
|
||||
q (t , just u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t
|
||||
q (t , just u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u
|
||||
q (t , nothing) ¬S₁t (S₁t , _) = language-comp t ¬S₁t S₁t
|
||||
|
||||
r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)
|
||||
r function function = function
|
||||
r (function-err t) (function-err ¬S₁t) with dec-language S₂ t
|
||||
r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t
|
||||
r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂))
|
||||
r (function-err s) (function-err ¬S₁s) with dec-language S₂ s
|
||||
r (function-err s) (function-err ¬S₁s) | Left ¬S₂s = function-err ¬S₂s
|
||||
r (function-err s) (function-err ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ()))
|
||||
r (function-ok t) (function-ok T₁t) with dec-language T₂ t
|
||||
r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
|
||||
r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
|
||||
r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t
|
||||
|
||||
-- A counterexample when the argument type is empty.
|
||||
|
||||
set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Language number)) → Q ⊆ Comp((Language never) ⊗ Comp(Language string)))
|
||||
set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language number))) → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language string))))
|
||||
set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p)
|
||||
set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue