diff --git a/prototyping/Properties/Subtyping.agda b/prototyping/Properties/Subtyping.agda index b713eaf7..91d5ed63 100644 --- a/prototyping/Properties/Subtyping.agda +++ b/prototyping/Properties/Subtyping.agda @@ -4,9 +4,10 @@ module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) +open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; src; tgt) -open import Properties.Contradiction using (CONTRADICTION; ¬) +open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) @@ -73,6 +74,11 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) +<:-impl-⊇ : ∀ {T U} → (T <: U) → ∀ t → ¬Language U t → ¬Language T t +<:-impl-⊇ {T} p t q with dec-language T t +<:-impl-⊇ {_} p t q | Left r = r +<:-impl-⊇ {_} p t q | Right r = CONTRADICTION (language-comp t q (p t r)) + -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p @@ -91,7 +97,93 @@ language-comp (function-err t) (function-err p) (function-err q) = language-comp ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) -<:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans) +<:-trans p q t r = q t (p t r) + +<:-trans-≮: : ∀ {S T U} → (S <: T) → (S ≮: U) → (T ≮: U) +<:-trans-≮: p (witness t q r) = witness t (p t q) r + +-- Properties of union + +<:-union : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∪ S) <: (T ∪ U)) +<:-union p q t (left r) = left (p t r) +<:-union p q t (right r) = right (q t r) + +<:-∪-left : ∀ {S T} → S <: (S ∪ T) +<:-∪-left t p = left p + +<:-∪-right : ∀ {S T} → T <: (S ∪ T) +<:-∪-right t p = right p + +<:-∪-lub : ∀ {S T U} → (S <: U) → (T <: U) → ((S ∪ T) <: U) +<:-∪-lub p q t (left r) = p t r +<:-∪-lub p q t (right r) = q t r + +≮:-∪-left : ∀ {S T U} → (S ≮: U) → ((S ∪ T) ≮: U) +≮:-∪-left (witness t p q) = witness t (left p) q + +≮:-∪-right : ∀ {S T U} → (T ≮: U) → ((S ∪ T) ≮: U) +≮:-∪-right (witness t p q) = witness t (right p) q + +-- Properties of intersection + +<:-intersect : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∩ S) <: (T ∩ U)) +<:-intersect p q t (r₁ , r₂) = (p t r₁ , q t r₂) + +<:-∩-left : ∀ {S T} → (S ∩ T) <: S +<:-∩-left t (p , _) = p + +<:-∩-right : ∀ {S T} → (S ∩ T) <: T +<:-∩-right t (_ , p) = p + +<:-∩-glb : ∀ {S T U} → (S <: T) → (S <: U) → (S <: (T ∩ U)) +<:-∩-glb p q t r = (p t r , q t r) + +≮:-∩-left : ∀ {S T U} → (S ≮: T) → (S ≮: (T ∩ U)) +≮:-∩-left (witness t p q) = witness t p (left q) + +≮:-∩-right : ∀ {S T U} → (S ≮: U) → (S ≮: (T ∩ U)) +≮:-∩-right (witness t p q) = witness t p (right q) + +-- Distribution properties +<:-∩-dist-∪ : ∀ {S T U} → (S ∩ (T ∪ U)) <: ((S ∩ T) ∪ (S ∩ U)) +<:-∩-dist-∪ t (p₁ , left p₂) = left (p₁ , p₂) +<:-∩-dist-∪ t (p₁ , right p₂) = right (p₁ , p₂) + +∩-dist-∪-<: : ∀ {S T U} → ((S ∩ T) ∪ (S ∩ U)) <: (S ∩ (T ∪ U)) +∩-dist-∪-<: t (left (p₁ , p₂)) = (p₁ , left p₂) +∩-dist-∪-<: t (right (p₁ , p₂)) = (p₁ , right p₂) + +<:-∪-dist-∩ : ∀ {S T U} → (S ∪ (T ∩ U)) <: ((S ∪ T) ∩ (S ∪ U)) +<:-∪-dist-∩ t (left p) = (left p , left p) +<:-∪-dist-∩ t (right (p₁ , p₂)) = (right p₁ , right p₂) + +∪-dist-∩-<: : ∀ {S T U} → ((S ∪ T) ∩ (S ∪ U)) <: (S ∪ (T ∩ U)) +∪-dist-∩-<: t (left p₁ , p₂) = left p₁ +∪-dist-∩-<: t (right p₁ , left p₂) = left p₂ +∪-dist-∩-<: t (right p₁ , right p₂) = right (p₁ , p₂) + +-- Properties of functions +<:-function : ∀ {R S T U} → (R <: S) → (T <: U) → (S ⇒ T) <: (R ⇒ U) +<:-function p q function function = function +<:-function p q (function-ok t) (function-ok r) = function-ok (q t r) +<:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r) + +<:-function-∩-∪ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∪ S) ⇒ (T ∪ U)) +<:-function-∩-∪ function (function , function) = function +<:-function-∩-∪ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (right p₂) +<:-function-∩-∪ (function-err _) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂) + +<:-function-∩ : ∀ {S T U} → ((S ⇒ T) ∩ (S ⇒ U)) <: (S ⇒ (T ∩ U)) +<:-function-∩ function (function , function) = function +<:-function-∩ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (p₁ , p₂) +<:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂ + +<:-function-∪-∩ : ∀ {R S T U} → ((R ∩ S) ⇒ (T ∪ U)) <: ((R ⇒ T) ∪ (S ⇒ U)) +<:-function-∪-∩ function function = left function +<:-function-∪-∩ (function-ok t) (function-ok (left p)) = left (function-ok p) +<:-function-∪-∩ (function-ok t) (function-ok (right p)) = right (function-ok p) +<:-function-∪-∩ (function-err s) (function-err (left p)) = left (function-err p) +<:-function-∪-∩ (function-err s) (function-err (right p)) = right (function-err p) -- Properties of scalars skalar = number ∪ (string ∪ (nil ∪ boolean)) @@ -111,6 +203,15 @@ scalar-≮:-never s = witness (scalar s) (scalar s) never scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) +skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t)) +skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) + +skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) +skalar-scalar number = left (scalar number) +skalar-scalar boolean = right (right (right (scalar boolean))) +skalar-scalar string = right (left (scalar string)) +skalar-scalar nil = right (right (left (scalar nil))) + -- Properties of tgt tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t) tgt-function-ok {T = nil} (scalar ()) @@ -131,15 +232,6 @@ function-ok-tgt (right p) = right (function-ok-tgt p) function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂) function-ok-tgt unknown = unknown -skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t)) -skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) - -skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) -skalar-scalar number = left (scalar number) -skalar-scalar boolean = right (right (right (scalar boolean))) -skalar-scalar string = right (left (scalar string)) -skalar-scalar nil = right (right (left (scalar nil))) - tgt-never-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (never ⇒ U))) tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q) @@ -219,6 +311,29 @@ unknown-≮:-never = witness (scalar nil) unknown never function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never +<:-never : ∀ {T} → (never <: T) +<:-never t (scalar ()) +<:-never t (scalar-function-err ()) + +≮:-never-left : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: T) → (S ∩ U) ≮: never +≮:-never-left p (witness t q₁ q₂) with p t q₁ +≮:-never-left p (witness t q₁ q₂) | left r = CONTRADICTION (language-comp t q₂ r) +≮:-never-left p (witness t q₁ q₂) | right r = witness t (q₁ , r) never + +≮:-never-right : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: U) → (S ∩ T) ≮: never +≮:-never-right p (witness t q₁ q₂) with p t q₁ +≮:-never-right p (witness t q₁ q₂) | left r = witness t (q₁ , r) never +≮:-never-right p (witness t q₁ q₂) | right r = CONTRADICTION (language-comp t q₂ r) + +<:-unknown : ∀ {T} → (T <: unknown) +<:-unknown t p = unknown + +<:-everything : unknown <: ((never ⇒ unknown) ∪ skalar) +<:-everything (scalar s) p = right (skalar-scalar s) +<:-everything function p = left function +<:-everything (function-ok t) p = left (function-ok unknown) +<:-everything (function-err s) p = left (function-err never) + -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, @@ -234,13 +349,21 @@ _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) +Lift : ∀ {A : Set} → (A → Set) → (Maybe A → Set) +Lift P nothing = ⊥ +Lift P (just a) = P a + set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model + -- though it uses the definition from Frisch's thesis + -- rather than from the Gentle Introduction. The difference + -- being the presence of Lift, (written D_Ω in Defn 4.2 of + -- https://www.cduce.org/papers/frisch_phd.pdf). (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → - (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) + (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) -set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where +set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , just u) Qtu (S₂t , ¬T₂u) = q (t , just u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t @@ -252,6 +375,14 @@ set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) ¬T₁u T₁u with p (function-ok u) (function-ok T₁u) ¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u +set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _) = q (t , nothing) Qt- (S₁t , λ ()) where + + S₁t : Language S₁ t + S₁t with dec-language S₁ t + S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) + S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) + S₁t | Right r = r + not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model @@ -260,30 +391,32 @@ not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → ∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ → -- This is the "only if" part of being a set-theoretic model - (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) → + (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where - Q : (Tree × Tree) → Set - Q (t , u) = Either (¬Language S₁ t) (Language T₁ u) + Q : (Tree × Maybe Tree) → Set + Q (t , just u) = Either (¬Language S₁ t) (Language T₁ u) + Q (t , nothing) = ¬Language S₁ t - q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) - q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t - q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u + q : Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) + q (t , just u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t + q (t , just u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u + q (t , nothing) ¬S₁t (S₁t , _) = language-comp t ¬S₁t S₁t r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function - r (function-err t) (function-err ¬S₁t) with dec-language S₂ t - r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t - r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂)) + r (function-err s) (function-err ¬S₁s) with dec-language S₂ s + r (function-err s) (function-err ¬S₁s) | Left ¬S₂s = function-err ¬S₂s + r (function-err s) (function-err ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ())) r (function-ok t) (function-ok T₁t) with dec-language T₂ t - r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) + r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t -- A counterexample when the argument type is empty. -set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Language number)) → Q ⊆ Comp((Language never) ⊗ Comp(Language string))) +set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language number))) → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language string)))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p)