Sync to upstream/release/657 (#1619)
Some checks failed
benchmark / callgrind (map[branch:main name:luau-lang/benchmark-data], ubuntu-22.04) (push) Has been cancelled
build / macos (push) Has been cancelled
build / macos-arm (push) Has been cancelled
build / ubuntu (push) Has been cancelled
build / windows (Win32) (push) Has been cancelled
build / windows (x64) (push) Has been cancelled
build / coverage (push) Has been cancelled
build / web (push) Has been cancelled
release / macos (push) Has been cancelled
release / ubuntu (push) Has been cancelled
release / windows (push) Has been cancelled
release / web (push) Has been cancelled

## General
- Fix a parsing bug related to the starting position of function names.
- Rename Luau's `Table` struct to `LuaTable`.

## New Solver
- Add support for generics in user-defined type functions
([RFC](https://rfcs.luau.org/support-for-generic-function-types-in-user-defined-type-functions.html)).
- Provide a definition of `math.lerp` to the typechecker.
- Implement error suppression in `string.format`.
  - Fixes #1587.
- Ensure function call discriminant types are always filled when
resolving `FunctionCallConstraint`.

---

Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Talha Pathan <tpathan@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
This commit is contained in:
Varun Saini 2025-01-17 14:55:39 -08:00 committed by GitHub
parent 67e9d85124
commit 29047504da
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
64 changed files with 2220 additions and 686 deletions

View file

@ -420,6 +420,11 @@ public:
void throwUserCancelError() const;
ToStringOptions opts;
void fillInDiscriminantTypes(
NotNull<const Constraint> constraint,
const std::vector<std::optional<TypeId>>& discriminantTypes
);
};
void dump(NotNull<Scope> rootScope, struct ToStringOptions& opts);

View file

@ -119,7 +119,14 @@ struct TypeFunctionVariadicTypePack
TypeFunctionTypeId type;
};
using TypeFunctionTypePackVariant = Variant<TypeFunctionTypePack, TypeFunctionVariadicTypePack>;
struct TypeFunctionGenericTypePack
{
bool isNamed = false;
std::string name;
};
using TypeFunctionTypePackVariant = Variant<TypeFunctionTypePack, TypeFunctionVariadicTypePack, TypeFunctionGenericTypePack>;
struct TypeFunctionTypePackVar
{
@ -135,6 +142,9 @@ struct TypeFunctionTypePackVar
struct TypeFunctionFunctionType
{
std::vector<TypeFunctionTypeId> generics;
std::vector<TypeFunctionTypePackId> genericPacks;
TypeFunctionTypePackId argTypes;
TypeFunctionTypePackId retTypes;
};
@ -210,6 +220,14 @@ struct TypeFunctionClassType
std::string name;
};
struct TypeFunctionGenericType
{
bool isNamed = false;
bool isPack = false;
std::string name;
};
using TypeFunctionTypeVariant = Luau::Variant<
TypeFunctionPrimitiveType,
TypeFunctionAnyType,
@ -221,7 +239,8 @@ using TypeFunctionTypeVariant = Luau::Variant<
TypeFunctionNegationType,
TypeFunctionFunctionType,
TypeFunctionTableType,
TypeFunctionClassType>;
TypeFunctionClassType,
TypeFunctionGenericType>;
struct TypeFunctionType
{

View file

@ -13,8 +13,6 @@
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAGVARIABLE(LuauDocumentationAtPosition)
namespace Luau
{
@ -518,7 +516,6 @@ static std::optional<DocumentationSymbol> getMetatableDocumentation(
const AstName& index
)
{
LUAU_ASSERT(FFlag::LuauDocumentationAtPosition);
auto indexIt = mtable->props.find("__index");
if (indexIt == mtable->props.end())
return std::nullopt;
@ -574,8 +571,6 @@ std::optional<DocumentationSymbol> getDocumentationSymbolAtPosition(const Source
}
}
else if (const ClassType* ctv = get<ClassType>(parentTy))
{
if (FFlag::LuauDocumentationAtPosition)
{
while (ctv)
{
@ -594,25 +589,7 @@ std::optional<DocumentationSymbol> getDocumentationSymbolAtPosition(const Source
ctv = ctv->parent ? Luau::get<Luau::ClassType>(*ctv->parent) : nullptr;
}
}
else
{
if (auto propIt = ctv->props.find(indexName->index.value); propIt != ctv->props.end())
{
if (FFlag::LuauSolverV2)
{
if (auto ty = propIt->second.readTy)
return checkOverloadedDocumentationSymbol(module, *ty, parentExpr, propIt->second.documentationSymbol);
}
else
return checkOverloadedDocumentationSymbol(
module, propIt->second.type(), parentExpr, propIt->second.documentationSymbol
);
}
}
}
else if (FFlag::LuauDocumentationAtPosition)
{
if (const PrimitiveType* ptv = get<PrimitiveType>(parentTy); ptv && ptv->metatable)
else if (const PrimitiveType* ptv = get<PrimitiveType>(parentTy); ptv && ptv->metatable)
{
if (auto mtable = get<TableType>(*ptv->metatable))
{
@ -622,7 +599,6 @@ std::optional<DocumentationSymbol> getDocumentationSymbolAtPosition(const Source
}
}
}
}
else if (AstExprFunction* fn = targetExpr->as<AstExprFunction>())
{
// Handle event connection-like structures where we have

View file

@ -31,6 +31,7 @@
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAGVARIABLE(LuauTypestateBuiltins2)
LUAU_FASTFLAGVARIABLE(LuauStringFormatArityFix)
LUAU_FASTFLAGVARIABLE(LuauStringFormatErrorSuppression)
LUAU_FASTFLAG(AutocompleteRequirePathSuggestions2)
LUAU_FASTFLAG(LuauVectorDefinitionsExtra)
@ -631,12 +632,31 @@ static void dcrMagicFunctionTypeCheckFormat(MagicFunctionTypeCheckContext contex
Location location = context.callSite->args.data[i + (calledWithSelf ? 0 : paramOffset)]->location;
// use subtyping instead here
SubtypingResult result = context.typechecker->subtyping->isSubtype(actualTy, expectedTy, context.checkScope);
if (!result.isSubtype)
{
if (FFlag::LuauStringFormatErrorSuppression)
{
switch (shouldSuppressErrors(NotNull{&context.typechecker->normalizer}, actualTy))
{
case ErrorSuppression::Suppress:
break;
case ErrorSuppression::NormalizationFailed:
break;
case ErrorSuppression::DoNotSuppress:
Reasonings reasonings = context.typechecker->explainReasonings(actualTy, expectedTy, location, result);
if (!reasonings.suppressed)
context.typechecker->reportError(TypeMismatch{expectedTy, actualTy, reasonings.toString()}, location);
}
}
else
{
Reasonings reasonings = context.typechecker->explainReasonings(actualTy, expectedTy, location, result);
context.typechecker->reportError(TypeMismatch{expectedTy, actualTy, reasonings.toString()}, location);
}
}
}
}
static std::vector<TypeId> parsePatternString(NotNull<BuiltinTypes> builtinTypes, const char* data, size_t size)

View file

@ -37,6 +37,7 @@ LUAU_FASTFLAG(LuauNewSolverPopulateTableLocations)
LUAU_FASTFLAGVARIABLE(LuauAllowNilAssignmentToIndexer)
LUAU_FASTFLAG(LuauUserTypeFunNoExtraConstraint)
LUAU_FASTFLAG(LuauTrackInteriorFreeTypesOnScope)
LUAU_FASTFLAGVARIABLE(LuauAlwaysFillInFunctionCallDiscriminantTypes)
namespace Luau
{
@ -1153,6 +1154,42 @@ bool ConstraintSolver::tryDispatch(const TypeAliasExpansionConstraint& c, NotNul
return true;
}
void ConstraintSolver::fillInDiscriminantTypes(
NotNull<const Constraint> constraint,
const std::vector<std::optional<TypeId>>& discriminantTypes
)
{
for (std::optional<TypeId> ty : discriminantTypes)
{
if (!ty)
continue;
// If the discriminant type has been transmuted, we need to unblock them.
if (!isBlocked(*ty))
{
unblock(*ty, constraint->location);
continue;
}
if (FFlag::LuauRemoveNotAnyHack)
{
// We bind any unused discriminants to the `*no-refine*` type indicating that it can be safely ignored.
emplaceType<BoundType>(asMutable(follow(*ty)), builtinTypes->noRefineType);
}
else
{
// We use `any` here because the discriminant type may be pointed at by both branches,
// where the discriminant type is not negated, and the other where it is negated, i.e.
// `unknown ~ unknown` and `~unknown ~ never`, so `T & unknown ~ T` and `T & ~unknown ~ never`
// v.s.
// `any ~ any` and `~any ~ any`, so `T & any ~ T` and `T & ~any ~ T`
//
// In practice, users cannot negate `any`, so this is an implementation detail we can always change.
emplaceType<BoundType>(asMutable(follow(*ty)), builtinTypes->anyType);
}
}
}
bool ConstraintSolver::tryDispatch(const FunctionCallConstraint& c, NotNull<const Constraint> constraint)
{
TypeId fn = follow(c.fn);
@ -1168,6 +1205,8 @@ bool ConstraintSolver::tryDispatch(const FunctionCallConstraint& c, NotNull<cons
{
emplaceTypePack<BoundTypePack>(asMutable(c.result), builtinTypes->anyTypePack);
unblock(c.result, constraint->location);
if (FFlag::LuauAlwaysFillInFunctionCallDiscriminantTypes)
fillInDiscriminantTypes(constraint, c.discriminantTypes);
return true;
}
@ -1175,12 +1214,16 @@ bool ConstraintSolver::tryDispatch(const FunctionCallConstraint& c, NotNull<cons
if (get<ErrorType>(fn))
{
bind(constraint, c.result, builtinTypes->errorRecoveryTypePack());
if (FFlag::LuauAlwaysFillInFunctionCallDiscriminantTypes)
fillInDiscriminantTypes(constraint, c.discriminantTypes);
return true;
}
if (get<NeverType>(fn))
{
bind(constraint, c.result, builtinTypes->neverTypePack);
if (FFlag::LuauAlwaysFillInFunctionCallDiscriminantTypes)
fillInDiscriminantTypes(constraint, c.discriminantTypes);
return true;
}
@ -1261,6 +1304,13 @@ bool ConstraintSolver::tryDispatch(const FunctionCallConstraint& c, NotNull<cons
emplace<FreeTypePack>(constraint, c.result, constraint->scope);
}
if (FFlag::LuauAlwaysFillInFunctionCallDiscriminantTypes)
{
fillInDiscriminantTypes(constraint, c.discriminantTypes);
}
else
{
// NOTE: This is the body of the `fillInDiscriminantTypes` helper.
for (std::optional<TypeId> ty : c.discriminantTypes)
{
if (!ty)
@ -1290,6 +1340,8 @@ bool ConstraintSolver::tryDispatch(const FunctionCallConstraint& c, NotNull<cons
emplaceType<BoundType>(asMutable(follow(*ty)), builtinTypes->anyType);
}
}
}
OverloadResolver resolver{
builtinTypes,

View file

@ -2,14 +2,14 @@
#include "Luau/BuiltinDefinitions.h"
LUAU_FASTFLAGVARIABLE(LuauVectorDefinitionsExtra)
LUAU_FASTFLAG(LuauBufferBitMethods)
LUAU_FASTFLAG(LuauVector2Constructor)
LUAU_FASTFLAG(LuauBufferBitMethods2)
LUAU_FASTFLAGVARIABLE(LuauMathMapDefinition)
namespace Luau
{
// TODO: there has to be a better way, like splitting up per library
static const std::string kBuiltinDefinitionLuaSrcChecked = R"BUILTIN_SRC(
static const std::string kBuiltinDefinitionLuaSrcChecked_DEPRECATED = R"BUILTIN_SRC(
declare bit32: {
band: @checked (...number) -> number,
@ -202,6 +202,228 @@ declare function unpack<V>(tab: {V}, i: number?, j: number?): ...V
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionBaseSrc = R"BUILTIN_SRC(
@checked declare function require(target: any): any
@checked declare function getfenv(target: any): { [string]: any }
declare _G: any
declare _VERSION: string
declare function gcinfo(): number
declare function print<T...>(...: T...)
declare function type<T>(value: T): string
declare function typeof<T>(value: T): string
-- `assert` has a magic function attached that will give more detailed type information
declare function assert<T>(value: T, errorMessage: string?): T
declare function error<T>(message: T, level: number?): never
declare function tostring<T>(value: T): string
declare function tonumber<T>(value: T, radix: number?): number?
declare function rawequal<T1, T2>(a: T1, b: T2): boolean
declare function rawget<K, V>(tab: {[K]: V}, k: K): V
declare function rawset<K, V>(tab: {[K]: V}, k: K, v: V): {[K]: V}
declare function rawlen<K, V>(obj: {[K]: V} | string): number
declare function setfenv<T..., R...>(target: number | (T...) -> R..., env: {[string]: any}): ((T...) -> R...)?
declare function ipairs<V>(tab: {V}): (({V}, number) -> (number?, V), {V}, number)
declare function pcall<A..., R...>(f: (A...) -> R..., ...: A...): (boolean, R...)
-- FIXME: The actual type of `xpcall` is:
-- <E, A..., R1..., R2...>(f: (A...) -> R1..., err: (E) -> R2..., A...) -> (true, R1...) | (false, R2...)
-- Since we can't represent the return value, we use (boolean, R1...).
declare function xpcall<E, A..., R1..., R2...>(f: (A...) -> R1..., err: (E) -> R2..., ...: A...): (boolean, R1...)
-- `select` has a magic function attached to provide more detailed type information
declare function select<A...>(i: string | number, ...: A...): ...any
-- FIXME: This type is not entirely correct - `loadstring` returns a function or
-- (nil, string).
declare function loadstring<A...>(src: string, chunkname: string?): (((A...) -> any)?, string?)
@checked declare function newproxy(mt: boolean?): any
-- Cannot use `typeof` here because it will produce a polytype when we expect a monotype.
declare function unpack<V>(tab: {V}, i: number?, j: number?): ...V
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionBit32Src = R"BUILTIN_SRC(
declare bit32: {
band: @checked (...number) -> number,
bor: @checked (...number) -> number,
bxor: @checked (...number) -> number,
btest: @checked (number, ...number) -> boolean,
rrotate: @checked (x: number, disp: number) -> number,
lrotate: @checked (x: number, disp: number) -> number,
lshift: @checked (x: number, disp: number) -> number,
arshift: @checked (x: number, disp: number) -> number,
rshift: @checked (x: number, disp: number) -> number,
bnot: @checked (x: number) -> number,
extract: @checked (n: number, field: number, width: number?) -> number,
replace: @checked (n: number, v: number, field: number, width: number?) -> number,
countlz: @checked (n: number) -> number,
countrz: @checked (n: number) -> number,
byteswap: @checked (n: number) -> number,
}
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionMathSrc = R"BUILTIN_SRC(
declare math: {
frexp: @checked (n: number) -> (number, number),
ldexp: @checked (s: number, e: number) -> number,
fmod: @checked (x: number, y: number) -> number,
modf: @checked (n: number) -> (number, number),
pow: @checked (x: number, y: number) -> number,
exp: @checked (n: number) -> number,
ceil: @checked (n: number) -> number,
floor: @checked (n: number) -> number,
abs: @checked (n: number) -> number,
sqrt: @checked (n: number) -> number,
log: @checked (n: number, base: number?) -> number,
log10: @checked (n: number) -> number,
rad: @checked (n: number) -> number,
deg: @checked (n: number) -> number,
sin: @checked (n: number) -> number,
cos: @checked (n: number) -> number,
tan: @checked (n: number) -> number,
sinh: @checked (n: number) -> number,
cosh: @checked (n: number) -> number,
tanh: @checked (n: number) -> number,
atan: @checked (n: number) -> number,
acos: @checked (n: number) -> number,
asin: @checked (n: number) -> number,
atan2: @checked (y: number, x: number) -> number,
min: @checked (number, ...number) -> number,
max: @checked (number, ...number) -> number,
pi: number,
huge: number,
randomseed: @checked (seed: number) -> (),
random: @checked (number?, number?) -> number,
sign: @checked (n: number) -> number,
clamp: @checked (n: number, min: number, max: number) -> number,
noise: @checked (x: number, y: number?, z: number?) -> number,
round: @checked (n: number) -> number,
map: @checked (x: number, inmin: number, inmax: number, outmin: number, outmax: number) -> number,
lerp: @checked (a: number, b: number, t: number) -> number,
}
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionOsSrc = R"BUILTIN_SRC(
type DateTypeArg = {
year: number,
month: number,
day: number,
hour: number?,
min: number?,
sec: number?,
isdst: boolean?,
}
type DateTypeResult = {
year: number,
month: number,
wday: number,
yday: number,
day: number,
hour: number,
min: number,
sec: number,
isdst: boolean,
}
declare os: {
time: (time: DateTypeArg?) -> number,
date: ((formatString: "*t" | "!*t", time: number?) -> DateTypeResult) & ((formatString: string?, time: number?) -> string),
difftime: (t2: DateTypeResult | number, t1: DateTypeResult | number) -> number,
clock: () -> number,
}
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionCoroutineSrc = R"BUILTIN_SRC(
declare coroutine: {
create: <A..., R...>(f: (A...) -> R...) -> thread,
resume: <A..., R...>(co: thread, A...) -> (boolean, R...),
running: () -> thread,
status: @checked (co: thread) -> "dead" | "running" | "normal" | "suspended",
wrap: <A..., R...>(f: (A...) -> R...) -> ((A...) -> R...),
yield: <A..., R...>(A...) -> R...,
isyieldable: () -> boolean,
close: @checked (co: thread) -> (boolean, any)
}
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionTableSrc = R"BUILTIN_SRC(
declare table: {
concat: <V>(t: {V}, sep: string?, i: number?, j: number?) -> string,
insert: (<V>(t: {V}, value: V) -> ()) & (<V>(t: {V}, pos: number, value: V) -> ()),
maxn: <V>(t: {V}) -> number,
remove: <V>(t: {V}, number?) -> V?,
sort: <V>(t: {V}, comp: ((V, V) -> boolean)?) -> (),
create: <V>(count: number, value: V?) -> {V},
find: <V>(haystack: {V}, needle: V, init: number?) -> number?,
unpack: <V>(list: {V}, i: number?, j: number?) -> ...V,
pack: <V>(...V) -> { n: number, [number]: V },
getn: <V>(t: {V}) -> number,
foreach: <K, V>(t: {[K]: V}, f: (K, V) -> ()) -> (),
foreachi: <V>({V}, (number, V) -> ()) -> (),
move: <V>(src: {V}, a: number, b: number, t: number, dst: {V}?) -> {V},
clear: <K, V>(table: {[K]: V}) -> (),
isfrozen: <K, V>(t: {[K]: V}) -> boolean,
}
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionDebugSrc = R"BUILTIN_SRC(
declare debug: {
info: (<R...>(thread: thread, level: number, options: string) -> R...) & (<R...>(level: number, options: string) -> R...) & (<A..., R1..., R2...>(func: (A...) -> R1..., options: string) -> R2...),
traceback: ((message: string?, level: number?) -> string) & ((thread: thread, message: string?, level: number?) -> string),
}
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionUtf8Src = R"BUILTIN_SRC(
declare utf8: {
char: @checked (...number) -> string,
charpattern: string,
codes: @checked (str: string) -> ((string, number) -> (number, number), string, number),
codepoint: @checked (str: string, i: number?, j: number?) -> ...number,
len: @checked (s: string, i: number?, j: number?) -> (number?, number?),
offset: @checked (s: string, n: number?, i: number?) -> number,
}
)BUILTIN_SRC";
static const std::string kBuiltinDefinitionBufferSrc_DEPRECATED = R"BUILTIN_SRC(
--- Buffer API
declare buffer: {
@ -380,9 +602,20 @@ declare vector: {
std::string getBuiltinDefinitionSource()
{
std::string result = kBuiltinDefinitionLuaSrcChecked;
std::string result = FFlag::LuauMathMapDefinition ? kBuiltinDefinitionBaseSrc : kBuiltinDefinitionLuaSrcChecked_DEPRECATED;
result += FFlag::LuauBufferBitMethods ? kBuiltinDefinitionBufferSrc : kBuiltinDefinitionBufferSrc_DEPRECATED;
if (FFlag::LuauMathMapDefinition)
{
result += kBuiltinDefinitionBit32Src;
result += kBuiltinDefinitionMathSrc;
result += kBuiltinDefinitionOsSrc;
result += kBuiltinDefinitionCoroutineSrc;
result += kBuiltinDefinitionTableSrc;
result += kBuiltinDefinitionDebugSrc;
result += kBuiltinDefinitionUtf8Src;
}
result += FFlag::LuauBufferBitMethods2 ? kBuiltinDefinitionBufferSrc : kBuiltinDefinitionBufferSrc_DEPRECATED;
if (FFlag::LuauVectorDefinitionsExtra)
{

View file

@ -18,6 +18,8 @@ LUAU_FASTFLAGVARIABLE(LuauUserTypeFunFixInner)
LUAU_FASTFLAGVARIABLE(LuauUserTypeFunPrintToError)
LUAU_FASTFLAGVARIABLE(LuauUserTypeFunFixNoReadWrite)
LUAU_FASTFLAGVARIABLE(LuauUserTypeFunThreadBuffer)
LUAU_FASTFLAGVARIABLE(LuauUserTypeFunGenerics)
LUAU_FASTFLAGVARIABLE(LuauUserTypeFunCloneTail)
namespace Luau
{
@ -161,6 +163,8 @@ static std::string getTag(lua_State* L, TypeFunctionTypeId ty)
return "function";
else if (get<TypeFunctionClassType>(ty))
return "class";
else if (FFlag::LuauUserTypeFunGenerics && get<TypeFunctionGenericType>(ty))
return "generic";
LUAU_UNREACHABLE();
luaL_error(L, "VM encountered unexpected type variant when determining tag");
@ -267,6 +271,20 @@ static int createSingleton(lua_State* L)
luaL_error(L, "types.singleton: can't create singleton from `%s` type", lua_typename(L, 1));
}
// Luau: `types.generic(name: string, ispack: boolean?) -> type
// Create a generic type with the specified type. If an optinal boolean is set to true, result is a generic pack
static int createGeneric(lua_State* L)
{
const char* name = luaL_checkstring(L, 1);
bool isPack = luaL_optboolean(L, 2, false);
if (strlen(name) == 0)
luaL_error(L, "types.generic: generic name cannot be empty");
allocTypeUserData(L, TypeFunctionGenericType{/* isNamed */ true, isPack, name});
return 1;
}
// Luau: `self:value() -> type`
// Returns the value of a singleton
static int getSingletonValue(lua_State* L)
@ -780,9 +798,159 @@ static int setTableMetatable(lua_State* L)
return 0;
}
// Luau: `types.newfunction(parameters: {head: {type}?, tail: type?}, returns: {head: {type}?, tail: type?}) -> type`
// Returns the type instance representing a function
static int createFunction(lua_State* L)
static std::tuple<std::vector<TypeFunctionTypeId>, std::vector<TypeFunctionTypePackId>> getGenerics(lua_State* L, int idx, const char* fname)
{
std::vector<TypeFunctionTypeId> types;
std::vector<TypeFunctionTypePackId> packs;
if (lua_istable(L, idx))
{
lua_pushvalue(L, idx);
for (int i = 1; i <= lua_objlen(L, -1); i++)
{
lua_pushinteger(L, i);
lua_gettable(L, -2);
if (lua_isnil(L, -1))
{
lua_pop(L, 1);
break;
}
TypeFunctionTypeId ty = getTypeUserData(L, -1);
if (auto gty = get<TypeFunctionGenericType>(ty))
{
if (gty->isPack)
{
packs.push_back(allocateTypeFunctionTypePack(L, TypeFunctionGenericTypePack{gty->isNamed, gty->name}));
}
else
{
if (!packs.empty())
luaL_error(L, "%s: generic type cannot follow a generic pack", fname);
types.push_back(ty);
}
}
else
{
luaL_error(L, "%s: table member was not a generic type", fname);
}
lua_pop(L, 1);
}
lua_pop(L, 1);
}
else if (!lua_isnoneornil(L, idx))
{
luaL_typeerrorL(L, idx, "table");
}
return {types, packs};
}
static TypeFunctionTypePackId getTypePack(lua_State* L, int headIdx, int tailIdx)
{
TypeFunctionTypePackId result = allocateTypeFunctionTypePack(L, TypeFunctionTypePack{});
std::vector<TypeFunctionTypeId> head;
if (lua_istable(L, headIdx))
{
lua_pushvalue(L, headIdx);
for (int i = 1; i <= lua_objlen(L, -1); i++)
{
lua_pushinteger(L, i);
lua_gettable(L, -2);
if (lua_isnil(L, -1))
{
lua_pop(L, 1);
break;
}
head.push_back(getTypeUserData(L, -1));
lua_pop(L, 1);
}
lua_pop(L, 1);
}
std::optional<TypeFunctionTypePackId> tail;
if (auto type = optionalTypeUserData(L, tailIdx))
{
if (auto gty = get<TypeFunctionGenericType>(*type); gty && gty->isPack)
tail = allocateTypeFunctionTypePack(L, TypeFunctionGenericTypePack{gty->isNamed, gty->name});
else
tail = allocateTypeFunctionTypePack(L, TypeFunctionVariadicTypePack{*type});
}
if (head.size() == 0 && tail.has_value())
result = *tail;
else
result = allocateTypeFunctionTypePack(L, TypeFunctionTypePack{head, tail});
return result;
}
static void pushTypePack(lua_State* L, TypeFunctionTypePackId tp)
{
if (auto tftp = get<TypeFunctionTypePack>(tp))
{
lua_createtable(L, 0, 2);
if (!tftp->head.empty())
{
lua_createtable(L, int(tftp->head.size()), 0);
int pos = 1;
for (auto el : tftp->head)
{
allocTypeUserData(L, el->type);
lua_rawseti(L, -2, pos++);
}
lua_setfield(L, -2, "head");
}
if (tftp->tail.has_value())
{
if (auto tfvp = get<TypeFunctionVariadicTypePack>(*tftp->tail))
allocTypeUserData(L, tfvp->type->type);
else if (auto tfgp = get<TypeFunctionGenericTypePack>(*tftp->tail))
allocTypeUserData(L, TypeFunctionGenericType{tfgp->isNamed, true, tfgp->name});
else
luaL_error(L, "unsupported type pack type");
lua_setfield(L, -2, "tail");
}
}
else if (auto tfvp = get<TypeFunctionVariadicTypePack>(tp))
{
lua_createtable(L, 0, 1);
allocTypeUserData(L, tfvp->type->type);
lua_setfield(L, -2, "tail");
}
else if (auto tfgp = get<TypeFunctionGenericTypePack>(tp))
{
lua_createtable(L, 0, 1);
allocTypeUserData(L, TypeFunctionGenericType{tfgp->isNamed, true, tfgp->name});
lua_setfield(L, -2, "tail");
}
else
{
luaL_error(L, "unsupported type pack type");
}
}
static int createFunction_DEPRECATED(lua_State* L)
{
int argumentCount = lua_gettop(L);
if (argumentCount > 2)
@ -870,7 +1038,62 @@ static int createFunction(lua_State* L)
else if (!lua_isnoneornil(L, 2))
luaL_typeerrorL(L, 2, "table");
allocTypeUserData(L, TypeFunctionFunctionType{argTypes, retTypes});
allocTypeUserData(L, TypeFunctionFunctionType{{}, {}, argTypes, retTypes});
return 1;
}
// Luau: `types.newfunction(parameters: {head: {type}?, tail: type?}, returns: {head: {type}?, tail: type?}, generics: {type}?) -> type`
// Returns the type instance representing a function
static int createFunction(lua_State* L)
{
int argumentCount = lua_gettop(L);
if (argumentCount > 3)
luaL_error(L, "types.newfunction: expected 0-3 arguments, but got %d", argumentCount);
TypeFunctionTypePackId argTypes = nullptr;
if (lua_istable(L, 1))
{
lua_getfield(L, 1, "head");
lua_getfield(L, 1, "tail");
argTypes = getTypePack(L, -2, -1);
lua_pop(L, 2);
}
else if (!lua_isnoneornil(L, 1))
{
luaL_typeerrorL(L, 1, "table");
}
else
{
argTypes = allocateTypeFunctionTypePack(L, TypeFunctionTypePack{});
}
TypeFunctionTypePackId retTypes = nullptr;
if (lua_istable(L, 2))
{
lua_getfield(L, 2, "head");
lua_getfield(L, 2, "tail");
retTypes = getTypePack(L, -2, -1);
lua_pop(L, 2);
}
else if (!lua_isnoneornil(L, 2))
{
luaL_typeerrorL(L, 2, "table");
}
else
{
retTypes = allocateTypeFunctionTypePack(L, TypeFunctionTypePack{});
}
auto [genericTypes, genericPacks] = getGenerics(L, 3, "types.newfunction");
allocTypeUserData(L, TypeFunctionFunctionType{std::move(genericTypes), std::move(genericPacks), argTypes, retTypes});
return 1;
}
@ -888,6 +1111,12 @@ static int setFunctionParameters(lua_State* L)
if (!tfft)
luaL_error(L, "type.setparameters: expected self to be a function, but got %s instead", getTag(L, self).c_str());
if (FFlag::LuauUserTypeFunGenerics)
{
tfft->argTypes = getTypePack(L, 2, 3);
}
else
{
std::vector<TypeFunctionTypeId> head{};
if (lua_istable(L, 2))
{
@ -920,6 +1149,7 @@ static int setFunctionParameters(lua_State* L)
tfft->argTypes = *tail;
else // Make argTypes a type pack
tfft->argTypes = allocateTypeFunctionTypePack(L, TypeFunctionTypePack{head, tail});
}
return 0;
}
@ -937,6 +1167,12 @@ static int getFunctionParameters(lua_State* L)
if (!tfft)
luaL_error(L, "type.parameters: expected self to be a function, but got %s instead", getTag(L, self).c_str());
if (FFlag::LuauUserTypeFunGenerics)
{
pushTypePack(L, tfft->argTypes);
}
else
{
if (auto tftp = get<TypeFunctionTypePack>(tfft->argTypes))
{
int size = 0;
@ -983,6 +1219,8 @@ static int getFunctionParameters(lua_State* L)
}
lua_createtable(L, 0, 0);
}
return 1;
}
@ -999,6 +1237,12 @@ static int setFunctionReturns(lua_State* L)
if (!tfft)
luaL_error(L, "type.setreturns: expected self to be a function, but got %s instead", getTag(L, self).c_str());
if (FFlag::LuauUserTypeFunGenerics)
{
tfft->retTypes = getTypePack(L, 2, 3);
}
else
{
std::vector<TypeFunctionTypeId> head{};
if (lua_istable(L, 2))
{
@ -1031,6 +1275,7 @@ static int setFunctionReturns(lua_State* L)
tfft->retTypes = *tail;
else // Make retTypes a type pack
tfft->retTypes = allocateTypeFunctionTypePack(L, TypeFunctionTypePack{head, tail});
}
return 0;
}
@ -1048,6 +1293,12 @@ static int getFunctionReturns(lua_State* L)
if (!tfft)
luaL_error(L, "type.returns: expected self to be a function, but got %s instead", getTag(L, self).c_str());
if (FFlag::LuauUserTypeFunGenerics)
{
pushTypePack(L, tfft->retTypes);
}
else
{
if (auto tftp = get<TypeFunctionTypePack>(tfft->retTypes))
{
int size = 0;
@ -1094,6 +1345,57 @@ static int getFunctionReturns(lua_State* L)
}
lua_createtable(L, 0, 0);
}
return 1;
}
// Luau: `self:setgenerics(generics: {type}?)`
static int setFunctionGenerics(lua_State* L)
{
TypeFunctionTypeId self = getTypeUserData(L, 1);
auto tfft = getMutable<TypeFunctionFunctionType>(self);
if (!tfft)
luaL_error(L, "type.setgenerics: expected self to be a function, but got %s instead", getTag(L, self).c_str());
int argumentCount = lua_gettop(L);
if (argumentCount > 3)
luaL_error(L, "type.setgenerics: expected 3 arguments, but got %d", argumentCount);
auto [genericTypes, genericPacks] = getGenerics(L, 2, "types.setgenerics");
tfft->generics = std::move(genericTypes);
tfft->genericPacks = std::move(genericPacks);
return 0;
}
// Luau: `self:generics() -> {type}`
static int getFunctionGenerics(lua_State* L)
{
TypeFunctionTypeId self = getTypeUserData(L, 1);
auto tfft = get<TypeFunctionFunctionType>(self);
if (!tfft)
luaL_error(L, "type.generics: expected self to be a function, but got %s instead", getTag(L, self).c_str());
lua_createtable(L, int(tfft->generics.size()) + int(tfft->genericPacks.size()), 0);
int pos = 1;
for (const auto& el : tfft->generics)
{
allocTypeUserData(L, el->type);
lua_rawseti(L, -2, pos++);
}
for (const auto& el : tfft->genericPacks)
{
auto gty = get<TypeFunctionGenericTypePack>(el);
LUAU_ASSERT(gty);
allocTypeUserData(L, TypeFunctionGenericType{gty->isNamed, true, gty->name});
lua_rawseti(L, -2, pos++);
}
return 1;
}
@ -1119,6 +1421,36 @@ static int getClassParent(lua_State* L)
return 1;
}
// Luau: `self:name() -> string?`
// Returns the name of the generic or 'nil' if the generic is unnamed
static int getGenericName(lua_State* L)
{
TypeFunctionTypeId self = getTypeUserData(L, 1);
auto tfgt = get<TypeFunctionGenericType>(self);
if (!tfgt)
luaL_error(L, "type.name: expected self to be a generic, but got %s instead", getTag(L, self).c_str());
if (tfgt->isNamed)
lua_pushstring(L, tfgt->name.c_str());
else
lua_pushnil(L);
return 1;
}
// Luau: `self:ispack() -> boolean`
// Returns true if the generic is a pack
static int getGenericIsPack(lua_State* L)
{
TypeFunctionTypeId self = getTypeUserData(L, 1);
auto tfgt = get<TypeFunctionGenericType>(self);
if (!tfgt)
luaL_error(L, "type.ispack: expected self to be a generic, but got %s instead", getTag(L, self).c_str());
lua_pushboolean(L, tfgt->isPack);
return 1;
}
// Luau: `self:properties() -> {[type]: { read: type?, write: type? }}`
// Returns the properties of a table or class type
static int getProps(lua_State* L)
@ -1388,7 +1720,7 @@ static int checkTag(lua_State* L)
TypeFunctionTypeId deepClone(NotNull<TypeFunctionRuntime> runtime, TypeFunctionTypeId ty); // Forward declaration
// Luau: `types.copy(arg: string) -> type`
// Luau: `types.copy(arg: type) -> type`
// Returns a deep copy of the argument
static int deepCopy(lua_State* L)
{
@ -1438,8 +1770,9 @@ void registerTypesLibrary(lua_State* L)
{"unionof", createUnion},
{"intersectionof", createIntersection},
{"newtable", createTable},
{"newfunction", createFunction},
{"newfunction", FFlag::LuauUserTypeFunGenerics ? createFunction : createFunction_DEPRECATED},
{"copy", deepCopy},
{FFlag::LuauUserTypeFunGenerics ? "generic" : nullptr, FFlag::LuauUserTypeFunGenerics ? createGeneric : nullptr},
{nullptr, nullptr}
};
@ -1504,6 +1837,8 @@ void registerTypeUserData(lua_State* L)
{"parameters", getFunctionParameters},
{"setreturns", setFunctionReturns},
{"returns", getFunctionReturns},
{"setgenerics", setFunctionGenerics},
{"generics", getFunctionGenerics},
// Union and Intersection type methods
{"components", getComponents},
@ -1511,6 +1846,14 @@ void registerTypeUserData(lua_State* L)
// Class type methods
{"parent", getClassParent},
// Function type methods (cont.)
{FFlag::LuauUserTypeFunGenerics ? "setgenerics" : nullptr, FFlag::LuauUserTypeFunGenerics ? setFunctionGenerics : nullptr},
{FFlag::LuauUserTypeFunGenerics ? "generics" : nullptr, FFlag::LuauUserTypeFunGenerics ? getFunctionGenerics : nullptr},
// Generic type methods
{FFlag::LuauUserTypeFunGenerics ? "name" : nullptr, FFlag::LuauUserTypeFunGenerics ? getGenericName : nullptr},
{FFlag::LuauUserTypeFunGenerics ? "ispack" : nullptr, FFlag::LuauUserTypeFunGenerics ? getGenericIsPack : nullptr},
{nullptr, nullptr}
};
@ -1776,6 +2119,27 @@ bool areEqual(SeenSet& seen, const TypeFunctionFunctionType& lhs, const TypeFunc
if (seenSetContains(seen, &lhs, &rhs))
return true;
if (FFlag::LuauUserTypeFunGenerics)
{
if (lhs.generics.size() != rhs.generics.size())
return false;
for (auto l = lhs.generics.begin(), r = rhs.generics.begin(); l != lhs.generics.end() && r != rhs.generics.end(); ++l, ++r)
{
if (!areEqual(seen, **l, **r))
return false;
}
if (lhs.genericPacks.size() != rhs.genericPacks.size())
return false;
for (auto l = lhs.genericPacks.begin(), r = rhs.genericPacks.begin(); l != lhs.genericPacks.end() && r != rhs.genericPacks.end(); ++l, ++r)
{
if (!areEqual(seen, **l, **r))
return false;
}
}
if (bool(lhs.argTypes) != bool(rhs.argTypes))
return false;
@ -1876,6 +2240,16 @@ bool areEqual(SeenSet& seen, const TypeFunctionType& lhs, const TypeFunctionType
return areEqual(seen, *lf, *rf);
}
if (FFlag::LuauUserTypeFunGenerics)
{
{
const TypeFunctionGenericType* lg = get<TypeFunctionGenericType>(&lhs);
const TypeFunctionGenericType* rg = get<TypeFunctionGenericType>(&rhs);
if (lg && rg)
return lg->isNamed == rg->isNamed && lg->isPack == rg->isPack && lg->name == rg->name;
}
}
return false;
}
@ -1922,6 +2296,16 @@ bool areEqual(SeenSet& seen, const TypeFunctionTypePackVar& lhs, const TypeFunct
return areEqual(seen, *lv, *rv);
}
if (FFlag::LuauUserTypeFunGenerics)
{
{
const TypeFunctionGenericTypePack* lg = get<TypeFunctionGenericTypePack>(&lhs);
const TypeFunctionGenericTypePack* rg = get<TypeFunctionGenericTypePack>(&rhs);
if (lg && rg)
return lg->isNamed == rg->isNamed && lg->name == rg->name;
}
}
return false;
}
@ -2146,10 +2530,14 @@ private:
else if (auto f = get<TypeFunctionFunctionType>(ty))
{
TypeFunctionTypePackId emptyTypePack = typeFunctionRuntime->typePackArena.allocate(TypeFunctionTypePack{});
target = typeFunctionRuntime->typeArena.allocate(TypeFunctionFunctionType{emptyTypePack, emptyTypePack});
target = typeFunctionRuntime->typeArena.allocate(TypeFunctionFunctionType{{}, {}, emptyTypePack, emptyTypePack});
}
else if (auto c = get<TypeFunctionClassType>(ty))
target = ty; // Don't copy a class since they are immutable
else if (auto g = get<TypeFunctionGenericType>(ty); FFlag::LuauUserTypeFunGenerics && g)
target = typeFunctionRuntime->typeArena.allocate(TypeFunctionGenericType{g->isNamed, g->isPack, g->name});
else
LUAU_ASSERT(!"Unknown type");
types[ty] = target;
queue.emplace_back(ty, target);
@ -2167,6 +2555,10 @@ private:
target = typeFunctionRuntime->typePackArena.allocate(TypeFunctionTypePack{{}});
else if (auto vPack = get<TypeFunctionVariadicTypePack>(tp))
target = typeFunctionRuntime->typePackArena.allocate(TypeFunctionVariadicTypePack{});
else if (auto gPack = get<TypeFunctionGenericTypePack>(tp); gPack && FFlag::LuauUserTypeFunGenerics)
target = typeFunctionRuntime->typePackArena.allocate(TypeFunctionGenericTypePack{gPack->isNamed, gPack->name});
else
LUAU_ASSERT(!"Unknown type");
packs[tp] = target;
queue.emplace_back(tp, target);
@ -2197,6 +2589,9 @@ private:
cloneChildren(f1, f2);
else if (auto [c1, c2] = std::tuple{getMutable<TypeFunctionClassType>(ty), getMutable<TypeFunctionClassType>(tfti)}; c1 && c2)
cloneChildren(c1, c2);
else if (auto [g1, g2] = std::tuple{getMutable<TypeFunctionGenericType>(ty), getMutable<TypeFunctionGenericType>(tfti)};
FFlag::LuauUserTypeFunGenerics && g1 && g2)
cloneChildren(g1, g2);
else
LUAU_ASSERT(!"Unknown pair?"); // First and argument should always represent the same types
}
@ -2208,6 +2603,9 @@ private:
else if (auto [vPack1, vPack2] = std::tuple{getMutable<TypeFunctionVariadicTypePack>(tp), getMutable<TypeFunctionVariadicTypePack>(tftp)};
vPack1 && vPack2)
cloneChildren(vPack1, vPack2);
else if (auto [gPack1, gPack2] = std::tuple{getMutable<TypeFunctionGenericTypePack>(tp), getMutable<TypeFunctionGenericTypePack>(tftp)};
FFlag::LuauUserTypeFunGenerics && gPack1 && gPack2)
cloneChildren(gPack1, gPack2);
else
LUAU_ASSERT(!"Unknown pair?"); // First and argument should always represent the same types
}
@ -2288,6 +2686,17 @@ private:
void cloneChildren(TypeFunctionFunctionType* f1, TypeFunctionFunctionType* f2)
{
if (FFlag::LuauUserTypeFunGenerics)
{
f2->generics.reserve(f1->generics.size());
for (auto ty : f1->generics)
f2->generics.push_back(shallowClone(ty));
f2->genericPacks.reserve(f1->genericPacks.size());
for (auto tp : f1->genericPacks)
f2->genericPacks.push_back(shallowClone(tp));
}
f2->argTypes = shallowClone(f1->argTypes);
f2->retTypes = shallowClone(f1->retTypes);
}
@ -2297,16 +2706,32 @@ private:
// noop.
}
void cloneChildren(TypeFunctionGenericType* g1, TypeFunctionGenericType* g2)
{
// noop.
}
void cloneChildren(TypeFunctionTypePack* t1, TypeFunctionTypePack* t2)
{
for (TypeFunctionTypeId& ty : t1->head)
t2->head.push_back(shallowClone(ty));
if (FFlag::LuauUserTypeFunCloneTail)
{
if (t1->tail)
t2->tail = shallowClone(*t1->tail);
}
}
void cloneChildren(TypeFunctionVariadicTypePack* v1, TypeFunctionVariadicTypePack* v2)
{
v2->type = shallowClone(v1->type);
}
void cloneChildren(TypeFunctionGenericTypePack* g1, TypeFunctionGenericTypePack* g2)
{
// noop.
}
};
TypeFunctionTypeId deepClone(NotNull<TypeFunctionRuntime> runtime, TypeFunctionTypeId ty)

View file

@ -21,6 +21,7 @@
LUAU_DYNAMIC_FASTINTVARIABLE(LuauTypeFunctionSerdeIterationLimit, 100'000);
LUAU_FASTFLAG(LuauUserTypeFunThreadBuffer)
LUAU_FASTFLAG(LuauUserTypeFunGenerics)
namespace Luau
{
@ -221,13 +222,22 @@ private:
else if (auto f = get<FunctionType>(ty))
{
TypeFunctionTypePackId emptyTypePack = typeFunctionRuntime->typePackArena.allocate(TypeFunctionTypePack{});
target = typeFunctionRuntime->typeArena.allocate(TypeFunctionFunctionType{emptyTypePack, emptyTypePack});
target = typeFunctionRuntime->typeArena.allocate(TypeFunctionFunctionType{{}, {}, emptyTypePack, emptyTypePack});
}
else if (auto c = get<ClassType>(ty))
{
state->classesSerialized[c->name] = ty;
target = typeFunctionRuntime->typeArena.allocate(TypeFunctionClassType{{}, std::nullopt, std::nullopt, std::nullopt, c->name});
}
else if (auto g = get<GenericType>(ty); FFlag::LuauUserTypeFunGenerics && g)
{
Name name = g->name;
if (!g->explicitName)
name = format("g%d", g->index);
target = typeFunctionRuntime->typeArena.allocate(TypeFunctionGenericType{g->explicitName, false, name});
}
else
{
std::string error = format("Argument of type %s is not currently serializable by type functions", toString(ty).c_str());
@ -252,6 +262,15 @@ private:
target = typeFunctionRuntime->typePackArena.allocate(TypeFunctionTypePack{{}});
else if (auto vPack = get<VariadicTypePack>(tp))
target = typeFunctionRuntime->typePackArena.allocate(TypeFunctionVariadicTypePack{});
else if (auto gPack = get<GenericTypePack>(tp); FFlag::LuauUserTypeFunGenerics && gPack)
{
Name name = gPack->name;
if (!gPack->explicitName)
name = format("g%d", gPack->index);
target = typeFunctionRuntime->typePackArena.allocate(TypeFunctionGenericTypePack{gPack->explicitName, name});
}
else
{
std::string error = format("Argument of type pack %s is not currently serializable by type functions", toString(tp).c_str());
@ -289,6 +308,9 @@ private:
serializeChildren(f1, f2);
else if (auto [c1, c2] = std::tuple{get<ClassType>(ty), getMutable<TypeFunctionClassType>(tfti)}; c1 && c2)
serializeChildren(c1, c2);
else if (auto [g1, g2] = std::tuple{get<GenericType>(ty), getMutable<TypeFunctionGenericType>(tfti)};
FFlag::LuauUserTypeFunGenerics && g1 && g2)
serializeChildren(g1, g2);
else
{ // Either this or ty and tfti do not represent the same type
std::string error = format("Argument of type %s is not currently serializable by type functions", toString(ty).c_str());
@ -302,6 +324,9 @@ private:
serializeChildren(tPack1, tPack2);
else if (auto [vPack1, vPack2] = std::tuple{get<VariadicTypePack>(tp), getMutable<TypeFunctionVariadicTypePack>(tftp)}; vPack1 && vPack2)
serializeChildren(vPack1, vPack2);
else if (auto [gPack1, gPack2] = std::tuple{get<GenericTypePack>(tp), getMutable<TypeFunctionGenericTypePack>(tftp)};
FFlag::LuauUserTypeFunGenerics && gPack1 && gPack2)
serializeChildren(gPack1, gPack2);
else
{ // Either this or ty and tfti do not represent the same type
std::string error = format("Argument of type pack %s is not currently serializable by type functions", toString(tp).c_str());
@ -391,6 +416,17 @@ private:
void serializeChildren(const FunctionType* f1, TypeFunctionFunctionType* f2)
{
if (FFlag::LuauUserTypeFunGenerics)
{
f2->generics.reserve(f1->generics.size());
for (auto ty : f1->generics)
f2->generics.push_back(shallowSerialize(ty));
f2->genericPacks.reserve(f1->genericPacks.size());
for (auto tp : f1->genericPacks)
f2->genericPacks.push_back(shallowSerialize(tp));
}
f2->argTypes = shallowSerialize(f1->argTypes);
f2->retTypes = shallowSerialize(f1->retTypes);
}
@ -420,6 +456,11 @@ private:
c2->parent = shallowSerialize(*c1->parent);
}
void serializeChildren(const GenericType* g1, TypeFunctionGenericType* g2)
{
// noop.
}
void serializeChildren(const TypePack* t1, TypeFunctionTypePack* t2)
{
for (const TypeId& ty : t1->head)
@ -433,6 +474,25 @@ private:
{
v2->type = shallowSerialize(v1->ty);
}
void serializeChildren(const GenericTypePack* v1, TypeFunctionGenericTypePack* v2)
{
// noop.
}
};
template<typename T>
struct SerializedGeneric
{
bool isNamed = false;
std::string name;
T type = nullptr;
};
struct SerializedFunctionScope
{
size_t oldQueueSize = 0;
TypeFunctionFunctionType* function = nullptr;
};
// Complete inverse of TypeFunctionSerializer
@ -453,6 +513,15 @@ class TypeFunctionDeserializer
// second must be PrimitiveType; else there should be an error
std::vector<std::tuple<TypeFunctionKind, Kind>> queue;
// Generic types and packs currently in scope
// Generics are resolved by name even if runtime generic type pointers are different
// Multiple names mapping to the same generic can be in scope for nested generic functions
std::vector<SerializedGeneric<TypeId>> genericTypes;
std::vector<SerializedGeneric<TypePackId>> genericPacks;
// To track when generics go out of scope, we have a list of queue positions at which a specific function has introduced generics
std::vector<SerializedFunctionScope> functionScopes;
SeenTypes types; // Mapping of TypeFunctionTypeIds that have been shallow deserialized to TypeIds
SeenTypePacks packs; // Mapping of TypeFunctionTypePackIds that have been shallow deserialized to TypePackIds
@ -520,6 +589,16 @@ private:
queue.pop_back();
deserializeChildren(tfti, ty);
if (FFlag::LuauUserTypeFunGenerics)
{
// If we have completed working on all children of a function, remove the generic parameters from scope
if (!functionScopes.empty() && queue.size() == functionScopes.back().oldQueueSize && state->errors.empty())
{
closeFunctionScope(functionScopes.back().function);
functionScopes.pop_back();
}
}
}
}
@ -552,6 +631,21 @@ private:
}
}
void closeFunctionScope(TypeFunctionFunctionType* f)
{
if (!f->generics.empty())
{
LUAU_ASSERT(genericTypes.size() >= f->generics.size());
genericTypes.erase(genericTypes.begin() + int(genericTypes.size() - f->generics.size()), genericTypes.end());
}
if (!f->genericPacks.empty())
{
LUAU_ASSERT(genericPacks.size() >= f->genericPacks.size());
genericPacks.erase(genericPacks.begin() + int(genericPacks.size() - f->genericPacks.size()), genericPacks.end());
}
}
TypeId shallowDeserialize(TypeFunctionTypeId ty)
{
if (auto it = find(ty))
@ -631,6 +725,33 @@ private:
else
state->ctx->ice->ice("Deserializing user defined type function arguments: mysterious class type is being deserialized");
}
else if (auto g = get<TypeFunctionGenericType>(ty); FFlag::LuauUserTypeFunGenerics && g)
{
if (g->isPack)
{
state->errors.push_back(format("Generic type pack '%s...' cannot be placed in a type position", g->name.c_str()));
return nullptr;
}
else
{
auto it = std::find_if(
genericTypes.rbegin(),
genericTypes.rend(),
[&](const SerializedGeneric<TypeId>& el)
{
return g->isNamed == el.isNamed && g->name == el.name;
}
);
if (it == genericTypes.rend())
{
state->errors.push_back(format("Generic type '%s' is not in a scope of the active generic function", g->name.c_str()));
return nullptr;
}
target = it->type;
}
}
else
state->ctx->ice->ice("Deserializing user defined type function arguments: mysterious type is being deserialized");
@ -647,11 +768,36 @@ private:
// Create a shallow deserialization
TypePackId target = {};
if (auto tPack = get<TypeFunctionTypePack>(tp))
{
target = state->ctx->arena->addTypePack(TypePack{});
}
else if (auto vPack = get<TypeFunctionVariadicTypePack>(tp))
{
target = state->ctx->arena->addTypePack(VariadicTypePack{});
}
else if (auto gPack = get<TypeFunctionGenericTypePack>(tp); FFlag::LuauUserTypeFunGenerics && gPack)
{
auto it = std::find_if(
genericPacks.rbegin(),
genericPacks.rend(),
[&](const SerializedGeneric<TypePackId>& el)
{
return gPack->isNamed == el.isNamed && gPack->name == el.name;
}
);
if (it == genericPacks.rend())
{
state->errors.push_back(format("Generic type pack '%s...' is not in a scope of the active generic function", gPack->name.c_str()));
return nullptr;
}
target = it->type;
}
else
{
state->ctx->ice->ice("Deserializing user defined type function arguments: mysterious type is being deserialized");
}
packs[tp] = target;
queue.emplace_back(tp, target);
@ -686,6 +832,9 @@ private:
deserializeChildren(f2, f1);
else if (auto [c1, c2] = std::tuple{getMutable<ClassType>(ty), getMutable<TypeFunctionClassType>(tfti)}; c1 && c2)
deserializeChildren(c2, c1);
else if (auto [g1, g2] = std::tuple{getMutable<GenericType>(ty), getMutable<TypeFunctionGenericType>(tfti)};
FFlag::LuauUserTypeFunGenerics && g1 && g2)
deserializeChildren(g2, g1);
else
state->ctx->ice->ice("Deserializing user defined type function arguments: mysterious type is being deserialized");
}
@ -697,6 +846,9 @@ private:
else if (auto [vPack1, vPack2] = std::tuple{getMutable<VariadicTypePack>(tp), getMutable<TypeFunctionVariadicTypePack>(tftp)};
vPack1 && vPack2)
deserializeChildren(vPack2, vPack1);
else if (auto [gPack1, gPack2] = std::tuple{getMutable<GenericTypePack>(tp), getMutable<TypeFunctionGenericTypePack>(tftp)};
FFlag::LuauUserTypeFunGenerics && gPack1 && gPack2)
deserializeChildren(gPack2, gPack1);
else
state->ctx->ice->ice("Deserializing user defined type function arguments: mysterious type is being deserialized");
}
@ -780,6 +932,64 @@ private:
void deserializeChildren(TypeFunctionFunctionType* f2, FunctionType* f1)
{
if (FFlag::LuauUserTypeFunGenerics)
{
functionScopes.push_back({queue.size(), f2});
std::set<std::pair<bool, std::string>> genericNames;
// Introduce generic function parameters into scope
for (auto ty : f2->generics)
{
auto gty = get<TypeFunctionGenericType>(ty);
LUAU_ASSERT(gty && !gty->isPack);
std::pair<bool, std::string> nameKey = std::make_pair(gty->isNamed, gty->name);
// Duplicates are not allowed
if (genericNames.find(nameKey) != genericNames.end())
{
state->errors.push_back(format("Duplicate type parameter '%s'", gty->name.c_str()));
return;
}
genericNames.insert(nameKey);
TypeId mapping = state->ctx->arena->addTV(Type(gty->isNamed ? GenericType{state->ctx->scope.get(), gty->name} : GenericType{}));
genericTypes.push_back({gty->isNamed, gty->name, mapping});
}
for (auto tp : f2->genericPacks)
{
auto gtp = get<TypeFunctionGenericTypePack>(tp);
LUAU_ASSERT(gtp);
std::pair<bool, std::string> nameKey = std::make_pair(gtp->isNamed, gtp->name);
// Duplicates are not allowed
if (genericNames.find(nameKey) != genericNames.end())
{
state->errors.push_back(format("Duplicate type parameter '%s'", gtp->name.c_str()));
return;
}
genericNames.insert(nameKey);
TypePackId mapping =
state->ctx->arena->addTypePack(TypePackVar(gtp->isNamed ? GenericTypePack{state->ctx->scope.get(), gtp->name} : GenericTypePack{})
);
genericPacks.push_back({gtp->isNamed, gtp->name, mapping});
}
f1->generics.reserve(f2->generics.size());
for (auto ty : f2->generics)
f1->generics.push_back(shallowDeserialize(ty));
f1->genericPacks.reserve(f2->genericPacks.size());
for (auto tp : f2->genericPacks)
f1->genericPacks.push_back(shallowDeserialize(tp));
}
if (f2->argTypes)
f1->argTypes = shallowDeserialize(f2->argTypes);
@ -792,6 +1002,11 @@ private:
// noop.
}
void deserializeChildren(TypeFunctionGenericType* g2, GenericType* g1)
{
// noop.
}
void deserializeChildren(TypeFunctionTypePack* t2, TypePack* t1)
{
for (TypeFunctionTypeId& ty : t2->head)
@ -805,6 +1020,11 @@ private:
{
v1->ty = shallowDeserialize(v2->type);
}
void deserializeChildren(TypeFunctionGenericTypePack* v2, GenericTypePack* v1)
{
// noop.
}
};
TypeFunctionTypeId serialize(TypeId ty, TypeFunctionRuntimeBuilderState* state)

View file

@ -116,7 +116,7 @@ private:
AstStat* parseFor();
// funcname ::= Name {`.' Name} [`:' Name]
AstExpr* parseFunctionName(Location start, bool& hasself, AstName& debugname);
AstExpr* parseFunctionName(Location start_DEPRECATED, bool& hasself, AstName& debugname);
// function funcname funcbody
LUAU_FORCEINLINE AstStat* parseFunctionStat(const AstArray<AstAttr*>& attributes = {nullptr, 0});

View file

@ -22,6 +22,7 @@ LUAU_FASTFLAGVARIABLE(LuauAllowFragmentParsing)
LUAU_FASTFLAGVARIABLE(LuauAllowComplexTypesInGenericParams)
LUAU_FASTFLAGVARIABLE(LuauErrorRecoveryForTableTypes)
LUAU_FASTFLAGVARIABLE(LuauErrorRecoveryForClassNames)
LUAU_FASTFLAGVARIABLE(LuauFixFunctionNameStartPosition)
namespace Luau
{
@ -638,7 +639,7 @@ AstStat* Parser::parseFor()
}
// funcname ::= Name {`.' Name} [`:' Name]
AstExpr* Parser::parseFunctionName(Location start, bool& hasself, AstName& debugname)
AstExpr* Parser::parseFunctionName(Location start_DEPRECATED, bool& hasself, AstName& debugname)
{
if (lexer.current().type == Lexeme::Name)
debugname = AstName(lexer.current().name);
@ -658,7 +659,9 @@ AstExpr* Parser::parseFunctionName(Location start, bool& hasself, AstName& debug
// while we could concatenate the name chain, for now let's just write the short name
debugname = name.name;
expr = allocator.alloc<AstExprIndexName>(Location(start, name.location), expr, name.name, name.location, opPosition, '.');
expr = allocator.alloc<AstExprIndexName>(
Location(FFlag::LuauFixFunctionNameStartPosition ? expr->location : start_DEPRECATED, name.location), expr, name.name, name.location, opPosition, '.'
);
// note: while the parser isn't recursive here, we're generating recursive structures of unbounded depth
incrementRecursionCounter("function name");
@ -677,7 +680,9 @@ AstExpr* Parser::parseFunctionName(Location start, bool& hasself, AstName& debug
// while we could concatenate the name chain, for now let's just write the short name
debugname = name.name;
expr = allocator.alloc<AstExprIndexName>(Location(start, name.location), expr, name.name, name.location, opPosition, ':');
expr = allocator.alloc<AstExprIndexName>(
Location(FFlag::LuauFixFunctionNameStartPosition ? expr->location : start_DEPRECATED, name.location), expr, name.name, name.location, opPosition, ':'
);
hasself = true;
}

View file

@ -1,7 +1,7 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/CodeGen.h"
#include "Luau/CodeGenOptions.h"
#include <vector>

View file

@ -1,7 +1,10 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include <algorithm>
#include "Luau/CodeGenCommon.h"
#include "Luau/CodeGenOptions.h"
#include "Luau/LoweringStats.h"
#include <array>
#include <memory>
#include <string>
@ -12,25 +15,11 @@
struct lua_State;
#if defined(__x86_64__) || defined(_M_X64)
#define CODEGEN_TARGET_X64
#elif defined(__aarch64__) || defined(_M_ARM64)
#define CODEGEN_TARGET_A64
#endif
namespace Luau
{
namespace CodeGen
{
enum CodeGenFlags
{
// Only run native codegen for modules that have been marked with --!native
CodeGen_OnlyNativeModules = 1 << 0,
// Run native codegen for functions that the compiler considers not profitable
CodeGen_ColdFunctions = 1 << 1,
};
// These enum values can be reported through telemetry.
// To ensure consistency, changes should be additive.
enum class CodeGenCompilationResult
@ -72,106 +61,6 @@ struct CompilationResult
}
};
struct IrBuilder;
struct IrOp;
using HostVectorOperationBytecodeType = uint8_t (*)(const char* member, size_t memberLength);
using HostVectorAccessHandler = bool (*)(IrBuilder& builder, const char* member, size_t memberLength, int resultReg, int sourceReg, int pcpos);
using HostVectorNamecallHandler =
bool (*)(IrBuilder& builder, const char* member, size_t memberLength, int argResReg, int sourceReg, int params, int results, int pcpos);
enum class HostMetamethod
{
Add,
Sub,
Mul,
Div,
Idiv,
Mod,
Pow,
Minus,
Equal,
LessThan,
LessEqual,
Length,
Concat,
};
using HostUserdataOperationBytecodeType = uint8_t (*)(uint8_t type, const char* member, size_t memberLength);
using HostUserdataMetamethodBytecodeType = uint8_t (*)(uint8_t lhsTy, uint8_t rhsTy, HostMetamethod method);
using HostUserdataAccessHandler =
bool (*)(IrBuilder& builder, uint8_t type, const char* member, size_t memberLength, int resultReg, int sourceReg, int pcpos);
using HostUserdataMetamethodHandler =
bool (*)(IrBuilder& builder, uint8_t lhsTy, uint8_t rhsTy, int resultReg, IrOp lhs, IrOp rhs, HostMetamethod method, int pcpos);
using HostUserdataNamecallHandler = bool (*)(
IrBuilder& builder,
uint8_t type,
const char* member,
size_t memberLength,
int argResReg,
int sourceReg,
int params,
int results,
int pcpos
);
struct HostIrHooks
{
// Suggest result type of a vector field access
HostVectorOperationBytecodeType vectorAccessBytecodeType = nullptr;
// Suggest result type of a vector function namecall
HostVectorOperationBytecodeType vectorNamecallBytecodeType = nullptr;
// Handle vector value field access
// 'sourceReg' is guaranteed to be a vector
// Guards should take a VM exit to 'pcpos'
HostVectorAccessHandler vectorAccess = nullptr;
// Handle namecall performed on a vector value
// 'sourceReg' (self argument) is guaranteed to be a vector
// All other arguments can be of any type
// Guards should take a VM exit to 'pcpos'
HostVectorNamecallHandler vectorNamecall = nullptr;
// Suggest result type of a userdata field access
HostUserdataOperationBytecodeType userdataAccessBytecodeType = nullptr;
// Suggest result type of a metamethod call
HostUserdataMetamethodBytecodeType userdataMetamethodBytecodeType = nullptr;
// Suggest result type of a userdata namecall
HostUserdataOperationBytecodeType userdataNamecallBytecodeType = nullptr;
// Handle userdata value field access
// 'sourceReg' is guaranteed to be a userdata, but tag has to be checked
// Write to 'resultReg' might invalidate 'sourceReg'
// Guards should take a VM exit to 'pcpos'
HostUserdataAccessHandler userdataAccess = nullptr;
// Handle metamethod operation on a userdata value
// 'lhs' and 'rhs' operands can be VM registers of constants
// Operand types have to be checked and userdata operand tags have to be checked
// Write to 'resultReg' might invalidate source operands
// Guards should take a VM exit to 'pcpos'
HostUserdataMetamethodHandler userdataMetamethod = nullptr;
// Handle namecall performed on a userdata value
// 'sourceReg' (self argument) is guaranteed to be a userdata, but tag has to be checked
// All other arguments can be of any type
// Guards should take a VM exit to 'pcpos'
HostUserdataNamecallHandler userdataNamecall = nullptr;
};
struct CompilationOptions
{
unsigned int flags = 0;
HostIrHooks hooks;
// null-terminated array of userdata types names that might have custom lowering
const char* const* userdataTypes = nullptr;
};
struct CompilationStats
{
size_t bytecodeSizeBytes = 0;
@ -184,8 +73,6 @@ struct CompilationStats
uint32_t functionsBound = 0;
};
using AllocationCallback = void(void* context, void* oldPointer, size_t oldSize, void* newPointer, size_t newSize);
bool isSupported();
class SharedCodeGenContext;
@ -249,153 +136,6 @@ CompilationResult compile(const ModuleId& moduleId, lua_State* L, int idx, unsig
CompilationResult compile(lua_State* L, int idx, const CompilationOptions& options, CompilationStats* stats = nullptr);
CompilationResult compile(const ModuleId& moduleId, lua_State* L, int idx, const CompilationOptions& options, CompilationStats* stats = nullptr);
using AnnotatorFn = void (*)(void* context, std::string& result, int fid, int instpos);
// Output "#" before IR blocks and instructions
enum class IncludeIrPrefix
{
No,
Yes
};
// Output user count and last use information of blocks and instructions
enum class IncludeUseInfo
{
No,
Yes
};
// Output CFG informations like block predecessors, successors and etc
enum class IncludeCfgInfo
{
No,
Yes
};
// Output VM register live in/out information for blocks
enum class IncludeRegFlowInfo
{
No,
Yes
};
struct AssemblyOptions
{
enum Target
{
Host,
A64,
A64_NoFeatures,
X64_Windows,
X64_SystemV,
};
Target target = Host;
CompilationOptions compilationOptions;
bool outputBinary = false;
bool includeAssembly = false;
bool includeIr = false;
bool includeOutlinedCode = false;
bool includeIrTypes = false;
IncludeIrPrefix includeIrPrefix = IncludeIrPrefix::Yes;
IncludeUseInfo includeUseInfo = IncludeUseInfo::Yes;
IncludeCfgInfo includeCfgInfo = IncludeCfgInfo::Yes;
IncludeRegFlowInfo includeRegFlowInfo = IncludeRegFlowInfo::Yes;
// Optional annotator function can be provided to describe each instruction, it takes function id and sequential instruction id
AnnotatorFn annotator = nullptr;
void* annotatorContext = nullptr;
};
struct BlockLinearizationStats
{
unsigned int constPropInstructionCount = 0;
double timeSeconds = 0.0;
BlockLinearizationStats& operator+=(const BlockLinearizationStats& that)
{
this->constPropInstructionCount += that.constPropInstructionCount;
this->timeSeconds += that.timeSeconds;
return *this;
}
BlockLinearizationStats operator+(const BlockLinearizationStats& other) const
{
BlockLinearizationStats result(*this);
result += other;
return result;
}
};
enum FunctionStatsFlags
{
// Enable stats collection per function
FunctionStats_Enable = 1 << 0,
// Compute function bytecode summary
FunctionStats_BytecodeSummary = 1 << 1,
};
struct FunctionStats
{
std::string name;
int line = -1;
unsigned bcodeCount = 0;
unsigned irCount = 0;
unsigned asmCount = 0;
unsigned asmSize = 0;
std::vector<std::vector<unsigned>> bytecodeSummary;
};
struct LoweringStats
{
unsigned totalFunctions = 0;
unsigned skippedFunctions = 0;
int spillsToSlot = 0;
int spillsToRestore = 0;
unsigned maxSpillSlotsUsed = 0;
unsigned blocksPreOpt = 0;
unsigned blocksPostOpt = 0;
unsigned maxBlockInstructions = 0;
int regAllocErrors = 0;
int loweringErrors = 0;
BlockLinearizationStats blockLinearizationStats;
unsigned functionStatsFlags = 0;
std::vector<FunctionStats> functions;
LoweringStats operator+(const LoweringStats& other) const
{
LoweringStats result(*this);
result += other;
return result;
}
LoweringStats& operator+=(const LoweringStats& that)
{
this->totalFunctions += that.totalFunctions;
this->skippedFunctions += that.skippedFunctions;
this->spillsToSlot += that.spillsToSlot;
this->spillsToRestore += that.spillsToRestore;
this->maxSpillSlotsUsed = std::max(this->maxSpillSlotsUsed, that.maxSpillSlotsUsed);
this->blocksPreOpt += that.blocksPreOpt;
this->blocksPostOpt += that.blocksPostOpt;
this->maxBlockInstructions = std::max(this->maxBlockInstructions, that.maxBlockInstructions);
this->regAllocErrors += that.regAllocErrors;
this->loweringErrors += that.loweringErrors;
this->blockLinearizationStats += that.blockLinearizationStats;
if (this->functionStatsFlags & FunctionStats_Enable)
this->functions.insert(this->functions.end(), that.functions.begin(), that.functions.end());
return *this;
}
};
// Generates assembly for target function and all inner functions
std::string getAssembly(lua_State* L, int idx, AssemblyOptions options = {}, LoweringStats* stats = nullptr);

View file

@ -10,3 +10,9 @@
#else
#define CODEGEN_ASSERT(expr) (void)sizeof(!!(expr))
#endif
#if defined(__x86_64__) || defined(_M_X64)
#define CODEGEN_TARGET_X64
#elif defined(__aarch64__) || defined(_M_ARM64)
#define CODEGEN_TARGET_A64
#endif

View file

@ -0,0 +1,188 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include <string>
#include <stddef.h>
#include <stdint.h>
namespace Luau
{
namespace CodeGen
{
enum CodeGenFlags
{
// Only run native codegen for modules that have been marked with --!native
CodeGen_OnlyNativeModules = 1 << 0,
// Run native codegen for functions that the compiler considers not profitable
CodeGen_ColdFunctions = 1 << 1,
};
using AllocationCallback = void(void* context, void* oldPointer, size_t oldSize, void* newPointer, size_t newSize);
struct IrBuilder;
struct IrOp;
using HostVectorOperationBytecodeType = uint8_t (*)(const char* member, size_t memberLength);
using HostVectorAccessHandler = bool (*)(IrBuilder& builder, const char* member, size_t memberLength, int resultReg, int sourceReg, int pcpos);
using HostVectorNamecallHandler =
bool (*)(IrBuilder& builder, const char* member, size_t memberLength, int argResReg, int sourceReg, int params, int results, int pcpos);
enum class HostMetamethod
{
Add,
Sub,
Mul,
Div,
Idiv,
Mod,
Pow,
Minus,
Equal,
LessThan,
LessEqual,
Length,
Concat,
};
using HostUserdataOperationBytecodeType = uint8_t (*)(uint8_t type, const char* member, size_t memberLength);
using HostUserdataMetamethodBytecodeType = uint8_t (*)(uint8_t lhsTy, uint8_t rhsTy, HostMetamethod method);
using HostUserdataAccessHandler =
bool (*)(IrBuilder& builder, uint8_t type, const char* member, size_t memberLength, int resultReg, int sourceReg, int pcpos);
using HostUserdataMetamethodHandler =
bool (*)(IrBuilder& builder, uint8_t lhsTy, uint8_t rhsTy, int resultReg, IrOp lhs, IrOp rhs, HostMetamethod method, int pcpos);
using HostUserdataNamecallHandler = bool (*)(
IrBuilder& builder,
uint8_t type,
const char* member,
size_t memberLength,
int argResReg,
int sourceReg,
int params,
int results,
int pcpos
);
struct HostIrHooks
{
// Suggest result type of a vector field access
HostVectorOperationBytecodeType vectorAccessBytecodeType = nullptr;
// Suggest result type of a vector function namecall
HostVectorOperationBytecodeType vectorNamecallBytecodeType = nullptr;
// Handle vector value field access
// 'sourceReg' is guaranteed to be a vector
// Guards should take a VM exit to 'pcpos'
HostVectorAccessHandler vectorAccess = nullptr;
// Handle namecall performed on a vector value
// 'sourceReg' (self argument) is guaranteed to be a vector
// All other arguments can be of any type
// Guards should take a VM exit to 'pcpos'
HostVectorNamecallHandler vectorNamecall = nullptr;
// Suggest result type of a userdata field access
HostUserdataOperationBytecodeType userdataAccessBytecodeType = nullptr;
// Suggest result type of a metamethod call
HostUserdataMetamethodBytecodeType userdataMetamethodBytecodeType = nullptr;
// Suggest result type of a userdata namecall
HostUserdataOperationBytecodeType userdataNamecallBytecodeType = nullptr;
// Handle userdata value field access
// 'sourceReg' is guaranteed to be a userdata, but tag has to be checked
// Write to 'resultReg' might invalidate 'sourceReg'
// Guards should take a VM exit to 'pcpos'
HostUserdataAccessHandler userdataAccess = nullptr;
// Handle metamethod operation on a userdata value
// 'lhs' and 'rhs' operands can be VM registers of constants
// Operand types have to be checked and userdata operand tags have to be checked
// Write to 'resultReg' might invalidate source operands
// Guards should take a VM exit to 'pcpos'
HostUserdataMetamethodHandler userdataMetamethod = nullptr;
// Handle namecall performed on a userdata value
// 'sourceReg' (self argument) is guaranteed to be a userdata, but tag has to be checked
// All other arguments can be of any type
// Guards should take a VM exit to 'pcpos'
HostUserdataNamecallHandler userdataNamecall = nullptr;
};
struct CompilationOptions
{
unsigned int flags = 0;
HostIrHooks hooks;
// null-terminated array of userdata types names that might have custom lowering
const char* const* userdataTypes = nullptr;
};
using AnnotatorFn = void (*)(void* context, std::string& result, int fid, int instpos);
// Output "#" before IR blocks and instructions
enum class IncludeIrPrefix
{
No,
Yes
};
// Output user count and last use information of blocks and instructions
enum class IncludeUseInfo
{
No,
Yes
};
// Output CFG informations like block predecessors, successors and etc
enum class IncludeCfgInfo
{
No,
Yes
};
// Output VM register live in/out information for blocks
enum class IncludeRegFlowInfo
{
No,
Yes
};
struct AssemblyOptions
{
enum Target
{
Host,
A64,
A64_NoFeatures,
X64_Windows,
X64_SystemV,
};
Target target = Host;
CompilationOptions compilationOptions;
bool outputBinary = false;
bool includeAssembly = false;
bool includeIr = false;
bool includeOutlinedCode = false;
bool includeIrTypes = false;
IncludeIrPrefix includeIrPrefix = IncludeIrPrefix::Yes;
IncludeUseInfo includeUseInfo = IncludeUseInfo::Yes;
IncludeCfgInfo includeCfgInfo = IncludeCfgInfo::Yes;
IncludeRegFlowInfo includeRegFlowInfo = IncludeRegFlowInfo::Yes;
// Optional annotator function can be provided to describe each instruction, it takes function id and sequential instruction id
AnnotatorFn annotator = nullptr;
void* annotatorContext = nullptr;
};
} // namespace CodeGen
} // namespace Luau

View file

@ -20,6 +20,8 @@ namespace Luau
namespace CodeGen
{
struct LoweringStats;
// IR extensions to LuauBuiltinFunction enum (these only exist inside IR, and start from 256 to avoid collisions)
enum
{
@ -67,18 +69,18 @@ enum class IrCmd : uint8_t
LOAD_ENV,
// Get pointer (TValue) to table array at index
// A: pointer (Table)
// A: pointer (LuaTable)
// B: int
GET_ARR_ADDR,
// Get pointer (LuaNode) to table node element at the active cached slot index
// A: pointer (Table)
// A: pointer (LuaTable)
// B: unsigned int (pcpos)
// C: Kn
GET_SLOT_NODE_ADDR,
// Get pointer (LuaNode) to table node element at the main position of the specified key hash
// A: pointer (Table)
// A: pointer (LuaTable)
// B: unsigned int (hash)
GET_HASH_NODE_ADDR,
@ -273,7 +275,7 @@ enum class IrCmd : uint8_t
JUMP_SLOT_MATCH,
// Get table length
// A: pointer (Table)
// A: pointer (LuaTable)
TABLE_LEN,
// Get string length
@ -286,11 +288,11 @@ enum class IrCmd : uint8_t
NEW_TABLE,
// Duplicate a table
// A: pointer (Table)
// A: pointer (LuaTable)
DUP_TABLE,
// Insert an integer key into a table and return the pointer to inserted value (TValue)
// A: pointer (Table)
// A: pointer (LuaTable)
// B: int (key)
TABLE_SETNUM,
@ -430,13 +432,13 @@ enum class IrCmd : uint8_t
CHECK_TRUTHY,
// Guard against readonly table
// A: pointer (Table)
// A: pointer (LuaTable)
// B: block/vmexit/undef
// When undef is specified instead of a block, execution is aborted on check failure
CHECK_READONLY,
// Guard against table having a metatable
// A: pointer (Table)
// A: pointer (LuaTable)
// B: block/vmexit/undef
// When undef is specified instead of a block, execution is aborted on check failure
CHECK_NO_METATABLE,
@ -447,7 +449,7 @@ enum class IrCmd : uint8_t
CHECK_SAFE_ENV,
// Guard against index overflowing the table array size
// A: pointer (Table)
// A: pointer (LuaTable)
// B: int (index)
// C: block/vmexit/undef
// When undef is specified instead of a block, execution is aborted on check failure
@ -503,11 +505,11 @@ enum class IrCmd : uint8_t
BARRIER_OBJ,
// Handle GC write barrier (backwards) for a write into a table
// A: pointer (Table)
// A: pointer (LuaTable)
BARRIER_TABLE_BACK,
// Handle GC write barrier (forward) for a write into a table
// A: pointer (Table)
// A: pointer (LuaTable)
// B: Rn (TValue that was written to the object)
// C: tag/undef (tag of the value that was written)
BARRIER_TABLE_FORWARD,
@ -1049,6 +1051,8 @@ struct IrFunction
CfgInfo cfg;
LoweringStats* stats = nullptr;
IrBlock& blockOp(IrOp op)
{
CODEGEN_ASSERT(op.kind == IrOpKind::Block);

View file

@ -2,7 +2,7 @@
#pragma once
#include "Luau/IrData.h"
#include "Luau/CodeGen.h"
#include "Luau/CodeGenOptions.h"
#include <string>
#include <vector>

View file

@ -0,0 +1,103 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include <algorithm>
#include <string>
#include <vector>
namespace Luau
{
namespace CodeGen
{
struct BlockLinearizationStats
{
unsigned int constPropInstructionCount = 0;
double timeSeconds = 0.0;
BlockLinearizationStats& operator+=(const BlockLinearizationStats& that)
{
this->constPropInstructionCount += that.constPropInstructionCount;
this->timeSeconds += that.timeSeconds;
return *this;
}
BlockLinearizationStats operator+(const BlockLinearizationStats& other) const
{
BlockLinearizationStats result(*this);
result += other;
return result;
}
};
enum FunctionStatsFlags
{
// Enable stats collection per function
FunctionStats_Enable = 1 << 0,
// Compute function bytecode summary
FunctionStats_BytecodeSummary = 1 << 1,
};
struct FunctionStats
{
std::string name;
int line = -1;
unsigned bcodeCount = 0;
unsigned irCount = 0;
unsigned asmCount = 0;
unsigned asmSize = 0;
std::vector<std::vector<unsigned>> bytecodeSummary;
};
struct LoweringStats
{
unsigned totalFunctions = 0;
unsigned skippedFunctions = 0;
int spillsToSlot = 0;
int spillsToRestore = 0;
unsigned maxSpillSlotsUsed = 0;
unsigned blocksPreOpt = 0;
unsigned blocksPostOpt = 0;
unsigned maxBlockInstructions = 0;
int regAllocErrors = 0;
int loweringErrors = 0;
BlockLinearizationStats blockLinearizationStats;
unsigned functionStatsFlags = 0;
std::vector<FunctionStats> functions;
LoweringStats operator+(const LoweringStats& other) const
{
LoweringStats result(*this);
result += other;
return result;
}
LoweringStats& operator+=(const LoweringStats& that)
{
this->totalFunctions += that.totalFunctions;
this->skippedFunctions += that.skippedFunctions;
this->spillsToSlot += that.spillsToSlot;
this->spillsToRestore += that.spillsToRestore;
this->maxSpillSlotsUsed = std::max(this->maxSpillSlotsUsed, that.maxSpillSlotsUsed);
this->blocksPreOpt += that.blocksPreOpt;
this->blocksPostOpt += that.blocksPostOpt;
this->maxBlockInstructions = std::max(this->maxBlockInstructions, that.maxBlockInstructions);
this->regAllocErrors += that.regAllocErrors;
this->loweringErrors += that.loweringErrors;
this->blockLinearizationStats += that.blockLinearizationStats;
if (this->functionStatsFlags & FunctionStats_Enable)
this->functions.insert(this->functions.end(), that.functions.begin(), that.functions.end());
return *this;
}
};
} // namespace CodeGen
} // namespace Luau

View file

@ -2,7 +2,7 @@
#include "Luau/BytecodeAnalysis.h"
#include "Luau/BytecodeUtils.h"
#include "Luau/CodeGen.h"
#include "Luau/CodeGenOptions.h"
#include "Luau/IrData.h"
#include "Luau/IrUtils.h"

View file

@ -2,6 +2,7 @@
#include "Luau/CodeBlockUnwind.h"
#include "Luau/CodeAllocator.h"
#include "Luau/CodeGenCommon.h"
#include "Luau/UnwindBuilder.h"
#include <string.h>

View file

@ -3,7 +3,7 @@
#include "CodeGenLower.h"
#include "Luau/Common.h"
#include "Luau/CodeGenCommon.h"
#include "Luau/CodeAllocator.h"
#include "Luau/CodeBlockUnwind.h"
#include "Luau/IrBuilder.h"
@ -44,6 +44,7 @@
LUAU_FASTFLAGVARIABLE(DebugCodegenNoOpt)
LUAU_FASTFLAGVARIABLE(DebugCodegenOptSize)
LUAU_FASTFLAGVARIABLE(DebugCodegenSkipNumbering)
LUAU_FASTFLAGVARIABLE(CodegenWiderLoweringStats)
// Per-module IR instruction count limit
LUAU_FASTINTVARIABLE(CodegenHeuristicsInstructionLimit, 1'048'576) // 1 M

View file

@ -1,5 +1,4 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/CodeGen.h"
#include "Luau/BytecodeAnalysis.h"
#include "Luau/BytecodeUtils.h"
#include "Luau/BytecodeSummary.h"

View file

@ -5,6 +5,7 @@
#include "CodeGenLower.h"
#include "CodeGenX64.h"
#include "Luau/CodeGenCommon.h"
#include "Luau/CodeBlockUnwind.h"
#include "Luau/UnwindBuilder.h"
#include "Luau/UnwindBuilderDwarf2.h"

View file

@ -7,6 +7,7 @@
#include "Luau/IrBuilder.h"
#include "Luau/IrDump.h"
#include "Luau/IrUtils.h"
#include "Luau/LoweringStats.h"
#include "Luau/OptimizeConstProp.h"
#include "Luau/OptimizeDeadStore.h"
#include "Luau/OptimizeFinalX64.h"
@ -24,6 +25,7 @@
LUAU_FASTFLAG(DebugCodegenNoOpt)
LUAU_FASTFLAG(DebugCodegenOptSize)
LUAU_FASTFLAG(DebugCodegenSkipNumbering)
LUAU_FASTFLAG(CodegenWiderLoweringStats)
LUAU_FASTINT(CodegenHeuristicsInstructionLimit)
LUAU_FASTINT(CodegenHeuristicsBlockLimit)
LUAU_FASTINT(CodegenHeuristicsBlockInstructionLimit)
@ -298,6 +300,9 @@ inline bool lowerFunction(
CodeGenCompilationResult& codeGenCompilationResult
)
{
if (FFlag::CodegenWiderLoweringStats)
ir.function.stats = stats;
killUnusedBlocks(ir.function);
unsigned preOptBlockCount = 0;

View file

@ -63,7 +63,7 @@ namespace Luau
namespace CodeGen
{
bool forgLoopTableIter(lua_State* L, Table* h, int index, TValue* ra)
bool forgLoopTableIter(lua_State* L, LuaTable* h, int index, TValue* ra)
{
int sizearray = h->sizearray;
@ -106,7 +106,7 @@ bool forgLoopTableIter(lua_State* L, Table* h, int index, TValue* ra)
return false;
}
bool forgLoopNodeIter(lua_State* L, Table* h, int index, TValue* ra)
bool forgLoopNodeIter(lua_State* L, LuaTable* h, int index, TValue* ra)
{
int sizearray = h->sizearray;
int sizenode = 1 << h->lsizenode;
@ -233,7 +233,7 @@ Udata* newUserdata(lua_State* L, size_t s, int tag)
{
Udata* u = luaU_newudata(L, s, tag);
if (Table* h = L->global->udatamt[tag])
if (LuaTable* h = L->global->udatamt[tag])
{
// currently, we always allocate unmarked objects, so forward barrier can be skipped
LUAU_ASSERT(!isblack(obj2gco(u)));
@ -345,7 +345,7 @@ const Instruction* executeGETGLOBAL(lua_State* L, const Instruction* pc, StkId b
LUAU_ASSERT(ttisstring(kv));
// fast-path should already have been checked, so we skip checking for it here
Table* h = cl->env;
LuaTable* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
// slow-path, may invoke Lua calls via __index metamethod
@ -368,7 +368,7 @@ const Instruction* executeSETGLOBAL(lua_State* L, const Instruction* pc, StkId b
LUAU_ASSERT(ttisstring(kv));
// fast-path should already have been checked, so we skip checking for it here
Table* h = cl->env;
LuaTable* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
// slow-path, may invoke Lua calls via __newindex metamethod
@ -394,7 +394,7 @@ const Instruction* executeGETTABLEKS(lua_State* L, const Instruction* pc, StkId
// fast-path: built-in table
if (ttistable(rb))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
// we ignore the fast path that checks for the cached slot since IrTranslation already checks for it.
@ -506,7 +506,7 @@ const Instruction* executeSETTABLEKS(lua_State* L, const Instruction* pc, StkId
// fast-path: built-in table
if (ttistable(rb))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
// we ignore the fast path that checks for the cached slot since IrTranslation already checks for it.
@ -591,7 +591,7 @@ const Instruction* executeNAMECALL(lua_State* L, const Instruction* pc, StkId ba
}
else
{
Table* mt = ttisuserdata(rb) ? uvalue(rb)->metatable : L->global->mt[ttype(rb)];
LuaTable* mt = ttisuserdata(rb) ? uvalue(rb)->metatable : L->global->mt[ttype(rb)];
const TValue* tmi = 0;
// fast-path: metatable with __namecall
@ -605,7 +605,7 @@ const Instruction* executeNAMECALL(lua_State* L, const Instruction* pc, StkId ba
}
else if ((tmi = fasttm(L, mt, TM_INDEX)) && ttistable(tmi))
{
Table* h = hvalue(tmi);
LuaTable* h = hvalue(tmi);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
@ -662,7 +662,7 @@ const Instruction* executeSETLIST(lua_State* L, const Instruction* pc, StkId bas
L->top = L->ci->top;
}
Table* h = hvalue(ra);
LuaTable* h = hvalue(ra);
// TODO: we really don't need this anymore
if (!ttistable(ra))
@ -697,7 +697,7 @@ const Instruction* executeFORGPREP(lua_State* L, const Instruction* pc, StkId ba
}
else
{
Table* mt = ttistable(ra) ? hvalue(ra)->metatable : ttisuserdata(ra) ? uvalue(ra)->metatable : cast_to(Table*, NULL);
LuaTable* mt = ttistable(ra) ? hvalue(ra)->metatable : ttisuserdata(ra) ? uvalue(ra)->metatable : cast_to(LuaTable*, NULL);
if (const TValue* fn = fasttm(L, mt, TM_ITER))
{

View file

@ -8,8 +8,8 @@ namespace Luau
namespace CodeGen
{
bool forgLoopTableIter(lua_State* L, Table* h, int index, TValue* ra);
bool forgLoopNodeIter(lua_State* L, Table* h, int index, TValue* ra);
bool forgLoopTableIter(lua_State* L, LuaTable* h, int index, TValue* ra);
bool forgLoopNodeIter(lua_State* L, LuaTable* h, int index, TValue* ra);
bool forgLoopNonTableFallback(lua_State* L, int insnA, int aux);
void forgPrepXnextFallback(lua_State* L, TValue* ra, int pc);

View file

@ -120,12 +120,12 @@ void getTableNodeAtCachedSlot(AssemblyBuilderX64& build, RegisterX64 tmp, Regist
CODEGEN_ASSERT(tmp != node);
CODEGEN_ASSERT(table != node);
build.mov(node, qword[table + offsetof(Table, node)]);
build.mov(node, qword[table + offsetof(LuaTable, node)]);
// compute cached slot
build.mov(tmp, sCode);
build.movzx(dwordReg(tmp), byte[tmp + pcpos * sizeof(Instruction) + kOffsetOfInstructionC]);
build.and_(byteReg(tmp), byte[table + offsetof(Table, nodemask8)]);
build.and_(byteReg(tmp), byte[table + offsetof(LuaTable, nodemask8)]);
// LuaNode* n = &h->node[slot];
build.shl(dwordReg(tmp), kLuaNodeSizeLog2);
@ -282,7 +282,7 @@ void callBarrierTableFast(IrRegAllocX64& regs, AssemblyBuilderX64& build, Regist
IrCallWrapperX64 callWrap(regs, build);
callWrap.addArgument(SizeX64::qword, rState);
callWrap.addArgument(SizeX64::qword, table, tableOp);
callWrap.addArgument(SizeX64::qword, addr[table + offsetof(Table, gclist)]);
callWrap.addArgument(SizeX64::qword, addr[table + offsetof(LuaTable, gclist)]);
callWrap.call(qword[rNativeContext + offsetof(NativeContext, luaC_barrierback)]);
}

View file

@ -292,7 +292,7 @@ void emitInstSetList(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int
Label skipResize;
// Resize if h->sizearray < last
build.cmp(dword[table + offsetof(Table, sizearray)], last);
build.cmp(dword[table + offsetof(LuaTable, sizearray)], last);
build.jcc(ConditionX64::NotBelow, skipResize);
// Argument setup reordered to avoid conflicts
@ -309,7 +309,7 @@ void emitInstSetList(IrRegAllocX64& regs, AssemblyBuilderX64& build, int ra, int
RegisterX64 arrayDst = rdx;
RegisterX64 offset = rcx;
build.mov(arrayDst, qword[table + offsetof(Table, array)]);
build.mov(arrayDst, qword[table + offsetof(LuaTable, array)]);
const int kUnrollSetListLimit = 4;
@ -380,7 +380,7 @@ void emitInstForGLoop(AssemblyBuilderX64& build, int ra, int aux, Label& loopRep
// &array[index]
build.mov(dwordReg(elemPtr), dwordReg(index));
build.shl(dwordReg(elemPtr), kTValueSizeLog2);
build.add(elemPtr, qword[table + offsetof(Table, array)]);
build.add(elemPtr, qword[table + offsetof(LuaTable, array)]);
// Clear extra variables since we might have more than two
for (int i = 2; i < aux; ++i)
@ -391,7 +391,7 @@ void emitInstForGLoop(AssemblyBuilderX64& build, int ra, int aux, Label& loopRep
// First we advance index through the array portion
// while (unsigned(index) < unsigned(sizearray))
Label arrayLoop = build.setLabel();
build.cmp(dwordReg(index), dword[table + offsetof(Table, sizearray)]);
build.cmp(dwordReg(index), dword[table + offsetof(LuaTable, sizearray)]);
build.jcc(ConditionX64::NotBelow, skipArray);
// If element is nil, we increment the index; if it's not, we still need 'index + 1' inside

View file

@ -4,6 +4,7 @@
#include "Luau/DenseHash.h"
#include "Luau/IrData.h"
#include "Luau/IrUtils.h"
#include "Luau/LoweringStats.h"
#include "EmitCommonA64.h"
#include "NativeState.h"
@ -330,7 +331,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
case IrCmd::GET_ARR_ADDR:
{
inst.regA64 = regs.allocReuse(KindA64::x, index, {inst.a});
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(Table, array)));
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(LuaTable, array)));
if (inst.b.kind == IrOpKind::Inst)
{
@ -376,11 +377,11 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
// C field can be shifted as long as it's at the most significant byte of the instruction word
CODEGEN_ASSERT(kOffsetOfInstructionC == 3);
build.ldrb(temp2, mem(regOp(inst.a), offsetof(Table, nodemask8)));
build.ldrb(temp2, mem(regOp(inst.a), offsetof(LuaTable, nodemask8)));
build.and_(temp2, temp2, temp1w, -24);
// note: this may clobber inst.a, so it's important that we don't use it after this
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(Table, node)));
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(LuaTable, node)));
build.add(inst.regA64, inst.regA64, temp2x, kLuaNodeSizeLog2); // "zero extend" temp2 to get a larger shift (top 32 bits are zero)
break;
}
@ -393,13 +394,13 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
// hash & ((1 << lsizenode) - 1) == hash & ~(-1 << lsizenode)
build.mov(temp1, -1);
build.ldrb(temp2, mem(regOp(inst.a), offsetof(Table, lsizenode)));
build.ldrb(temp2, mem(regOp(inst.a), offsetof(LuaTable, lsizenode)));
build.lsl(temp1, temp1, temp2);
build.mov(temp2, uintOp(inst.b));
build.bic(temp2, temp2, temp1);
// note: this may clobber inst.a, so it's important that we don't use it after this
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(Table, node)));
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(LuaTable, node)));
build.add(inst.regA64, inst.regA64, temp2x, kLuaNodeSizeLog2); // "zero extend" temp2 to get a larger shift (top 32 bits are zero)
break;
}
@ -1075,10 +1076,10 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::w);
build.ldr(temp1, mem(regOp(inst.a), offsetof(Table, metatable)));
build.ldr(temp1, mem(regOp(inst.a), offsetof(LuaTable, metatable)));
build.cbz(temp1, labelOp(inst.c)); // no metatable
build.ldrb(temp2, mem(temp1, offsetof(Table, tmcache)));
build.ldrb(temp2, mem(temp1, offsetof(LuaTable, tmcache)));
build.tst(temp2, 1 << intOp(inst.b)); // can't use tbz/tbnz because their jump offsets are too short
build.b(ConditionA64::NotEqual, labelOp(inst.c)); // Equal = Zero after tst; tmcache caches *absence* of metamethods
@ -1515,7 +1516,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldrb(temp, mem(regOp(inst.a), offsetof(Table, readonly)));
build.ldrb(temp, mem(regOp(inst.a), offsetof(LuaTable, readonly)));
build.cbnz(temp, getTargetLabel(inst.b, fresh));
finalizeTargetLabel(inst.b, fresh);
break;
@ -1524,7 +1525,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
RegisterA64 temp = regs.allocTemp(KindA64::x);
build.ldr(temp, mem(regOp(inst.a), offsetof(Table, metatable)));
build.ldr(temp, mem(regOp(inst.a), offsetof(LuaTable, metatable)));
build.cbnz(temp, getTargetLabel(inst.b, fresh));
finalizeTargetLabel(inst.b, fresh);
break;
@ -1535,7 +1536,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
RegisterA64 temp = regs.allocTemp(KindA64::x);
RegisterA64 tempw = castReg(KindA64::w, temp);
build.ldr(temp, mem(rClosure, offsetof(Closure, env)));
build.ldrb(tempw, mem(temp, offsetof(Table, safeenv)));
build.ldrb(tempw, mem(temp, offsetof(LuaTable, safeenv)));
build.cbz(tempw, getTargetLabel(inst.a, fresh));
finalizeTargetLabel(inst.a, fresh);
break;
@ -1546,7 +1547,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
Label& fail = getTargetLabel(inst.c, fresh);
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldr(temp, mem(regOp(inst.a), offsetof(Table, sizearray)));
build.ldr(temp, mem(regOp(inst.a), offsetof(LuaTable, sizearray)));
if (inst.b.kind == IrOpKind::Inst)
{
@ -1773,7 +1774,7 @@ void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
size_t spills = regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.add(x2, x1, uint16_t(offsetof(Table, gclist)));
build.add(x2, x1, uint16_t(offsetof(LuaTable, gclist)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barrierback)));
build.blr(x3);

View file

@ -4,6 +4,7 @@
#include "Luau/DenseHash.h"
#include "Luau/IrData.h"
#include "Luau/IrUtils.h"
#include "Luau/LoweringStats.h"
#include "Luau/IrCallWrapperX64.h"
@ -159,13 +160,13 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
build.mov(dwordReg(inst.regX64), regOp(inst.b));
build.shl(dwordReg(inst.regX64), kTValueSizeLog2);
build.add(inst.regX64, qword[regOp(inst.a) + offsetof(Table, array)]);
build.add(inst.regX64, qword[regOp(inst.a) + offsetof(LuaTable, array)]);
}
else if (inst.b.kind == IrOpKind::Constant)
{
inst.regX64 = regs.allocRegOrReuse(SizeX64::qword, index, {inst.a});
build.mov(inst.regX64, qword[regOp(inst.a) + offsetof(Table, array)]);
build.mov(inst.regX64, qword[regOp(inst.a) + offsetof(LuaTable, array)]);
if (intOp(inst.b) != 0)
build.lea(inst.regX64, addr[inst.regX64 + intOp(inst.b) * sizeof(TValue)]);
@ -193,9 +194,9 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
ScopedRegX64 tmp{regs, SizeX64::qword};
build.mov(inst.regX64, qword[regOp(inst.a) + offsetof(Table, node)]);
build.mov(inst.regX64, qword[regOp(inst.a) + offsetof(LuaTable, node)]);
build.mov(dwordReg(tmp.reg), 1);
build.mov(byteReg(shiftTmp.reg), byte[regOp(inst.a) + offsetof(Table, lsizenode)]);
build.mov(byteReg(shiftTmp.reg), byte[regOp(inst.a) + offsetof(LuaTable, lsizenode)]);
build.shl(dwordReg(tmp.reg), byteReg(shiftTmp.reg));
build.dec(dwordReg(tmp.reg));
build.and_(dwordReg(tmp.reg), uintOp(inst.b));
@ -954,13 +955,13 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
{
ScopedRegX64 tmp{regs, SizeX64::qword};
build.mov(tmp.reg, qword[regOp(inst.a) + offsetof(Table, metatable)]);
build.mov(tmp.reg, qword[regOp(inst.a) + offsetof(LuaTable, metatable)]);
regs.freeLastUseReg(function.instOp(inst.a), index); // Release before the call if it's the last use
build.test(tmp.reg, tmp.reg);
build.jcc(ConditionX64::Zero, labelOp(inst.c)); // No metatable
build.test(byte[tmp.reg + offsetof(Table, tmcache)], 1 << intOp(inst.b));
build.test(byte[tmp.reg + offsetof(LuaTable, tmcache)], 1 << intOp(inst.b));
build.jcc(ConditionX64::NotZero, labelOp(inst.c)); // No tag method
ScopedRegX64 tmp2{regs, SizeX64::qword};
@ -1320,11 +1321,11 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
break;
}
case IrCmd::CHECK_READONLY:
build.cmp(byte[regOp(inst.a) + offsetof(Table, readonly)], 0);
build.cmp(byte[regOp(inst.a) + offsetof(LuaTable, readonly)], 0);
jumpOrAbortOnUndef(ConditionX64::NotEqual, inst.b, next);
break;
case IrCmd::CHECK_NO_METATABLE:
build.cmp(qword[regOp(inst.a) + offsetof(Table, metatable)], 0);
build.cmp(qword[regOp(inst.a) + offsetof(LuaTable, metatable)], 0);
jumpOrAbortOnUndef(ConditionX64::NotEqual, inst.b, next);
break;
case IrCmd::CHECK_SAFE_ENV:
@ -1333,16 +1334,16 @@ void IrLoweringX64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
build.mov(tmp.reg, sClosure);
build.mov(tmp.reg, qword[tmp.reg + offsetof(Closure, env)]);
build.cmp(byte[tmp.reg + offsetof(Table, safeenv)], 0);
build.cmp(byte[tmp.reg + offsetof(LuaTable, safeenv)], 0);
jumpOrAbortOnUndef(ConditionX64::Equal, inst.a, next);
break;
}
case IrCmd::CHECK_ARRAY_SIZE:
if (inst.b.kind == IrOpKind::Inst)
build.cmp(dword[regOp(inst.a) + offsetof(Table, sizearray)], regOp(inst.b));
build.cmp(dword[regOp(inst.a) + offsetof(LuaTable, sizearray)], regOp(inst.b));
else if (inst.b.kind == IrOpKind::Constant)
build.cmp(dword[regOp(inst.a) + offsetof(Table, sizearray)], intOp(inst.b));
build.cmp(dword[regOp(inst.a) + offsetof(LuaTable, sizearray)], intOp(inst.b));
else
CODEGEN_ASSERT(!"Unsupported instruction form");

View file

@ -2,8 +2,8 @@
#include "IrRegAllocA64.h"
#include "Luau/AssemblyBuilderA64.h"
#include "Luau/CodeGen.h"
#include "Luau/IrUtils.h"
#include "Luau/LoweringStats.h"
#include "BitUtils.h"
#include "EmitCommonA64.h"

View file

@ -1,8 +1,8 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/IrRegAllocX64.h"
#include "Luau/CodeGen.h"
#include "Luau/IrUtils.h"
#include "Luau/LoweringStats.h"
#include "EmitCommonX64.h"

View file

@ -3,7 +3,7 @@
#include "Luau/Bytecode.h"
#include "Luau/BytecodeUtils.h"
#include "Luau/CodeGen.h"
#include "Luau/CodeGenOptions.h"
#include "Luau/IrBuilder.h"
#include "Luau/IrUtils.h"

View file

@ -1,6 +1,7 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/IrUtils.h"
#include "Luau/CodeGenOptions.h"
#include "Luau/IrBuilder.h"
#include "BitUtils.h"
@ -9,6 +10,9 @@
#include "lua.h"
#include "lnumutils.h"
#include <algorithm>
#include <vector>
#include <limits.h>
#include <math.h>

View file

@ -44,25 +44,25 @@ struct NativeContext
void (*luaV_dolen)(lua_State* L, StkId ra, const TValue* rb) = nullptr;
void (*luaV_gettable)(lua_State* L, const TValue* t, TValue* key, StkId val) = nullptr;
void (*luaV_settable)(lua_State* L, const TValue* t, TValue* key, StkId val) = nullptr;
void (*luaV_getimport)(lua_State* L, Table* env, TValue* k, StkId res, uint32_t id, bool propagatenil) = nullptr;
void (*luaV_getimport)(lua_State* L, LuaTable* env, TValue* k, StkId res, uint32_t id, bool propagatenil) = nullptr;
void (*luaV_concat)(lua_State* L, int total, int last) = nullptr;
int (*luaH_getn)(Table* t) = nullptr;
Table* (*luaH_new)(lua_State* L, int narray, int lnhash) = nullptr;
Table* (*luaH_clone)(lua_State* L, Table* tt) = nullptr;
void (*luaH_resizearray)(lua_State* L, Table* t, int nasize) = nullptr;
TValue* (*luaH_setnum)(lua_State* L, Table* t, int key);
int (*luaH_getn)(LuaTable* t) = nullptr;
LuaTable* (*luaH_new)(lua_State* L, int narray, int lnhash) = nullptr;
LuaTable* (*luaH_clone)(lua_State* L, LuaTable* tt) = nullptr;
void (*luaH_resizearray)(lua_State* L, LuaTable* t, int nasize) = nullptr;
TValue* (*luaH_setnum)(lua_State* L, LuaTable* t, int key);
void (*luaC_barriertable)(lua_State* L, Table* t, GCObject* v) = nullptr;
void (*luaC_barriertable)(lua_State* L, LuaTable* t, GCObject* v) = nullptr;
void (*luaC_barrierf)(lua_State* L, GCObject* o, GCObject* v) = nullptr;
void (*luaC_barrierback)(lua_State* L, GCObject* o, GCObject** gclist) = nullptr;
size_t (*luaC_step)(lua_State* L, bool assist) = nullptr;
void (*luaF_close)(lua_State* L, StkId level) = nullptr;
UpVal* (*luaF_findupval)(lua_State* L, StkId level) = nullptr;
Closure* (*luaF_newLclosure)(lua_State* L, int nelems, Table* e, Proto* p) = nullptr;
Closure* (*luaF_newLclosure)(lua_State* L, int nelems, LuaTable* e, Proto* p) = nullptr;
const TValue* (*luaT_gettm)(Table* events, TMS event, TString* ename) = nullptr;
const TValue* (*luaT_gettm)(LuaTable* events, TMS event, TString* ename) = nullptr;
const TString* (*luaT_objtypenamestr)(lua_State* L, const TValue* o) = nullptr;
double (*libm_exp)(double) = nullptr;
@ -87,8 +87,8 @@ struct NativeContext
double (*libm_modf)(double, double*) = nullptr;
// Helper functions
bool (*forgLoopTableIter)(lua_State* L, Table* h, int index, TValue* ra) = nullptr;
bool (*forgLoopNodeIter)(lua_State* L, Table* h, int index, TValue* ra) = nullptr;
bool (*forgLoopTableIter)(lua_State* L, LuaTable* h, int index, TValue* ra) = nullptr;
bool (*forgLoopNodeIter)(lua_State* L, LuaTable* h, int index, TValue* ra) = nullptr;
bool (*forgLoopNonTableFallback)(lua_State* L, int insnA, int aux) = nullptr;
void (*forgPrepXnextFallback)(lua_State* L, TValue* ra, int pc) = nullptr;
Closure* (*callProlog)(lua_State* L, TValue* ra, StkId argtop, int nresults) = nullptr;

View file

@ -78,6 +78,7 @@ target_sources(Luau.CodeGen PRIVATE
CodeGen/include/Luau/CodeBlockUnwind.h
CodeGen/include/Luau/CodeGen.h
CodeGen/include/Luau/CodeGenCommon.h
CodeGen/include/Luau/CodeGenOptions.h
CodeGen/include/Luau/ConditionA64.h
CodeGen/include/Luau/ConditionX64.h
CodeGen/include/Luau/IrAnalysis.h
@ -89,6 +90,7 @@ target_sources(Luau.CodeGen PRIVATE
CodeGen/include/Luau/IrUtils.h
CodeGen/include/Luau/IrVisitUseDef.h
CodeGen/include/Luau/Label.h
CodeGen/include/Luau/LoweringStats.h
CodeGen/include/Luau/NativeProtoExecData.h
CodeGen/include/Luau/OperandX64.h
CodeGen/include/Luau/OptimizeConstProp.h

View file

@ -64,7 +64,7 @@ const char* luau_ident = "$Luau: Copyright (C) 2019-2024 Roblox Corporation $\n"
ts->atom = L->global->cb.useratom ? L->global->cb.useratom(ts->data, ts->len) : -1; \
}
static Table* getcurrenv(lua_State* L)
static LuaTable* getcurrenv(lua_State* L)
{
if (L->ci == L->base_ci) // no enclosing function?
return L->gt; // use global table as environment
@ -762,7 +762,7 @@ void lua_setreadonly(lua_State* L, int objindex, int enabled)
{
const TValue* o = index2addr(L, objindex);
api_check(L, ttistable(o));
Table* t = hvalue(o);
LuaTable* t = hvalue(o);
api_check(L, t != hvalue(registry(L)));
t->readonly = bool(enabled);
}
@ -771,7 +771,7 @@ int lua_getreadonly(lua_State* L, int objindex)
{
const TValue* o = index2addr(L, objindex);
api_check(L, ttistable(o));
Table* t = hvalue(o);
LuaTable* t = hvalue(o);
int res = t->readonly;
return res;
}
@ -780,14 +780,14 @@ void lua_setsafeenv(lua_State* L, int objindex, int enabled)
{
const TValue* o = index2addr(L, objindex);
api_check(L, ttistable(o));
Table* t = hvalue(o);
LuaTable* t = hvalue(o);
t->safeenv = bool(enabled);
}
int lua_getmetatable(lua_State* L, int objindex)
{
luaC_threadbarrier(L);
Table* mt = NULL;
LuaTable* mt = NULL;
const TValue* obj = index2addr(L, objindex);
switch (ttype(obj))
{
@ -894,7 +894,7 @@ int lua_setmetatable(lua_State* L, int objindex)
api_checknelems(L, 1);
TValue* obj = index2addr(L, objindex);
api_checkvalidindex(L, obj);
Table* mt = NULL;
LuaTable* mt = NULL;
if (!ttisnil(L->top - 1))
{
api_check(L, ttistable(L->top - 1));
@ -1214,7 +1214,7 @@ int lua_rawiter(lua_State* L, int idx, int iter)
api_check(L, ttistable(t));
api_check(L, iter >= 0);
Table* h = hvalue(t);
LuaTable* h = hvalue(t);
int sizearray = h->sizearray;
// first we advance iter through the array portion
@ -1293,7 +1293,7 @@ void* lua_newuserdatataggedwithmetatable(lua_State* L, size_t sz, int tag)
// currently, we always allocate unmarked objects, so forward barrier can be skipped
LUAU_ASSERT(!isblack(obj2gco(u)));
Table* h = L->global->udatamt[tag];
LuaTable* h = L->global->udatamt[tag];
api_check(L, h != nullptr);
u->metatable = h;
@ -1394,7 +1394,7 @@ int lua_ref(lua_State* L, int idx)
StkId p = index2addr(L, idx);
if (!ttisnil(p))
{
Table* reg = hvalue(registry(L));
LuaTable* reg = hvalue(registry(L));
if (g->registryfree != 0)
{ // reuse existing slot
@ -1421,7 +1421,7 @@ void lua_unref(lua_State* L, int ref)
return;
global_State* g = L->global;
Table* reg = hvalue(registry(L));
LuaTable* reg = hvalue(registry(L));
TValue* slot = luaH_setnum(L, reg, ref);
setnvalue(slot, g->registryfree); // NB: no barrier needed because value isn't collectable
g->registryfree = ref;
@ -1462,7 +1462,7 @@ void lua_getuserdatametatable(lua_State* L, int tag)
api_check(L, unsigned(tag) < LUA_UTAG_LIMIT);
luaC_threadbarrier(L);
if (Table* h = L->global->udatamt[tag])
if (LuaTable* h = L->global->udatamt[tag])
{
sethvalue(L, L->top, h);
}
@ -1510,7 +1510,7 @@ void lua_cleartable(lua_State* L, int idx)
{
StkId t = index2addr(L, idx);
api_check(L, ttistable(t));
Table* tt = hvalue(t);
LuaTable* tt = hvalue(t);
if (tt->readonly)
luaG_readonlyerror(L);
luaH_clear(tt);

View file

@ -10,7 +10,7 @@
#include <string.h>
LUAU_FASTFLAGVARIABLE(LuauBufferBitMethods)
LUAU_FASTFLAGVARIABLE(LuauBufferBitMethods2)
// while C API returns 'size_t' for binary compatibility in case of future extensions,
// in the current implementation, length and offset are limited to 31 bits
@ -370,7 +370,7 @@ static const luaL_Reg bufferlib[] = {
int luaopen_buffer(lua_State* L)
{
luaL_register(L, LUA_BUFFERLIBNAME, FFlag::LuauBufferBitMethods ? bufferlib : bufferlib_DEPRECATED);
luaL_register(L, LUA_BUFFERLIBNAME, FFlag::LuauBufferBitMethods2 ? bufferlib : bufferlib_DEPRECATED);
return 1;
}

View file

@ -1000,7 +1000,7 @@ static int luauF_rawset(lua_State* L, StkId res, TValue* arg0, int nresults, Stk
else if (ttisvector(key) && luai_vecisnan(vvalue(key)))
return -1;
Table* t = hvalue(arg0);
LuaTable* t = hvalue(arg0);
if (t->readonly)
return -1;
@ -1017,7 +1017,7 @@ static int luauF_tinsert(lua_State* L, StkId res, TValue* arg0, int nresults, St
{
if (nparams == 2 && nresults <= 0 && ttistable(arg0))
{
Table* t = hvalue(arg0);
LuaTable* t = hvalue(arg0);
if (t->readonly)
return -1;
@ -1034,7 +1034,7 @@ static int luauF_tunpack(lua_State* L, StkId res, TValue* arg0, int nresults, St
{
if (nparams >= 1 && nresults < 0 && ttistable(arg0))
{
Table* t = hvalue(arg0);
LuaTable* t = hvalue(arg0);
int n = -1;
if (nparams == 1)
@ -1196,7 +1196,7 @@ static int luauF_rawlen(lua_State* L, StkId res, TValue* arg0, int nresults, Stk
{
if (ttistable(arg0))
{
Table* h = hvalue(arg0);
LuaTable* h = hvalue(arg0);
setnvalue(res, double(luaH_getn(h)));
return 1;
}
@ -1240,7 +1240,7 @@ static int luauF_getmetatable(lua_State* L, StkId res, TValue* arg0, int nresult
{
if (nparams >= 1 && nresults <= 1)
{
Table* mt = NULL;
LuaTable* mt = NULL;
if (ttistable(arg0))
mt = hvalue(arg0)->metatable;
else if (ttisuserdata(arg0))
@ -1275,11 +1275,11 @@ static int luauF_setmetatable(lua_State* L, StkId res, TValue* arg0, int nresult
// note: setmetatable(_, nil) is rare so we use fallback for it to optimize the fast path
if (nparams >= 2 && nresults <= 1 && ttistable(arg0) && ttistable(args))
{
Table* t = hvalue(arg0);
LuaTable* t = hvalue(arg0);
if (t->readonly || t->metatable != NULL)
return -1; // note: overwriting non-null metatable is very rare but it requires __metatable check
Table* mt = hvalue(args);
LuaTable* mt = hvalue(args);
t->metatable = mt;
luaC_objbarrier(L, t, mt);

View file

@ -55,7 +55,7 @@ Proto* luaF_newproto(lua_State* L)
return f;
}
Closure* luaF_newLclosure(lua_State* L, int nelems, Table* e, Proto* p)
Closure* luaF_newLclosure(lua_State* L, int nelems, LuaTable* e, Proto* p)
{
Closure* c = luaM_newgco(L, Closure, sizeLclosure(nelems), L->activememcat);
luaC_init(L, c, LUA_TFUNCTION);
@ -70,7 +70,7 @@ Closure* luaF_newLclosure(lua_State* L, int nelems, Table* e, Proto* p)
return c;
}
Closure* luaF_newCclosure(lua_State* L, int nelems, Table* e)
Closure* luaF_newCclosure(lua_State* L, int nelems, LuaTable* e)
{
Closure* c = luaM_newgco(L, Closure, sizeCclosure(nelems), L->activememcat);
luaC_init(L, c, LUA_TFUNCTION);

View file

@ -8,8 +8,8 @@
#define sizeLclosure(n) (offsetof(Closure, l.uprefs) + sizeof(TValue) * (n))
LUAI_FUNC Proto* luaF_newproto(lua_State* L);
LUAI_FUNC Closure* luaF_newLclosure(lua_State* L, int nelems, Table* e, Proto* p);
LUAI_FUNC Closure* luaF_newCclosure(lua_State* L, int nelems, Table* e);
LUAI_FUNC Closure* luaF_newLclosure(lua_State* L, int nelems, LuaTable* e, Proto* p);
LUAI_FUNC Closure* luaF_newCclosure(lua_State* L, int nelems, LuaTable* e);
LUAI_FUNC UpVal* luaF_findupval(lua_State* L, StkId level);
LUAI_FUNC void luaF_close(lua_State* L, StkId level);
LUAI_FUNC void luaF_closeupval(lua_State* L, UpVal* uv, bool dead);

View file

@ -244,7 +244,7 @@ static void reallymarkobject(global_State* g, GCObject* o)
}
case LUA_TUSERDATA:
{
Table* mt = gco2u(o)->metatable;
LuaTable* mt = gco2u(o)->metatable;
gray2black(o); // udata are never gray
if (mt)
markobject(g, mt);
@ -292,7 +292,7 @@ static void reallymarkobject(global_State* g, GCObject* o)
}
}
static const char* gettablemode(global_State* g, Table* h)
static const char* gettablemode(global_State* g, LuaTable* h)
{
const TValue* mode = gfasttm(g, h->metatable, TM_MODE);
@ -302,13 +302,13 @@ static const char* gettablemode(global_State* g, Table* h)
return NULL;
}
static int traversetable(global_State* g, Table* h)
static int traversetable(global_State* g, LuaTable* h)
{
int i;
int weakkey = 0;
int weakvalue = 0;
if (h->metatable)
markobject(g, cast_to(Table*, h->metatable));
markobject(g, cast_to(LuaTable*, h->metatable));
// is there a weak mode?
if (const char* modev = gettablemode(g, h))
@ -459,11 +459,11 @@ static size_t propagatemark(global_State* g)
{
case LUA_TTABLE:
{
Table* h = gco2h(o);
LuaTable* h = gco2h(o);
g->gray = h->gclist;
if (traversetable(g, h)) // table is weak?
black2gray(o); // keep it gray
return sizeof(Table) + sizeof(TValue) * h->sizearray + sizeof(LuaNode) * sizenode(h);
return sizeof(LuaTable) + sizeof(TValue) * h->sizearray + sizeof(LuaNode) * sizenode(h);
}
case LUA_TFUNCTION:
{
@ -553,8 +553,8 @@ static size_t cleartable(lua_State* L, GCObject* l)
size_t work = 0;
while (l)
{
Table* h = gco2h(l);
work += sizeof(Table) + sizeof(TValue) * h->sizearray + sizeof(LuaNode) * sizenode(h);
LuaTable* h = gco2h(l);
work += sizeof(LuaTable) + sizeof(TValue) * h->sizearray + sizeof(LuaNode) * sizenode(h);
int i = h->sizearray;
while (i--)
@ -1155,7 +1155,7 @@ void luaC_barrierf(lua_State* L, GCObject* o, GCObject* v)
makewhite(g, o); // mark as white just to avoid other barriers
}
void luaC_barriertable(lua_State* L, Table* t, GCObject* v)
void luaC_barriertable(lua_State* L, LuaTable* t, GCObject* v)
{
global_State* g = L->global;
GCObject* o = obj2gco(t);

View file

@ -131,7 +131,7 @@ LUAI_FUNC void luaC_fullgc(lua_State* L);
LUAI_FUNC void luaC_initobj(lua_State* L, GCObject* o, uint8_t tt);
LUAI_FUNC void luaC_upvalclosed(lua_State* L, UpVal* uv);
LUAI_FUNC void luaC_barrierf(lua_State* L, GCObject* o, GCObject* v);
LUAI_FUNC void luaC_barriertable(lua_State* L, Table* t, GCObject* v);
LUAI_FUNC void luaC_barriertable(lua_State* L, LuaTable* t, GCObject* v);
LUAI_FUNC void luaC_barrierback(lua_State* L, GCObject* o, GCObject** gclist);
LUAI_FUNC void luaC_validate(lua_State* L);
LUAI_FUNC void luaC_dump(lua_State* L, void* file, const char* (*categoryName)(lua_State* L, uint8_t memcat));

View file

@ -34,7 +34,7 @@ static void validateref(global_State* g, GCObject* f, TValue* v)
}
}
static void validatetable(global_State* g, Table* h)
static void validatetable(global_State* g, LuaTable* h)
{
int sizenode = 1 << h->lsizenode;
@ -290,9 +290,9 @@ static void dumpstring(FILE* f, TString* ts)
fprintf(f, "\"}");
}
static void dumptable(FILE* f, Table* h)
static void dumptable(FILE* f, LuaTable* h)
{
size_t size = sizeof(Table) + (h->node == &luaH_dummynode ? 0 : sizenode(h) * sizeof(LuaNode)) + h->sizearray * sizeof(TValue);
size_t size = sizeof(LuaTable) + (h->node == &luaH_dummynode ? 0 : sizenode(h) * sizeof(LuaNode)) + h->sizearray * sizeof(TValue);
fprintf(f, "{\"type\":\"table\",\"cat\":%d,\"size\":%d", h->memcat, int(size));
@ -654,9 +654,9 @@ static void enumstring(EnumContext* ctx, TString* ts)
enumnode(ctx, obj2gco(ts), ts->len, NULL);
}
static void enumtable(EnumContext* ctx, Table* h)
static void enumtable(EnumContext* ctx, LuaTable* h)
{
size_t size = sizeof(Table) + (h->node == &luaH_dummynode ? 0 : sizenode(h) * sizeof(LuaNode)) + h->sizearray * sizeof(TValue);
size_t size = sizeof(LuaTable) + (h->node == &luaH_dummynode ? 0 : sizenode(h) * sizeof(LuaNode)) + h->sizearray * sizeof(TValue);
// Provide a name for a special registry table
enumnode(ctx, obj2gco(h), size, h == hvalue(registry(ctx->L)) ? "registry" : NULL);
@ -754,7 +754,7 @@ static void enumudata(EnumContext* ctx, Udata* u)
{
const char* name = NULL;
if (Table* h = u->metatable)
if (LuaTable* h = u->metatable)
{
if (h->node != &luaH_dummynode)
{

View file

@ -121,7 +121,7 @@ static_assert(sizeof(LuaNode) == ABISWITCH(32, 32, 32), "size mismatch for table
static_assert(offsetof(TString, data) == ABISWITCH(24, 20, 20), "size mismatch for string header");
static_assert(offsetof(Udata, data) == ABISWITCH(16, 16, 12), "size mismatch for userdata header");
static_assert(sizeof(Table) == ABISWITCH(48, 32, 32), "size mismatch for table header");
static_assert(sizeof(LuaTable) == ABISWITCH(48, 32, 32), "size mismatch for table header");
static_assert(offsetof(Buffer, data) == ABISWITCH(8, 8, 8), "size mismatch for buffer header");
const size_t kSizeClasses = LUA_SIZECLASSES;

View file

@ -263,7 +263,7 @@ typedef struct Udata
int len;
struct Table* metatable;
struct LuaTable* metatable;
union
{
@ -390,7 +390,7 @@ typedef struct Closure
uint8_t preload;
GCObject* gclist;
struct Table* env;
struct LuaTable* env;
union
{
@ -454,7 +454,7 @@ typedef struct LuaNode
}
// clang-format off
typedef struct Table
typedef struct LuaTable
{
CommonHeader;
@ -473,11 +473,11 @@ typedef struct Table
};
struct Table* metatable;
struct LuaTable* metatable;
TValue* array; // array part
LuaNode* node;
GCObject* gclist;
} Table;
} LuaTable;
// clang-format on
/*

View file

@ -198,7 +198,7 @@ typedef struct global_State
struct lua_State* mainthread;
UpVal uvhead; // head of double-linked list of all open upvalues
struct Table* mt[LUA_T_COUNT]; // metatables for basic types
struct LuaTable* mt[LUA_T_COUNT]; // metatables for basic types
TString* ttname[LUA_T_COUNT]; // names for basic types
TString* tmname[TM_N]; // array with tag-method names
@ -217,7 +217,7 @@ typedef struct global_State
lua_ExecutionCallbacks ecb;
void (*udatagc[LUA_UTAG_LIMIT])(lua_State*, void*); // for each userdata tag, a gc callback to be called immediately before freeing memory
Table* udatamt[LUA_UTAG_LIMIT]; // metatables for tagged userdata
LuaTable* udatamt[LUA_UTAG_LIMIT]; // metatables for tagged userdata
TString* lightuserdataname[LUA_LUTAG_LIMIT]; // names for tagged lightuserdata
@ -266,7 +266,7 @@ struct lua_State
int cachedslot; // when table operations or INDEX/NEWINDEX is invoked from Luau, what is the expected slot for lookup?
Table* gt; // table of globals
LuaTable* gt; // table of globals
UpVal* openupval; // list of open upvalues in this stack
GCObject* gclist;
@ -285,7 +285,7 @@ union GCObject
struct TString ts;
struct Udata u;
struct Closure cl;
struct Table h;
struct LuaTable h;
struct Proto p;
struct UpVal uv;
struct lua_State th; // thread

View file

@ -58,7 +58,7 @@ const LuaNode luaH_dummynode = {
#define hashstr(t, str) hashpow2(t, (str)->hash)
#define hashboolean(t, p) hashpow2(t, p)
static LuaNode* hashpointer(const Table* t, const void* p)
static LuaNode* hashpointer(const LuaTable* t, const void* p)
{
// we discard the high 32-bit portion of the pointer on 64-bit platforms as it doesn't carry much entropy anyway
unsigned int h = unsigned(uintptr_t(p));
@ -73,7 +73,7 @@ static LuaNode* hashpointer(const Table* t, const void* p)
return hashpow2(t, h);
}
static LuaNode* hashnum(const Table* t, double n)
static LuaNode* hashnum(const LuaTable* t, double n)
{
static_assert(sizeof(double) == sizeof(unsigned int) * 2, "expected a 8-byte double");
unsigned int i[2];
@ -99,7 +99,7 @@ static LuaNode* hashnum(const Table* t, double n)
return hashpow2(t, h2);
}
static LuaNode* hashvec(const Table* t, const float* v)
static LuaNode* hashvec(const LuaTable* t, const float* v)
{
unsigned int i[LUA_VECTOR_SIZE];
memcpy(i, v, sizeof(i));
@ -130,7 +130,7 @@ static LuaNode* hashvec(const Table* t, const float* v)
** returns the `main' position of an element in a table (that is, the index
** of its hash value)
*/
static LuaNode* mainposition(const Table* t, const TValue* key)
static LuaNode* mainposition(const LuaTable* t, const TValue* key)
{
switch (ttype(key))
{
@ -166,7 +166,7 @@ static int arrayindex(double key)
** elements in the array part, then elements in the hash part. The
** beginning of a traversal is signalled by -1.
*/
static int findindex(lua_State* L, Table* t, StkId key)
static int findindex(lua_State* L, LuaTable* t, StkId key)
{
int i;
if (ttisnil(key))
@ -194,7 +194,7 @@ static int findindex(lua_State* L, Table* t, StkId key)
}
}
int luaH_next(lua_State* L, Table* t, StkId key)
int luaH_next(lua_State* L, LuaTable* t, StkId key)
{
int i = findindex(L, t, key); // find original element
for (i++; i < t->sizearray; i++)
@ -270,7 +270,7 @@ static int countint(double key, int* nums)
return 0;
}
static int numusearray(const Table* t, int* nums)
static int numusearray(const LuaTable* t, int* nums)
{
int lg;
int ttlg; // 2^lg
@ -298,7 +298,7 @@ static int numusearray(const Table* t, int* nums)
return ause;
}
static int numusehash(const Table* t, int* nums, int* pnasize)
static int numusehash(const LuaTable* t, int* nums, int* pnasize)
{
int totaluse = 0; // total number of elements
int ause = 0; // summation of `nums'
@ -317,7 +317,7 @@ static int numusehash(const Table* t, int* nums, int* pnasize)
return totaluse;
}
static void setarrayvector(lua_State* L, Table* t, int size)
static void setarrayvector(lua_State* L, LuaTable* t, int size)
{
if (size > MAXSIZE)
luaG_runerror(L, "table overflow");
@ -328,7 +328,7 @@ static void setarrayvector(lua_State* L, Table* t, int size)
t->sizearray = size;
}
static void setnodevector(lua_State* L, Table* t, int size)
static void setnodevector(lua_State* L, LuaTable* t, int size)
{
int lsize;
if (size == 0)
@ -357,9 +357,9 @@ static void setnodevector(lua_State* L, Table* t, int size)
t->lastfree = size; // all positions are free
}
static TValue* newkey(lua_State* L, Table* t, const TValue* key);
static TValue* newkey(lua_State* L, LuaTable* t, const TValue* key);
static TValue* arrayornewkey(lua_State* L, Table* t, const TValue* key)
static TValue* arrayornewkey(lua_State* L, LuaTable* t, const TValue* key)
{
if (ttisnumber(key))
{
@ -373,7 +373,7 @@ static TValue* arrayornewkey(lua_State* L, Table* t, const TValue* key)
return newkey(L, t, key);
}
static void resize(lua_State* L, Table* t, int nasize, int nhsize)
static void resize(lua_State* L, LuaTable* t, int nasize, int nhsize)
{
if (nasize > MAXSIZE || nhsize > MAXSIZE)
luaG_runerror(L, "table overflow");
@ -424,7 +424,7 @@ static void resize(lua_State* L, Table* t, int nasize, int nhsize)
luaM_freearray(L, nold, twoto(oldhsize), LuaNode, t->memcat); // free old array
}
static int adjustasize(Table* t, int size, const TValue* ek)
static int adjustasize(LuaTable* t, int size, const TValue* ek)
{
bool tbound = t->node != dummynode || size < t->sizearray;
int ekindex = ek && ttisnumber(ek) ? arrayindex(nvalue(ek)) : -1;
@ -434,19 +434,19 @@ static int adjustasize(Table* t, int size, const TValue* ek)
return size;
}
void luaH_resizearray(lua_State* L, Table* t, int nasize)
void luaH_resizearray(lua_State* L, LuaTable* t, int nasize)
{
int nsize = (t->node == dummynode) ? 0 : sizenode(t);
int asize = adjustasize(t, nasize, NULL);
resize(L, t, asize, nsize);
}
void luaH_resizehash(lua_State* L, Table* t, int nhsize)
void luaH_resizehash(lua_State* L, LuaTable* t, int nhsize)
{
resize(L, t, t->sizearray, nhsize);
}
static void rehash(lua_State* L, Table* t, const TValue* ek)
static void rehash(lua_State* L, LuaTable* t, const TValue* ek)
{
int nums[MAXBITS + 1]; // nums[i] = number of keys between 2^(i-1) and 2^i
for (int i = 0; i <= MAXBITS; i++)
@ -491,9 +491,9 @@ static void rehash(lua_State* L, Table* t, const TValue* ek)
** }=============================================================
*/
Table* luaH_new(lua_State* L, int narray, int nhash)
LuaTable* luaH_new(lua_State* L, int narray, int nhash)
{
Table* t = luaM_newgco(L, Table, sizeof(Table), L->activememcat);
LuaTable* t = luaM_newgco(L, LuaTable, sizeof(LuaTable), L->activememcat);
luaC_init(L, t, LUA_TTABLE);
t->metatable = NULL;
t->tmcache = cast_byte(~0);
@ -512,16 +512,16 @@ Table* luaH_new(lua_State* L, int narray, int nhash)
return t;
}
void luaH_free(lua_State* L, Table* t, lua_Page* page)
void luaH_free(lua_State* L, LuaTable* t, lua_Page* page)
{
if (t->node != dummynode)
luaM_freearray(L, t->node, sizenode(t), LuaNode, t->memcat);
if (t->array)
luaM_freearray(L, t->array, t->sizearray, TValue, t->memcat);
luaM_freegco(L, t, sizeof(Table), t->memcat, page);
luaM_freegco(L, t, sizeof(LuaTable), t->memcat, page);
}
static LuaNode* getfreepos(Table* t)
static LuaNode* getfreepos(LuaTable* t)
{
while (t->lastfree > 0)
{
@ -541,7 +541,7 @@ static LuaNode* getfreepos(Table* t)
** put new key in its main position; otherwise (colliding node is in its main
** position), new key goes to an empty position.
*/
static TValue* newkey(lua_State* L, Table* t, const TValue* key)
static TValue* newkey(lua_State* L, LuaTable* t, const TValue* key)
{
// enforce boundary invariant
if (ttisnumber(key) && nvalue(key) == t->sizearray + 1)
@ -601,7 +601,7 @@ static TValue* newkey(lua_State* L, Table* t, const TValue* key)
/*
** search function for integers
*/
const TValue* luaH_getnum(Table* t, int key)
const TValue* luaH_getnum(LuaTable* t, int key)
{
// (1 <= key && key <= t->sizearray)
if (cast_to(unsigned int, key - 1) < cast_to(unsigned int, t->sizearray))
@ -627,7 +627,7 @@ const TValue* luaH_getnum(Table* t, int key)
/*
** search function for strings
*/
const TValue* luaH_getstr(Table* t, TString* key)
const TValue* luaH_getstr(LuaTable* t, TString* key)
{
LuaNode* n = hashstr(t, key);
for (;;)
@ -644,7 +644,7 @@ const TValue* luaH_getstr(Table* t, TString* key)
/*
** main search function
*/
const TValue* luaH_get(Table* t, const TValue* key)
const TValue* luaH_get(LuaTable* t, const TValue* key)
{
switch (ttype(key))
{
@ -677,7 +677,7 @@ const TValue* luaH_get(Table* t, const TValue* key)
}
}
TValue* luaH_set(lua_State* L, Table* t, const TValue* key)
TValue* luaH_set(lua_State* L, LuaTable* t, const TValue* key)
{
const TValue* p = luaH_get(t, key);
invalidateTMcache(t);
@ -687,7 +687,7 @@ TValue* luaH_set(lua_State* L, Table* t, const TValue* key)
return luaH_newkey(L, t, key);
}
TValue* luaH_newkey(lua_State* L, Table* t, const TValue* key)
TValue* luaH_newkey(lua_State* L, LuaTable* t, const TValue* key)
{
if (ttisnil(key))
luaG_runerror(L, "table index is nil");
@ -698,7 +698,7 @@ TValue* luaH_newkey(lua_State* L, Table* t, const TValue* key)
return newkey(L, t, key);
}
TValue* luaH_setnum(lua_State* L, Table* t, int key)
TValue* luaH_setnum(lua_State* L, LuaTable* t, int key)
{
// (1 <= key && key <= t->sizearray)
if (cast_to(unsigned int, key - 1) < cast_to(unsigned int, t->sizearray))
@ -715,7 +715,7 @@ TValue* luaH_setnum(lua_State* L, Table* t, int key)
}
}
TValue* luaH_setstr(lua_State* L, Table* t, TString* key)
TValue* luaH_setstr(lua_State* L, LuaTable* t, TString* key)
{
const TValue* p = luaH_getstr(t, key);
invalidateTMcache(t);
@ -729,7 +729,7 @@ TValue* luaH_setstr(lua_State* L, Table* t, TString* key)
}
}
static int updateaboundary(Table* t, int boundary)
static int updateaboundary(LuaTable* t, int boundary)
{
if (boundary < t->sizearray && ttisnil(&t->array[boundary - 1]))
{
@ -752,7 +752,7 @@ static int updateaboundary(Table* t, int boundary)
** Try to find a boundary in table `t'. A `boundary' is an integer index
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
*/
int luaH_getn(Table* t)
int luaH_getn(LuaTable* t)
{
int boundary = getaboundary(t);
@ -793,9 +793,9 @@ int luaH_getn(Table* t)
}
}
Table* luaH_clone(lua_State* L, Table* tt)
LuaTable* luaH_clone(lua_State* L, LuaTable* tt)
{
Table* t = luaM_newgco(L, Table, sizeof(Table), L->activememcat);
LuaTable* t = luaM_newgco(L, LuaTable, sizeof(LuaTable), L->activememcat);
luaC_init(L, t, LUA_TTABLE);
t->metatable = tt->metatable;
t->tmcache = tt->tmcache;
@ -830,7 +830,7 @@ Table* luaH_clone(lua_State* L, Table* tt)
return t;
}
void luaH_clear(Table* tt)
void luaH_clear(LuaTable* tt)
{
// clear array part
for (int i = 0; i < tt->sizearray; ++i)

View file

@ -14,21 +14,21 @@
// reset cache of absent metamethods, cache is updated in luaT_gettm
#define invalidateTMcache(t) t->tmcache = 0
LUAI_FUNC const TValue* luaH_getnum(Table* t, int key);
LUAI_FUNC TValue* luaH_setnum(lua_State* L, Table* t, int key);
LUAI_FUNC const TValue* luaH_getstr(Table* t, TString* key);
LUAI_FUNC TValue* luaH_setstr(lua_State* L, Table* t, TString* key);
LUAI_FUNC const TValue* luaH_get(Table* t, const TValue* key);
LUAI_FUNC TValue* luaH_set(lua_State* L, Table* t, const TValue* key);
LUAI_FUNC TValue* luaH_newkey(lua_State* L, Table* t, const TValue* key);
LUAI_FUNC Table* luaH_new(lua_State* L, int narray, int lnhash);
LUAI_FUNC void luaH_resizearray(lua_State* L, Table* t, int nasize);
LUAI_FUNC void luaH_resizehash(lua_State* L, Table* t, int nhsize);
LUAI_FUNC void luaH_free(lua_State* L, Table* t, struct lua_Page* page);
LUAI_FUNC int luaH_next(lua_State* L, Table* t, StkId key);
LUAI_FUNC int luaH_getn(Table* t);
LUAI_FUNC Table* luaH_clone(lua_State* L, Table* tt);
LUAI_FUNC void luaH_clear(Table* tt);
LUAI_FUNC const TValue* luaH_getnum(LuaTable* t, int key);
LUAI_FUNC TValue* luaH_setnum(lua_State* L, LuaTable* t, int key);
LUAI_FUNC const TValue* luaH_getstr(LuaTable* t, TString* key);
LUAI_FUNC TValue* luaH_setstr(lua_State* L, LuaTable* t, TString* key);
LUAI_FUNC const TValue* luaH_get(LuaTable* t, const TValue* key);
LUAI_FUNC TValue* luaH_set(lua_State* L, LuaTable* t, const TValue* key);
LUAI_FUNC TValue* luaH_newkey(lua_State* L, LuaTable* t, const TValue* key);
LUAI_FUNC LuaTable* luaH_new(lua_State* L, int narray, int lnhash);
LUAI_FUNC void luaH_resizearray(lua_State* L, LuaTable* t, int nasize);
LUAI_FUNC void luaH_resizehash(lua_State* L, LuaTable* t, int nhsize);
LUAI_FUNC void luaH_free(lua_State* L, LuaTable* t, struct lua_Page* page);
LUAI_FUNC int luaH_next(lua_State* L, LuaTable* t, StkId key);
LUAI_FUNC int luaH_getn(LuaTable* t);
LUAI_FUNC LuaTable* luaH_clone(lua_State* L, LuaTable* tt);
LUAI_FUNC void luaH_clear(LuaTable* tt);
#define luaH_setslot(L, t, slot, key) (invalidateTMcache(t), (slot == luaO_nilobject ? luaH_newkey(L, t, key) : cast_to(TValue*, slot)))

View file

@ -53,7 +53,7 @@ static int maxn(lua_State* L)
double max = 0;
luaL_checktype(L, 1, LUA_TTABLE);
Table* t = hvalue(L->base);
LuaTable* t = hvalue(L->base);
for (int i = 0; i < t->sizearray; i++)
{
@ -87,8 +87,8 @@ static int getn(lua_State* L)
static void moveelements(lua_State* L, int srct, int dstt, int f, int e, int t)
{
Table* src = hvalue(L->base + (srct - 1));
Table* dst = hvalue(L->base + (dstt - 1));
LuaTable* src = hvalue(L->base + (srct - 1));
LuaTable* dst = hvalue(L->base + (dstt - 1));
if (dst->readonly)
luaG_readonlyerror(L);
@ -213,7 +213,7 @@ static int tmove(lua_State* L)
int n = e - f + 1; // number of elements to move
luaL_argcheck(L, t <= INT_MAX - n + 1, 4, "destination wrap around");
Table* dst = hvalue(L->base + (tt - 1));
LuaTable* dst = hvalue(L->base + (tt - 1));
if (dst->readonly) // also checked in moveelements, but this blocks resizes of r/o tables
luaG_readonlyerror(L);
@ -229,7 +229,7 @@ static int tmove(lua_State* L)
return 1;
}
static void addfield(lua_State* L, luaL_Strbuf* b, int i, Table* t)
static void addfield(lua_State* L, luaL_Strbuf* b, int i, LuaTable* t)
{
if (t && unsigned(i - 1) < unsigned(t->sizearray) && ttisstring(&t->array[i - 1]))
{
@ -253,7 +253,7 @@ static int tconcat(lua_State* L)
int i = luaL_optinteger(L, 3, 1);
int last = luaL_opt(L, luaL_checkinteger, 4, lua_objlen(L, 1));
Table* t = hvalue(L->base);
LuaTable* t = hvalue(L->base);
luaL_Strbuf b;
luaL_buffinit(L, &b);
@ -274,7 +274,7 @@ static int tpack(lua_State* L)
int n = lua_gettop(L); // number of elements to pack
lua_createtable(L, n, 1); // create result table
Table* t = hvalue(L->top - 1);
LuaTable* t = hvalue(L->top - 1);
for (int i = 0; i < n; ++i)
{
@ -292,7 +292,7 @@ static int tpack(lua_State* L)
static int tunpack(lua_State* L)
{
luaL_checktype(L, 1, LUA_TTABLE);
Table* t = hvalue(L->base);
LuaTable* t = hvalue(L->base);
int i = luaL_optinteger(L, 2, 1);
int e = luaL_opt(L, luaL_checkinteger, 3, lua_objlen(L, 1));
@ -335,7 +335,7 @@ static int sort_func(lua_State* L, const TValue* l, const TValue* r)
return !l_isfalse(L->top);
}
inline void sort_swap(lua_State* L, Table* t, int i, int j)
inline void sort_swap(lua_State* L, LuaTable* t, int i, int j)
{
TValue* arr = t->array;
int n = t->sizearray;
@ -348,7 +348,7 @@ inline void sort_swap(lua_State* L, Table* t, int i, int j)
setobj2t(L, &arr[j], &temp);
}
inline int sort_less(lua_State* L, Table* t, int i, int j, SortPredicate pred)
inline int sort_less(lua_State* L, LuaTable* t, int i, int j, SortPredicate pred)
{
TValue* arr = t->array;
int n = t->sizearray;
@ -363,7 +363,7 @@ inline int sort_less(lua_State* L, Table* t, int i, int j, SortPredicate pred)
return res;
}
static void sort_siftheap(lua_State* L, Table* t, int l, int u, SortPredicate pred, int root)
static void sort_siftheap(lua_State* L, LuaTable* t, int l, int u, SortPredicate pred, int root)
{
LUAU_ASSERT(l <= u);
int count = u - l + 1;
@ -389,7 +389,7 @@ static void sort_siftheap(lua_State* L, Table* t, int l, int u, SortPredicate pr
sort_swap(L, t, l + root, l + lastleft);
}
static void sort_heap(lua_State* L, Table* t, int l, int u, SortPredicate pred)
static void sort_heap(lua_State* L, LuaTable* t, int l, int u, SortPredicate pred)
{
LUAU_ASSERT(l <= u);
int count = u - l + 1;
@ -404,7 +404,7 @@ static void sort_heap(lua_State* L, Table* t, int l, int u, SortPredicate pred)
}
}
static void sort_rec(lua_State* L, Table* t, int l, int u, int limit, SortPredicate pred)
static void sort_rec(lua_State* L, LuaTable* t, int l, int u, int limit, SortPredicate pred)
{
// sort range [l..u] (inclusive, 0-based)
while (l < u)
@ -477,7 +477,7 @@ static void sort_rec(lua_State* L, Table* t, int l, int u, int limit, SortPredic
static int tsort(lua_State* L)
{
luaL_checktype(L, 1, LUA_TTABLE);
Table* t = hvalue(L->base);
LuaTable* t = hvalue(L->base);
int n = luaH_getn(t);
if (t->readonly)
luaG_readonlyerror(L);
@ -504,7 +504,7 @@ static int tcreate(lua_State* L)
if (!lua_isnoneornil(L, 2))
{
lua_createtable(L, size, 0);
Table* t = hvalue(L->top - 1);
LuaTable* t = hvalue(L->top - 1);
StkId v = L->base + 1;
@ -530,7 +530,7 @@ static int tfind(lua_State* L)
if (init < 1)
luaL_argerror(L, 3, "index out of range");
Table* t = hvalue(L->base);
LuaTable* t = hvalue(L->base);
StkId v = L->base + 1;
for (int i = init;; ++i)
@ -554,7 +554,7 @@ static int tclear(lua_State* L)
{
luaL_checktype(L, 1, LUA_TTABLE);
Table* tt = hvalue(L->base);
LuaTable* tt = hvalue(L->base);
if (tt->readonly)
luaG_readonlyerror(L);
@ -587,7 +587,7 @@ static int tclone(lua_State* L)
luaL_checktype(L, 1, LUA_TTABLE);
luaL_argcheck(L, !luaL_getmetafield(L, 1, "__metatable"), 1, "table has a protected metatable");
Table* tt = luaH_clone(L, hvalue(L->base));
LuaTable* tt = luaH_clone(L, hvalue(L->base));
TValue v;
sethvalue(L, &v, tt);

View file

@ -86,7 +86,7 @@ void luaT_init(lua_State* L)
** function to be used with macro "fasttm": optimized for absence of
** tag methods.
*/
const TValue* luaT_gettm(Table* events, TMS event, TString* ename)
const TValue* luaT_gettm(LuaTable* events, TMS event, TString* ename)
{
const TValue* tm = luaH_getstr(events, ename);
LUAU_ASSERT(event <= TM_EQ);
@ -105,7 +105,7 @@ const TValue* luaT_gettmbyobj(lua_State* L, const TValue* o, TMS event)
NB: Tag-methods were replaced by meta-methods in Lua 5.0, but the
old names are still around (this function, for example).
*/
Table* mt;
LuaTable* mt;
switch (ttype(o))
{
case LUA_TTABLE:
@ -147,7 +147,7 @@ const TString* luaT_objtypenamestr(lua_State* L, const TValue* o)
}
// For all types except userdata and table, a global metatable can be set with a global name override
if (Table* mt = L->global->mt[ttype(o)])
if (LuaTable* mt = L->global->mt[ttype(o)])
{
const TValue* type = luaH_getstr(mt, L->global->tmname[TM_TYPE]);

View file

@ -51,7 +51,7 @@ typedef enum
LUAI_DATA const char* const luaT_typenames[];
LUAI_DATA const char* const luaT_eventname[];
LUAI_FUNC const TValue* luaT_gettm(Table* events, TMS event, TString* ename);
LUAI_FUNC const TValue* luaT_gettm(LuaTable* events, TMS event, TString* ename);
LUAI_FUNC const TValue* luaT_gettmbyobj(lua_State* L, const TValue* o, TMS event);
LUAI_FUNC const TString* luaT_objtypenamestr(lua_State* L, const TValue* o);

View file

@ -26,7 +26,7 @@ LUAI_FUNC int luaV_tostring(lua_State* L, StkId obj);
LUAI_FUNC void luaV_gettable(lua_State* L, const TValue* t, TValue* key, StkId val);
LUAI_FUNC void luaV_settable(lua_State* L, const TValue* t, TValue* key, StkId val);
LUAI_FUNC void luaV_concat(lua_State* L, int total, int last);
LUAI_FUNC void luaV_getimport(lua_State* L, Table* env, TValue* k, StkId res, uint32_t id, bool propagatenil);
LUAI_FUNC void luaV_getimport(lua_State* L, LuaTable* env, TValue* k, StkId res, uint32_t id, bool propagatenil);
LUAI_FUNC void luaV_prepareFORN(lua_State* L, StkId plimit, StkId pstep, StkId pinit);
LUAI_FUNC void luaV_callTM(lua_State* L, int nparams, int res);
LUAI_FUNC void luaV_tryfuncTM(lua_State* L, StkId func);

View file

@ -330,7 +330,7 @@ reentry:
LUAU_ASSERT(ttisstring(kv));
// fast-path: value is in expected slot
Table* h = cl->env;
LuaTable* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
@ -361,7 +361,7 @@ reentry:
LUAU_ASSERT(ttisstring(kv));
// fast-path: value is in expected slot
Table* h = cl->env;
LuaTable* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
@ -451,7 +451,7 @@ reentry:
// fast-path: built-in table
if (LUAU_LIKELY(ttistable(rb)))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
@ -568,7 +568,7 @@ reentry:
// fast-path: built-in table
if (LUAU_LIKELY(ttistable(rb)))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
@ -642,7 +642,7 @@ reentry:
// fast-path: array lookup
if (ttistable(rb) && ttisnumber(rc))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
double indexd = nvalue(rc);
int index = int(indexd);
@ -672,7 +672,7 @@ reentry:
// fast-path: array assign
if (ttistable(rb) && ttisnumber(rc))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
double indexd = nvalue(rc);
int index = int(indexd);
@ -703,7 +703,7 @@ reentry:
// fast-path: array lookup
if (ttistable(rb))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
if (LUAU_LIKELY(unsigned(c) < unsigned(h->sizearray) && !h->metatable))
{
@ -731,7 +731,7 @@ reentry:
// fast-path: array assign
if (ttistable(rb))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
if (LUAU_LIKELY(unsigned(c) < unsigned(h->sizearray) && !h->metatable && !h->readonly))
{
@ -804,7 +804,7 @@ reentry:
if (LUAU_LIKELY(ttistable(rb)))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
// note: we can't use nodemask8 here because we need to query the main position of the table, and 8-bit nodemask8 only works
// for predictive lookups
LuaNode* n = &h->node[tsvalue(kv)->hash & (sizenode(h) - 1)];
@ -844,7 +844,7 @@ reentry:
}
else
{
Table* mt = ttisuserdata(rb) ? uvalue(rb)->metatable : L->global->mt[ttype(rb)];
LuaTable* mt = ttisuserdata(rb) ? uvalue(rb)->metatable : L->global->mt[ttype(rb)];
const TValue* tmi = 0;
// fast-path: metatable with __namecall
@ -858,7 +858,7 @@ reentry:
}
else if ((tmi = fasttm(L, mt, TM_INDEX)) && ttistable(tmi))
{
Table* h = hvalue(tmi);
LuaTable* h = hvalue(tmi);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
@ -2126,7 +2126,7 @@ reentry:
// fast-path #1: tables
if (LUAU_LIKELY(ttistable(rb)))
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
if (fastnotm(h->metatable, TM_LEN))
{
@ -2196,7 +2196,7 @@ reentry:
L->top = L->ci->top;
}
Table* h = hvalue(ra);
LuaTable* h = hvalue(ra);
// TODO: we really don't need this anymore
if (!ttistable(ra))
@ -2281,7 +2281,7 @@ reentry:
}
else
{
Table* mt = ttistable(ra) ? hvalue(ra)->metatable : ttisuserdata(ra) ? uvalue(ra)->metatable : cast_to(Table*, NULL);
LuaTable* mt = ttistable(ra) ? hvalue(ra)->metatable : ttisuserdata(ra) ? uvalue(ra)->metatable : cast_to(LuaTable*, NULL);
if (const TValue* fn = fasttm(L, mt, TM_ITER))
{
@ -2340,7 +2340,7 @@ reentry:
// TODO: remove the table check per guarantee above
if (ttisnil(ra) && ttistable(ra + 1))
{
Table* h = hvalue(ra + 1);
LuaTable* h = hvalue(ra + 1);
int index = int(reinterpret_cast<uintptr_t>(pvalue(ra + 2)));
int sizearray = h->sizearray;

View file

@ -72,7 +72,7 @@ private:
size_t originalThreshold = 0;
};
void luaV_getimport(lua_State* L, Table* env, TValue* k, StkId res, uint32_t id, bool propagatenil)
void luaV_getimport(lua_State* L, LuaTable* env, TValue* k, StkId res, uint32_t id, bool propagatenil)
{
int count = id >> 30;
LUAU_ASSERT(count > 0);
@ -141,7 +141,7 @@ static TString* readString(TempBuffer<TString*>& strings, const char* data, size
return id == 0 ? NULL : strings[id - 1];
}
static void resolveImportSafe(lua_State* L, Table* env, TValue* k, uint32_t id)
static void resolveImportSafe(lua_State* L, LuaTable* env, TValue* k, uint32_t id)
{
struct ResolveImport
{
@ -273,7 +273,7 @@ int luau_load(lua_State* L, const char* chunkname, const char* data, size_t size
const ScopedSetGCThreshold pauseGC{L->global, SIZE_MAX};
// env is 0 for current environment and a stack index otherwise
Table* envt = (env == 0) ? L->gt : hvalue(luaA_toobject(L, env));
LuaTable* envt = (env == 0) ? L->gt : hvalue(luaA_toobject(L, env));
TString* source = luaS_new(L, chunkname);
@ -481,7 +481,7 @@ int luau_load(lua_State* L, const char* chunkname, const char* data, size_t size
case LBC_CONSTANT_TABLE:
{
int keys = readVarInt(data, size, offset);
Table* h = luaH_new(L, 0, keys);
LuaTable* h = luaH_new(L, 0, keys);
for (int i = 0; i < keys; ++i)
{
int key = readVarInt(data, size, offset);

View file

@ -101,7 +101,7 @@ void luaV_gettable(lua_State* L, const TValue* t, TValue* key, StkId val)
const TValue* tm;
if (ttistable(t))
{ // `t' is a table?
Table* h = hvalue(t);
LuaTable* h = hvalue(t);
const TValue* res = luaH_get(h, key); // do a primitive get
@ -137,7 +137,7 @@ void luaV_settable(lua_State* L, const TValue* t, TValue* key, StkId val)
const TValue* tm;
if (ttistable(t))
{ // `t' is a table?
Table* h = hvalue(t);
LuaTable* h = hvalue(t);
const TValue* oldval = luaH_get(h, key);
@ -185,7 +185,7 @@ static int call_binTM(lua_State* L, const TValue* p1, const TValue* p2, StkId re
return 1;
}
static const TValue* get_compTM(lua_State* L, Table* mt1, Table* mt2, TMS event)
static const TValue* get_compTM(lua_State* L, LuaTable* mt1, LuaTable* mt2, TMS event)
{
const TValue* tm1 = fasttm(L, mt1, event);
const TValue* tm2;
@ -533,7 +533,7 @@ void luaV_dolen(lua_State* L, StkId ra, const TValue* rb)
{
case LUA_TTABLE:
{
Table* h = hvalue(rb);
LuaTable* h = hvalue(rb);
if ((tm = fasttm(L, h->metatable, TM_LEN)) == NULL)
{
setnvalue(ra, cast_num(luaH_getn(h)));

View file

@ -19,6 +19,8 @@ LUAU_FASTFLAG(DebugLuauFreezeArena)
LUAU_FASTFLAG(DebugLuauMagicTypes)
LUAU_FASTFLAG(StudioReportLuauAny2)
LUAU_FASTFLAG(LuauTrackInteriorFreeTypesOnScope)
LUAU_FASTFLAG(LuauAlwaysFillInFunctionCallDiscriminantTypes)
LUAU_FASTFLAG(LuauRemoveNotAnyHack)
struct ATSFixture : BuiltinsFixture
@ -410,6 +412,8 @@ TEST_CASE_FIXTURE(ATSFixture, "CannotExtendTable")
ScopedFastFlag sff[] = {
{FFlag::LuauSolverV2, true},
{FFlag::StudioReportLuauAny2, true},
{FFlag::LuauAlwaysFillInFunctionCallDiscriminantTypes, true},
{FFlag::LuauRemoveNotAnyHack, true},
};
fileResolver.source["game/Gui/Modules/A"] = R"(
@ -425,7 +429,7 @@ end
)";
CheckResult result1 = frontend.check("game/Gui/Modules/A");
LUAU_REQUIRE_ERROR_COUNT(3, result1);
LUAU_REQUIRE_ERROR_COUNT(1, result1);
ModulePtr module = frontend.moduleResolver.getModule("game/Gui/Modules/A");
@ -502,6 +506,8 @@ TEST_CASE_FIXTURE(ATSFixture, "racing_collision_2")
ScopedFastFlag sff[] = {
{FFlag::LuauSolverV2, true},
{FFlag::StudioReportLuauAny2, true},
{FFlag::LuauAlwaysFillInFunctionCallDiscriminantTypes, true},
{FFlag::LuauRemoveNotAnyHack, true},
};
fileResolver.source["game/Gui/Modules/A"] = R"(
@ -565,7 +571,7 @@ initialize()
)";
CheckResult result1 = frontend.check("game/Gui/Modules/A");
LUAU_REQUIRE_ERROR_COUNT(5, result1);
LUAU_REQUIRE_ERROR_COUNT(3, result1);
ModulePtr module = frontend.moduleResolver.getModule("game/Gui/Modules/A");

View file

@ -8,8 +8,6 @@
using namespace Luau;
LUAU_FASTFLAG(LuauDocumentationAtPosition)
struct DocumentationSymbolFixture : BuiltinsFixture
{
std::optional<DocumentationSymbol> getDocSymbol(const std::string& source, Position position)
@ -167,7 +165,6 @@ TEST_CASE_FIXTURE(DocumentationSymbolFixture, "table_overloaded_function_prop")
TEST_CASE_FIXTURE(DocumentationSymbolFixture, "string_metatable_method")
{
ScopedFastFlag sff{FFlag::LuauDocumentationAtPosition, true};
std::optional<DocumentationSymbol> symbol = getDocSymbol(
R"(
local x: string = "Foo"
@ -181,7 +178,6 @@ TEST_CASE_FIXTURE(DocumentationSymbolFixture, "string_metatable_method")
TEST_CASE_FIXTURE(DocumentationSymbolFixture, "parent_class_method")
{
ScopedFastFlag sff{FFlag::LuauDocumentationAtPosition, true};
loadDefinition(R"(
declare class Foo
function bar(self, x: string): number

View file

@ -3,6 +3,7 @@
#include "Luau/AssemblyBuilderA64.h"
#include "Luau/CodeAllocator.h"
#include "Luau/CodeBlockUnwind.h"
#include "Luau/CodeGen.h"
#include "Luau/UnwindBuilder.h"
#include "Luau/UnwindBuilderDwarf2.h"
#include "Luau/UnwindBuilderWin.h"

View file

@ -40,8 +40,9 @@ LUAU_FASTFLAG(LuauVectorLibNativeCodegen)
LUAU_FASTFLAG(LuauVectorLibNativeDot)
LUAU_FASTFLAG(LuauVectorMetatable)
LUAU_FASTFLAG(LuauVector2Constructor)
LUAU_FASTFLAG(LuauBufferBitMethods)
LUAU_FASTFLAG(LuauBufferBitMethods2)
LUAU_FASTFLAG(LuauCodeGenLimitLiveSlotReuse)
LUAU_FASTFLAG(LuauMathMapDefinition)
static lua_CompileOptions defaultOptions()
{
@ -655,7 +656,7 @@ TEST_CASE("Basic")
TEST_CASE("Buffers")
{
ScopedFastFlag luauBufferBitMethods{FFlag::LuauBufferBitMethods, true};
ScopedFastFlag luauBufferBitMethods{FFlag::LuauBufferBitMethods2, true};
runConformance("buffers.lua");
}
@ -989,7 +990,8 @@ static void populateRTTI(lua_State* L, Luau::TypeId type)
TEST_CASE("Types")
{
ScopedFastFlag luauVector2Constructor{FFlag::LuauVector2Constructor, true};
ScopedFastFlag luauMathLerp{FFlag::LuauMathLerp, false}; // waiting for math.lerp to be added to embedded type definitions
ScopedFastFlag luauMathLerp{FFlag::LuauMathLerp, true};
ScopedFastFlag luauMathMapDefinition{FFlag::LuauMathMapDefinition, true};
runConformance(
"types.lua",

View file

@ -19,6 +19,7 @@ LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAG(LuauAllowComplexTypesInGenericParams)
LUAU_FASTFLAG(LuauErrorRecoveryForTableTypes)
LUAU_FASTFLAG(LuauErrorRecoveryForClassNames)
LUAU_FASTFLAG(LuauFixFunctionNameStartPosition)
namespace
{
@ -3743,5 +3744,27 @@ TEST_CASE_FIXTURE(Fixture, "recover_from_bad_table_type")
CHECK_EQ(result.errors.size(), 2);
}
TEST_CASE_FIXTURE(Fixture, "function_name_has_correct_start_location")
{
ScopedFastFlag _{FFlag::LuauFixFunctionNameStartPosition, true};
AstStatBlock* block = parse(R"(
function simple()
end
function T:complex()
end
)");
REQUIRE_EQ(2, block->body.size);
const auto function1 = block->body.data[0]->as<AstStatFunction>();
LUAU_ASSERT(function1);
CHECK_EQ(Position{1, 17}, function1->name->location.begin);
const auto function2 = block->body.data[1]->as<AstStatFunction>();
LUAU_ASSERT(function2);
CHECK_EQ(Position{4, 17}, function2->name->location.begin);
}
TEST_SUITE_END();

View file

@ -14,6 +14,8 @@ LUAU_FASTFLAG(LuauUserTypeFunPrintToError)
LUAU_FASTFLAG(LuauUserTypeFunExportedAndLocal)
LUAU_FASTFLAG(LuauUserTypeFunThreadBuffer)
LUAU_FASTFLAG(LuauUserTypeFunUpdateAllEnvs)
LUAU_FASTFLAG(LuauUserTypeFunGenerics)
LUAU_FASTFLAG(LuauUserTypeFunCloneTail)
TEST_SUITE_BEGIN("UserDefinedTypeFunctionTests");
@ -1414,4 +1416,479 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "print_to_error_plus_no_result")
CHECK(toString(result.errors[3]) == R"(Type function instance t0<string> is uninhabited)");
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_serialization_1")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
return arg
end
type test = <T, U>(T, { x: <T>(y: T) -> (), y: U }, U) -> ()
local function ok(idx: pass<test>): test return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_serialization_2")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
return arg
end
type test = <T, U...>(T) -> (T, U...)
local function ok(idx: pass<test>): test return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_serialization_3")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
return arg
end
local function m(a, b)
return {x = a, y = b}
end
type test = typeof(m)
local function ok(idx: pass<test>): test return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_cloning_1")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
return types.copy(arg)
end
type test = <T, U>(T, { x: <T>(y: T) -> (), y: U }, U) -> ()
local function ok(idx: pass<test>): test return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_cloning_2")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
ScopedFastFlag luauUserTypeFunCloneTail{FFlag::LuauUserTypeFunCloneTail, true};
CheckResult result = check(R"(
type function pass(arg)
return types.copy(arg)
end
type test = <T, U...>(T) -> (T, U...)
local function ok(idx: pass<test>): test return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_equality")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
return types.singleton(types.copy(arg) == arg)
end
type test = <T, U...>(T) -> (T, U...)
local function ok(idx: pass<test>): true return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_1")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
local generics = arg:generics()
local T = generics[1]
return types.newfunction({ head = {T} }, { head = {T} }, {T})
end
type test = <T, U>(T, { x: <T>(y: T) -> (), y: U }, U) -> ()
local function ok(idx: pass<test>): <T>(T) -> (T) return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_2")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
local generics = arg:generics()
local T = generics[1]
local f = types.newfunction()
f:setparameters({T, T});
f:setreturns({T});
f:setgenerics({T});
return f
end
type test = <T, U>(T, { x: <T>(y: T) -> (), y: U }, U) -> ()
local function ok(idx: pass<test>): <T>(T, T) -> (T) return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_3")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass()
local T = types.generic("T")
assert(T.tag == "generic")
assert(T:name() == "T")
assert(T:ispack() == false)
local Us, Vs = types.generic("U", true), types.generic("V", true)
assert(Us.tag == "generic")
assert(Us:name() == "U")
assert(Us:ispack() == true)
local f = types.newfunction()
f:setparameters({T}, Us);
f:setreturns({T}, Vs);
f:setgenerics({T, Us, Vs});
return f
end
local function ok(idx: pass<>): <T, U..., V...>(T, U...) -> (T, V...) return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_4")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass()
local T, U = types.generic("T"), types.generic("U")
-- <T>(T) -> ()
local func = types.newfunction({ head = {T} }, {}, {T});
-- { x: <T>(T) -> (), y: U }
local tbl = types.newtable({ [types.singleton("x")] = func, [types.singleton("y")] = U })
-- <T, U>(T, { x: <T>(T) -> (), y: U }, U) -> ()
return types.newfunction({ head = {T, tbl, U } }, {}, {T, U})
end
type test = <T, U>(T, { x: <T>(y: T) -> (), y: U }, U) -> ()
local function ok(idx: pass<>): test return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_5")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass()
local T = types.generic("T")
return types.newfunction({ head = {T} }, {}, {types.copy(T)})
end
local function ok(idx: pass<>): <T>(T) -> () return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_6")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
local generics = arg:generics()
local T, U = generics[1], generics[2]
local f = types.newfunction()
f:setparameters({T});
f:setreturns({U});
f:setgenerics({T, U});
return f
end
local function m(a, b)
return {x = a, y = b}
end
type test = typeof(m)
local function ok(idx: pass<test>): <T, U>(T) -> (U) return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_7")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
local p, r = arg:parameters(), arg:returns()
local f = types.newfunction()
f:setparameters(p.head, p.tail);
f:setreturns(r.head, r.tail);
f:setgenerics(arg:generics());
return f
end
type test = <T, U...>(T, U...) -> (T, U...)
local function ok(idx: pass<test>): <T, U...>(T, U...) -> (T, U...) return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_8")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
local p, r = arg:parameters(), arg:returns()
local f = types.newfunction()
f:setparameters(p.head, p.tail);
f:setreturns(r.head, r.tail);
f:setgenerics(arg:generics());
return f
end
type test = <U...>(U...) -> (U...)
local function ok(idx: pass<test>): <T>(T, T) -> (T) return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_equality_2")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, Us = types.generic("T"), types.generic("U", true)
local tbl1 = types.newtable({ [types.singleton("x")] = T })
local tbl2 = types.newtable({ [types.singleton("x")] = Us }) -- it is possible to have invalid types in-flight
return types.singleton(tbl1 == tbl2)
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_error_1")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, Us = types.generic("T"), types.generic("U", true)
return types.newfunction({}, {}, {Us, T})
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(
toString(result.errors[0]) ==
R"('get' type function errored at runtime: [string "get"]:4: types.newfunction: generic type cannot follow a generic pack)"
);
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_error_2")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, Us = types.generic("T"), types.generic("U", true)
return types.newfunction({ head = {T} }, {}, {})
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(toString(result.errors[0]) == R"(Generic type 'T' is not in a scope of the active generic function)");
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_error_3")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, U = types.generic("T"), types.generic("U")
-- <U>(U) -> ()
local func = types.newfunction({ head = {U} }, {}, {U});
-- broken: <T>(T, <U>(U) -> (), U) -> ()
return types.newfunction({ head = {T, func, U } }, {}, {T})
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(toString(result.errors[0]) == R"(Generic type 'U' is not in a scope of the active generic function)");
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_error_4")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, Us = types.generic("T"), types.generic("U", true)
return types.newfunction({ head = {T} }, { tail = Us }, {T, T})
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(toString(result.errors[0]) == R"(Duplicate type parameter 'T')");
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_error_5")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, Ts = types.generic("T"), types.generic("T", true)
return types.newfunction({ head = {T} }, { tail = Ts }, {T, Ts})
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(toString(result.errors[0]) == R"(Duplicate type parameter 'T')");
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_error_6")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, Us = types.generic("T"), types.generic("U", true)
return types.newfunction({ head = {Us} }, {}, {T, Us})
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(toString(result.errors[0]) == R"(Generic type pack 'U...' cannot be placed in a type position)");
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_generic_api_error_7")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function get()
local T, Us = types.generic("T"), types.generic("U", true)
return types.newfunction({ tail = Us }, {}, {T})
end
local function ok(idx: get<>): false return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(toString(result.errors[0]) == R"(Generic type pack 'U...' is not in a scope of the active generic function)");
}
TEST_CASE_FIXTURE(ClassFixture, "udtf_variadic_api")
{
ScopedFastFlag newSolver{FFlag::LuauSolverV2, true};
ScopedFastFlag luauUserTypeFunGenerics{FFlag::LuauUserTypeFunGenerics, true};
CheckResult result = check(R"(
type function pass(arg)
local p, r = arg:parameters(), arg:returns()
local f = types.newfunction()
f:setparameters({p.tail}, p.head[1]);
f:setreturns({r.tail}, r.head[1]);
return f
end
type test = (string, ...number) -> (number, ...string)
local function ok(idx: pass<test>): (number, ...string) -> (string, ...number) return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_SUITE_END();

View file

@ -12,6 +12,7 @@ using namespace Luau;
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAG(LuauTypestateBuiltins2)
LUAU_FASTFLAG(LuauStringFormatArityFix)
LUAU_FASTFLAG(LuauStringFormatErrorSuppression)
TEST_SUITE_BEGIN("BuiltinTests");
@ -1586,4 +1587,19 @@ TEST_CASE_FIXTURE(BuiltinsFixture, "string_find_should_not_crash")
)"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "string_format_should_support_any")
{
ScopedFastFlag _{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
local x: any = "world"
print(string.format("Hello, %s!", x))
)");
if (FFlag::LuauStringFormatErrorSuppression)
LUAU_REQUIRE_NO_ERRORS(result);
else
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_SUITE_END();

View file

@ -1,6 +1,8 @@
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Common.h"
#include "Luau/CodeGenCommon.h"
#define DOCTEST_CONFIG_IMPLEMENT
// Our calls to parseOption/parseFlag don't provide a prefix so set the prefix to the empty string.
#define DOCTEST_CONFIG_OPTIONS_PREFIX ""

View file

@ -77,7 +77,7 @@
<DisplayString Condition="key.tt == lua_Type::LUA_TNIL &amp;&amp; val.tt == 0">---</DisplayString>
</Type>
<Type Name="Table">
<Type Name="LuaTable">
<DisplayString>table</DisplayString>
<Expand>
<Item Name="metatable" Condition="metatable">metatable</Item>