luau/VM/src/lvmexecute.cpp

3098 lines
120 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
// This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details
#include "lvm.h"
#include "lstate.h"
#include "ltable.h"
#include "lfunc.h"
#include "lstring.h"
#include "lgc.h"
#include "lmem.h"
#include "ldebug.h"
#include "ldo.h"
#include "lbuiltins.h"
#include "lnumutils.h"
#include "lbytecode.h"
#include <string.h>
// Disable c99-designator to avoid the warning in CGOTO dispatch table
#ifdef __clang__
#if __has_warning("-Wc99-designator")
#pragma clang diagnostic ignored "-Wc99-designator"
#endif
#endif
// When working with VM code, pay attention to these rules for correctness:
// 1. Many external Lua functions can fail; for them to fail and be able to generate a proper stack, we need to copy pc to L->ci->savedpc before the
// call
// 2. Many external Lua functions can reallocate the stack. This invalidates stack pointers in VM C stack frame, most importantly base, but also
// ra/rb/rc!
// 3. VM_PROTECT macro saves savedpc and restores base for you; most external calls need to be wrapped into that. However, it does NOT restore
// ra/rb/rc!
// 4. When copying an object to any existing object as a field, generally speaking you need to call luaC_barrier! Be careful with all setobj calls
2022-07-29 05:24:07 +01:00
// 5. To make 4 easier to follow, please use setobj2s for copies to stack, setobj2t for writes to tables, and setobj for other copies.
// 6. You can define HARDSTACKTESTS in llimits.h which will aggressively realloc stack; with address sanitizer this should be effective at finding
// stack corruption bugs
// 7. Many external Lua functions can call GC! GC will *not* traverse pointers to new objects that aren't reachable from Lua root. Be careful when
// creating new Lua objects, store them to stack soon.
// When calling luau_callTM, we usually push the arguments to the top of the stack.
// This is safe to do for complicated reasons:
2022-02-18 01:18:01 +00:00
// - stack guarantees EXTRA_STACK room beyond stack_last (see luaD_reallocstack)
// - stack reallocation copies values past stack_last
// All external function calls that can cause stack realloc or Lua calls have to be wrapped in VM_PROTECT
// This makes sure that we save the pc (in case the Lua call needs to generate a backtrace) before the call,
// and restores the stack pointer after in case stack gets reallocated
// Should only be used on the slow paths.
#define VM_PROTECT(x) \
{ \
L->ci->savedpc = pc; \
{ \
x; \
}; \
base = L->base; \
}
// Some external functions can cause an error, but never reallocate the stack; for these, VM_PROTECT_PC() is
// a cheaper version of VM_PROTECT that can be called before the external call.
#define VM_PROTECT_PC() L->ci->savedpc = pc
#define VM_REG(i) (LUAU_ASSERT(unsigned(i) < unsigned(L->top - base)), &base[i])
#define VM_KV(i) (LUAU_ASSERT(unsigned(i) < unsigned(cl->l.p->sizek)), &k[i])
#define VM_UV(i) (LUAU_ASSERT(unsigned(i) < unsigned(cl->nupvalues)), &cl->l.uprefs[i])
#define VM_PATCH_C(pc, slot) *const_cast<Instruction*>(pc) = ((uint8_t(slot) << 24) | (0x00ffffffu & *(pc)))
#define VM_PATCH_E(pc, slot) *const_cast<Instruction*>(pc) = ((uint32_t(slot) << 8) | (0x000000ffu & *(pc)))
#define VM_INTERRUPT() \
{ \
void (*interrupt)(lua_State*, int) = L->global->cb.interrupt; \
if (LUAU_UNLIKELY(!!interrupt)) \
{ /* the interrupt hook is called right before we advance pc */ \
VM_PROTECT(L->ci->savedpc++; interrupt(L, -1)); \
2022-03-18 00:46:04 +00:00
if (L->status != 0) \
{ \
L->ci->savedpc--; \
goto exit; \
} \
} \
}
#define VM_DISPATCH_OP(op) &&CASE_##op
#define VM_DISPATCH_TABLE() \
VM_DISPATCH_OP(LOP_NOP), VM_DISPATCH_OP(LOP_BREAK), VM_DISPATCH_OP(LOP_LOADNIL), VM_DISPATCH_OP(LOP_LOADB), VM_DISPATCH_OP(LOP_LOADN), \
VM_DISPATCH_OP(LOP_LOADK), VM_DISPATCH_OP(LOP_MOVE), VM_DISPATCH_OP(LOP_GETGLOBAL), VM_DISPATCH_OP(LOP_SETGLOBAL), \
VM_DISPATCH_OP(LOP_GETUPVAL), VM_DISPATCH_OP(LOP_SETUPVAL), VM_DISPATCH_OP(LOP_CLOSEUPVALS), VM_DISPATCH_OP(LOP_GETIMPORT), \
VM_DISPATCH_OP(LOP_GETTABLE), VM_DISPATCH_OP(LOP_SETTABLE), VM_DISPATCH_OP(LOP_GETTABLEKS), VM_DISPATCH_OP(LOP_SETTABLEKS), \
VM_DISPATCH_OP(LOP_GETTABLEN), VM_DISPATCH_OP(LOP_SETTABLEN), VM_DISPATCH_OP(LOP_NEWCLOSURE), VM_DISPATCH_OP(LOP_NAMECALL), \
VM_DISPATCH_OP(LOP_CALL), VM_DISPATCH_OP(LOP_RETURN), VM_DISPATCH_OP(LOP_JUMP), VM_DISPATCH_OP(LOP_JUMPBACK), VM_DISPATCH_OP(LOP_JUMPIF), \
VM_DISPATCH_OP(LOP_JUMPIFNOT), VM_DISPATCH_OP(LOP_JUMPIFEQ), VM_DISPATCH_OP(LOP_JUMPIFLE), VM_DISPATCH_OP(LOP_JUMPIFLT), \
VM_DISPATCH_OP(LOP_JUMPIFNOTEQ), VM_DISPATCH_OP(LOP_JUMPIFNOTLE), VM_DISPATCH_OP(LOP_JUMPIFNOTLT), VM_DISPATCH_OP(LOP_ADD), \
VM_DISPATCH_OP(LOP_SUB), VM_DISPATCH_OP(LOP_MUL), VM_DISPATCH_OP(LOP_DIV), VM_DISPATCH_OP(LOP_MOD), VM_DISPATCH_OP(LOP_POW), \
VM_DISPATCH_OP(LOP_ADDK), VM_DISPATCH_OP(LOP_SUBK), VM_DISPATCH_OP(LOP_MULK), VM_DISPATCH_OP(LOP_DIVK), VM_DISPATCH_OP(LOP_MODK), \
VM_DISPATCH_OP(LOP_POWK), VM_DISPATCH_OP(LOP_AND), VM_DISPATCH_OP(LOP_OR), VM_DISPATCH_OP(LOP_ANDK), VM_DISPATCH_OP(LOP_ORK), \
VM_DISPATCH_OP(LOP_CONCAT), VM_DISPATCH_OP(LOP_NOT), VM_DISPATCH_OP(LOP_MINUS), VM_DISPATCH_OP(LOP_LENGTH), VM_DISPATCH_OP(LOP_NEWTABLE), \
VM_DISPATCH_OP(LOP_DUPTABLE), VM_DISPATCH_OP(LOP_SETLIST), VM_DISPATCH_OP(LOP_FORNPREP), VM_DISPATCH_OP(LOP_FORNLOOP), \
VM_DISPATCH_OP(LOP_FORGLOOP), VM_DISPATCH_OP(LOP_FORGPREP_INEXT), VM_DISPATCH_OP(LOP_DEP_FORGLOOP_INEXT), VM_DISPATCH_OP(LOP_FORGPREP_NEXT), \
VM_DISPATCH_OP(LOP_NATIVECALL), VM_DISPATCH_OP(LOP_GETVARARGS), VM_DISPATCH_OP(LOP_DUPCLOSURE), VM_DISPATCH_OP(LOP_PREPVARARGS), \
VM_DISPATCH_OP(LOP_LOADKX), VM_DISPATCH_OP(LOP_JUMPX), VM_DISPATCH_OP(LOP_FASTCALL), VM_DISPATCH_OP(LOP_COVERAGE), \
Add SUBRK and DIVRK bytecode instructions to bytecode v5 (#1115) Right now, we can compile R\*K for all arithmetic instructions, but K\*R gets compiled into two instructions (LOADN/LOADK + arithmetic opcode). This is problematic since it leads to reduced performance for some code. However, we'd like to avoid adding reverse variants of ADDK et al for all opcodes to avoid the increase in I$ footprint for interpreter. Looking at the arithmetic instructions, % and // don't have interesting use cases for K\*V; ^ is sometimes used with constant on the left hand side but this would need to call pow() by necessity in all cases so it would be slow regardless of the dispatch overhead. This leaves the four basic arithmetic operations. For + and \*, we can implement a compiler-side optimization in the future that transforms K\*R to R\*K automatically. This could either be done unconditionally at -O2, or conditionally based on the type of the value (driven by type annotations / inference) -- this technically changes behavior in presence of metamethods, although it might be sensible to just always do this because non-commutative +/* are evil. However, for - and / it is impossible for the compiler to optimize this in the future, so we need dedicated opcodes. This only increases the interpreter size by ~300 bytes (~1.5%) on X64. This makes spectral-norm and math-partial-sums 6% faster; maybe more importantly, voxelgen gets 1.5% faster (so this change does have real-world impact). To avoid the proliferation of bytecode versions this change piggybacks on the bytecode version bump that was just made in 604 for vector constants; we would still be able to enable these independently but we'll consider v5 complete when both are enabled. Related: #626 --------- Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
2023-11-28 15:35:01 +00:00
VM_DISPATCH_OP(LOP_CAPTURE), VM_DISPATCH_OP(LOP_SUBRK), VM_DISPATCH_OP(LOP_DIVRK), VM_DISPATCH_OP(LOP_FASTCALL1), \
2022-08-04 23:35:33 +01:00
VM_DISPATCH_OP(LOP_FASTCALL2), VM_DISPATCH_OP(LOP_FASTCALL2K), VM_DISPATCH_OP(LOP_FORGPREP), VM_DISPATCH_OP(LOP_JUMPXEQKNIL), \
VM_DISPATCH_OP(LOP_JUMPXEQKB), VM_DISPATCH_OP(LOP_JUMPXEQKN), VM_DISPATCH_OP(LOP_JUMPXEQKS), VM_DISPATCH_OP(LOP_IDIV), \
VM_DISPATCH_OP(LOP_IDIVK),
#if defined(__GNUC__) || defined(__clang__)
#define VM_USE_CGOTO 1
#else
#define VM_USE_CGOTO 0
#endif
/**
* These macros help dispatching Luau opcodes using either case
* statements or computed goto.
* VM_CASE(op) Generates either a case statement or a label
* VM_NEXT() fetch a byte and dispatch or jump to the beginning of the switch statement
* VM_CONTINUE() Use an opcode override to dispatch with computed goto or
* switch statement to skip a LOP_BREAK instruction.
*/
#if VM_USE_CGOTO
#define VM_CASE(op) CASE_##op:
#define VM_NEXT() goto*(SingleStep ? &&dispatch : kDispatchTable[LUAU_INSN_OP(*pc)])
#define VM_CONTINUE(op) goto* kDispatchTable[uint8_t(op)]
#else
#define VM_CASE(op) case op:
#define VM_NEXT() goto dispatch
#define VM_CONTINUE(op) \
dispatchOp = uint8_t(op); \
goto dispatchContinue
#endif
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
// Does VM support native execution via ExecutionCallbacks? We mostly assume it does but keep the define to make it easy to quantify the cost.
#define VM_HAS_NATIVE 1
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
LUAU_FASTFLAGVARIABLE(LuauTaggedLuData, false)
Add tagged lightuserdata (#1087) This change adds support for tagged lightuserdata and optional custom typenames for lightuserdata. Background: Lightuserdata is an efficient representation for many kinds of unmanaged handles and resources in a game engine. However, currently the VM only supports one kind of lightuserdata, which makes it problematic in practice. For example, it's not possible to distinguish between different kinds of lightuserdata in Lua bindings, which can lead to unsafe practices and even crashes when a wrong kind of lightuserdata is passed to a binding function. Tagged lightuserdata work similarly to tagged userdata, i.e. they allow checking the tag quickly using lua_tolightuserdatatagged (or lua_lightuserdatatag). The tag is stored in the 'extra' field of TValue so it will add no cost to the (untagged) lightuserdata type. Alternatives would be to use full userdata values or use bitpacking to embed type information into lightuserdata on application level. Unfortunately these options are not that great in practice: full userdata have major performance implications and bitpacking fails in cases where full 64 bits are already used (e.g. pointers or 64-bit hashes). Lightuserdata names are not strictly necessary but they are rather convenient when debugging Lua code. More precise error messages and tostring returning more specific typename are useful to have in practice (e.g. "resource" or "entity" instead of the more generic "userdata"). Impl note: I did not add support for renaming tags in lua_setlightuserdataname as I'm not sure if it's possible to free fixed strings. If it's simple enough, maybe we should allow renaming (although I can't think of a specific need for it)? --------- Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
2023-12-14 23:05:51 +00:00
LUAU_NOINLINE void luau_callhook(lua_State* L, lua_Hook hook, void* userdata)
{
ptrdiff_t base = savestack(L, L->base);
ptrdiff_t top = savestack(L, L->top);
ptrdiff_t ci_top = savestack(L, L->ci->top);
int status = L->status;
// if the hook is called externally on a paused thread, we need to make sure the paused thread can emit Lua calls
if (status == LUA_YIELD || status == LUA_BREAK)
{
L->status = 0;
L->base = L->ci->base;
}
// note: the pc expectations of the hook are matching the general "pc points to next instruction"
// however, for the hook to be able to continue execution from the same point, this is called with savedpc at the *current* instruction
// this needs to be called before luaD_checkstack in case it fails to reallocate stack
if (L->ci->savedpc)
L->ci->savedpc++;
luaD_checkstack(L, LUA_MINSTACK); // ensure minimum stack size
L->ci->top = L->top + LUA_MINSTACK;
LUAU_ASSERT(L->ci->top <= L->stack_last);
Closure* cl = clvalue(L->ci->func);
lua_Debug ar;
ar.currentline = cl->isC ? -1 : luaG_getline(cl->l.p, pcRel(L->ci->savedpc, cl->l.p));
ar.userdata = userdata;
hook(L, &ar);
if (L->ci->savedpc)
L->ci->savedpc--;
L->ci->top = restorestack(L, ci_top);
L->top = restorestack(L, top);
// note that we only restore the paused state if the hook hasn't yielded by itself
if (status == LUA_YIELD && L->status != LUA_YIELD)
{
L->status = LUA_YIELD;
L->base = restorestack(L, base);
}
else if (status == LUA_BREAK)
{
LUAU_ASSERT(L->status != LUA_BREAK); // hook shouldn't break again
L->status = LUA_BREAK;
L->base = restorestack(L, base);
}
}
inline bool luau_skipstep(uint8_t op)
{
return op == LOP_PREPVARARGS || op == LOP_BREAK;
}
template<bool SingleStep>
static void luau_execute(lua_State* L)
{
#if VM_USE_CGOTO
static const void* kDispatchTable[256] = {VM_DISPATCH_TABLE()};
#endif
// the critical interpreter state, stored in locals for performance
// the hope is that these map to registers without spilling (which is not true for x86 :/)
Closure* cl;
StkId base;
TValue* k;
const Instruction* pc;
LUAU_ASSERT(isLua(L->ci));
LUAU_ASSERT(L->isactive);
LUAU_ASSERT(!isblack(obj2gco(L))); // we don't use luaC_threadbarrier because active threads never turn black
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
#if VM_HAS_NATIVE
if ((L->ci->flags & LUA_CALLINFO_NATIVE) && !SingleStep)
2022-09-23 20:17:25 +01:00
{
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
Proto* p = clvalue(L->ci->func)->l.p;
LUAU_ASSERT(p->execdata);
2022-09-23 20:17:25 +01:00
if (L->global->ecb.enter(L, p) == 0)
return;
}
reentry:
#endif
LUAU_ASSERT(isLua(L->ci));
pc = L->ci->savedpc;
cl = clvalue(L->ci->func);
base = L->base;
k = cl->l.p->k;
VM_NEXT(); // starts the interpreter "loop"
{
dispatch:
// Note: this code doesn't always execute! on some platforms we use computed goto which bypasses all of this unless we run in single-step mode
// Therefore only ever put assertions here.
LUAU_ASSERT(base == L->base && L->base == L->ci->base);
LUAU_ASSERT(base <= L->top && L->top <= L->stack + L->stacksize);
// ... and singlestep logic :)
if (SingleStep)
{
if (L->global->cb.debugstep && !luau_skipstep(LUAU_INSN_OP(*pc)))
{
VM_PROTECT(luau_callhook(L, L->global->cb.debugstep, NULL));
// allow debugstep hook to put thread into error/yield state
if (L->status != 0)
goto exit;
}
#if VM_USE_CGOTO
VM_CONTINUE(LUAU_INSN_OP(*pc));
#endif
}
#if !VM_USE_CGOTO
size_t dispatchOp = LUAU_INSN_OP(*pc);
dispatchContinue:
switch (dispatchOp)
#endif
{
VM_CASE(LOP_NOP)
{
Instruction insn = *pc++;
LUAU_ASSERT(insn == 0);
VM_NEXT();
}
VM_CASE(LOP_LOADNIL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
setnilvalue(ra);
VM_NEXT();
}
VM_CASE(LOP_LOADB)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
setbvalue(ra, LUAU_INSN_B(insn));
pc += LUAU_INSN_C(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_LOADN)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
setnvalue(ra, LUAU_INSN_D(insn));
VM_NEXT();
}
VM_CASE(LOP_LOADK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
setobj2s(L, ra, kv);
VM_NEXT();
}
VM_CASE(LOP_MOVE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
setobj2s(L, ra, rb);
VM_NEXT();
}
VM_CASE(LOP_GETGLOBAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: value is in expected slot
Table* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv)) && !ttisnil(gval(n)))
{
setobj2s(L, ra, gval(n));
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __index metamethod
TValue g;
sethvalue(L, &g, h);
L->cachedslot = slot;
VM_PROTECT(luaV_gettable(L, &g, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
VM_CASE(LOP_SETGLOBAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: value is in expected slot
Table* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n)) && !h->readonly))
{
2022-07-29 05:24:07 +01:00
setobj2t(L, gval(n), ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __newindex metamethod
TValue g;
sethvalue(L, &g, h);
L->cachedslot = slot;
VM_PROTECT(luaV_settable(L, &g, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
VM_CASE(LOP_GETUPVAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* ur = VM_UV(LUAU_INSN_B(insn));
TValue* v = ttisupval(ur) ? upvalue(ur)->v : ur;
setobj2s(L, ra, v);
VM_NEXT();
}
VM_CASE(LOP_SETUPVAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* ur = VM_UV(LUAU_INSN_B(insn));
UpVal* uv = upvalue(ur);
setobj(L, uv->v, ra);
luaC_barrier(L, uv, ra);
VM_NEXT();
}
VM_CASE(LOP_CLOSEUPVALS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
if (L->openupval && L->openupval->v >= ra)
luaF_close(L, ra);
VM_NEXT();
}
VM_CASE(LOP_GETIMPORT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
// fast-path: import resolution was successful and closure environment is "safe" for import
if (!ttisnil(kv) && cl->env->safeenv)
{
setobj2s(L, ra, kv);
pc++; // skip over AUX
VM_NEXT();
}
else
{
uint32_t aux = *pc++;
VM_PROTECT(luaV_getimport(L, cl->env, k, ra, aux, /* propagatenil= */ false));
VM_NEXT();
}
}
VM_CASE(LOP_GETTABLEKS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: built-in table
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttistable(rb)))
{
Table* h = hvalue(rb);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
// fast-path: value is in expected slot
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n))))
{
setobj2s(L, ra, gval(n));
VM_NEXT();
}
else if (!h->metatable)
{
// fast-path: value is not in expected slot, but the table lookup doesn't involve metatable
const TValue* res = luaH_getstr(h, tsvalue(kv));
if (res != luaO_nilobject)
{
int cachedslot = gval2slot(h, res);
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, cachedslot);
}
setobj2s(L, ra, res);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __index metamethod
L->cachedslot = slot;
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
else
{
// fast-path: user data with C __index TM
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = fasttm(L, uvalue(rb)->metatable, TM_INDEX)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
L->cachedslot = LUAU_INSN_C(insn);
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
else if (ttisvector(rb))
{
// fast-path: quick case-insensitive comparison with "X"/"Y"/"Z"
const char* name = getstr(tsvalue(kv));
int ic = (name[0] | ' ') - 'x';
#if LUA_VECTOR_SIZE == 4
// 'w' is before 'x' in ascii, so ic is -1 when indexing with 'w'
if (ic == -1)
ic = 3;
#endif
if (unsigned(ic) < LUA_VECTOR_SIZE && name[1] == '\0')
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* v = vvalue(rb); // silences ubsan when indexing v[]
2022-02-11 19:02:09 +00:00
setnvalue(ra, v[ic]);
VM_NEXT();
}
fn = fasttm(L, L->global->mt[LUA_TVECTOR], TM_INDEX);
if (fn && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
L->cachedslot = LUAU_INSN_C(insn);
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// slow-path, may invoke Lua calls via __index metamethod
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
VM_NEXT();
}
VM_CASE(LOP_SETTABLEKS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: built-in table
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttistable(rb)))
{
Table* h = hvalue(rb);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
// fast-path: value is in expected slot
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n)) && !h->readonly))
{
2022-07-29 05:24:07 +01:00
setobj2t(L, gval(n), ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
else if (fastnotm(h->metatable, TM_NEWINDEX) && !h->readonly)
{
VM_PROTECT_PC(); // set may fail
TValue* res = luaH_setstr(L, h, tsvalue(kv));
2022-02-04 16:45:57 +00:00
int cachedslot = gval2slot(h, res);
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, cachedslot);
2022-07-29 05:24:07 +01:00
setobj2t(L, res, ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __newindex metamethod
L->cachedslot = slot;
VM_PROTECT(luaV_settable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
else
{
// fast-path: user data with C __newindex TM
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = fasttm(L, uvalue(rb)->metatable, TM_NEWINDEX)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 4 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
setobj2s(L, top + 3, ra);
L->top = top + 4;
L->cachedslot = LUAU_INSN_C(insn);
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 3, -1));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __newindex metamethod
VM_PROTECT(luaV_settable(L, rb, kv, ra));
VM_NEXT();
}
}
}
VM_CASE(LOP_GETTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path: array lookup
if (ttistable(rb) && ttisnumber(rc))
{
Table* h = hvalue(rb);
double indexd = nvalue(rc);
int index = int(indexd);
// index has to be an exact integer and in-bounds for the array portion
if (LUAU_LIKELY(unsigned(index - 1) < unsigned(h->sizearray) && !h->metatable && double(index) == indexd))
{
setobj2s(L, ra, &h->array[unsigned(index - 1)]);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// slow-path: handles out of bounds array lookups, non-integer numeric keys, non-array table lookup, __index MT calls
VM_PROTECT(luaV_gettable(L, rb, rc, ra));
VM_NEXT();
}
VM_CASE(LOP_SETTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path: array assign
if (ttistable(rb) && ttisnumber(rc))
{
Table* h = hvalue(rb);
double indexd = nvalue(rc);
int index = int(indexd);
// index has to be an exact integer and in-bounds for the array portion
if (LUAU_LIKELY(unsigned(index - 1) < unsigned(h->sizearray) && !h->metatable && !h->readonly && double(index) == indexd))
{
setobj2t(L, &h->array[unsigned(index - 1)], ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// slow-path: handles out of bounds array assignments, non-integer numeric keys, non-array table access, __newindex MT calls
VM_PROTECT(luaV_settable(L, rb, rc, ra));
VM_NEXT();
}
VM_CASE(LOP_GETTABLEN)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
int c = LUAU_INSN_C(insn);
// fast-path: array lookup
if (ttistable(rb))
{
Table* h = hvalue(rb);
if (LUAU_LIKELY(unsigned(c) < unsigned(h->sizearray) && !h->metatable))
{
setobj2s(L, ra, &h->array[c]);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
// slow-path: handles out of bounds array lookups
TValue n;
setnvalue(&n, c + 1);
VM_PROTECT(luaV_gettable(L, rb, &n, ra));
VM_NEXT();
}
VM_CASE(LOP_SETTABLEN)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
int c = LUAU_INSN_C(insn);
// fast-path: array assign
if (ttistable(rb))
{
Table* h = hvalue(rb);
if (LUAU_LIKELY(unsigned(c) < unsigned(h->sizearray) && !h->metatable && !h->readonly))
{
setobj2t(L, &h->array[c], ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
// slow-path: handles out of bounds array lookups
TValue n;
setnvalue(&n, c + 1);
VM_PROTECT(luaV_settable(L, rb, &n, ra));
VM_NEXT();
}
VM_CASE(LOP_NEWCLOSURE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
Proto* pv = cl->l.p->p[LUAU_INSN_D(insn)];
LUAU_ASSERT(unsigned(LUAU_INSN_D(insn)) < unsigned(cl->l.p->sizep));
VM_PROTECT_PC(); // luaF_newLclosure may fail due to OOM
// note: we save closure to stack early in case the code below wants to capture it by value
Closure* ncl = luaF_newLclosure(L, pv->nups, cl->env, pv);
setclvalue(L, ra, ncl);
for (int ui = 0; ui < pv->nups; ++ui)
{
Instruction uinsn = *pc++;
LUAU_ASSERT(LUAU_INSN_OP(uinsn) == LOP_CAPTURE);
switch (LUAU_INSN_A(uinsn))
{
case LCT_VAL:
setobj(L, &ncl->l.uprefs[ui], VM_REG(LUAU_INSN_B(uinsn)));
break;
case LCT_REF:
setupvalue(L, &ncl->l.uprefs[ui], luaF_findupval(L, VM_REG(LUAU_INSN_B(uinsn))));
break;
case LCT_UPVAL:
setobj(L, &ncl->l.uprefs[ui], VM_UV(LUAU_INSN_B(uinsn)));
break;
default:
LUAU_ASSERT(!"Unknown upvalue capture type");
LUAU_UNREACHABLE(); // improves switch() codegen by eliding opcode bounds checks
}
}
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_NAMECALL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttistable(rb)))
{
Table* h = hvalue(rb);
// note: we can't use nodemask8 here because we need to query the main position of the table, and 8-bit nodemask8 only works
// for predictive lookups
LuaNode* n = &h->node[tsvalue(kv)->hash & (sizenode(h) - 1)];
const TValue* mt = 0;
const LuaNode* mtn = 0;
// fast-path: key is in the table in expected slot
if (ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n)))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, gval(n));
}
// fast-path: key is absent from the base, table has an __index table, and it has the result in the expected slot
else if (gnext(n) == 0 && (mt = fasttm(L, hvalue(rb)->metatable, TM_INDEX)) && ttistable(mt) &&
(mtn = &hvalue(mt)->node[LUAU_INSN_C(insn) & hvalue(mt)->nodemask8]) && ttisstring(gkey(mtn)) &&
tsvalue(gkey(mtn)) == tsvalue(kv) && !ttisnil(gval(mtn)))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, gval(mtn));
}
else
{
// slow-path: handles full table lookup
setobj2s(L, ra + 1, rb);
L->cachedslot = LUAU_INSN_C(insn);
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
if (ttisnil(ra))
2022-08-04 23:35:33 +01:00
luaG_methoderror(L, ra + 1, tsvalue(kv));
}
}
else
{
Table* mt = ttisuserdata(rb) ? uvalue(rb)->metatable : L->global->mt[ttype(rb)];
const TValue* tmi = 0;
// fast-path: metatable with __namecall
if (const TValue* fn = fasttm(L, mt, TM_NAMECALL))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, fn);
L->namecall = tsvalue(kv);
}
else if ((tmi = fasttm(L, mt, TM_INDEX)) && ttistable(tmi))
{
Table* h = hvalue(tmi);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
// fast-path: metatable with __index that has method in expected slot
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n))))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, gval(n));
}
else
{
// slow-path: handles slot mismatch
setobj2s(L, ra + 1, rb);
L->cachedslot = slot;
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
if (ttisnil(ra))
2022-08-04 23:35:33 +01:00
luaG_methoderror(L, ra + 1, tsvalue(kv));
}
}
else
{
// slow-path: handles non-table __index
setobj2s(L, ra + 1, rb);
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
if (ttisnil(ra))
2022-08-04 23:35:33 +01:00
luaG_methoderror(L, ra + 1, tsvalue(kv));
}
}
// intentional fallthrough to CALL
LUAU_ASSERT(LUAU_INSN_OP(*pc) == LOP_CALL);
}
VM_CASE(LOP_CALL)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
int nparams = LUAU_INSN_B(insn) - 1;
int nresults = LUAU_INSN_C(insn) - 1;
StkId argtop = L->top;
argtop = (nparams == LUA_MULTRET) ? argtop : ra + 1 + nparams;
// slow-path: not a function call
if (LUAU_UNLIKELY(!ttisfunction(ra)))
{
VM_PROTECT_PC(); // luaV_tryfuncTM may fail
luaV_tryfuncTM(L, ra);
argtop++; // __call adds an extra self
}
Closure* ccl = clvalue(ra);
L->ci->savedpc = pc;
CallInfo* ci = incr_ci(L);
ci->func = ra;
ci->base = ra + 1;
ci->top = argtop + ccl->stacksize; // note: technically UB since we haven't reallocated the stack yet
ci->savedpc = NULL;
ci->flags = 0;
ci->nresults = nresults;
L->base = ci->base;
L->top = argtop;
// note: this reallocs stack, but we don't need to VM_PROTECT this
// this is because we're going to modify base/savedpc manually anyhow
// crucially, we can't use ra/argtop after this line
luaD_checkstack(L, ccl->stacksize);
LUAU_ASSERT(ci->top <= L->stack_last);
if (!ccl->isC)
{
Proto* p = ccl->l.p;
// fill unused parameters with nil
StkId argi = L->top;
StkId argend = L->base + p->numparams;
while (argi < argend)
2022-08-04 23:35:33 +01:00
setnilvalue(argi++); // complete missing arguments
L->top = p->is_vararg ? argi : ci->top;
// reentry
// codeentry may point to NATIVECALL instruction when proto is compiled to native code
// this will result in execution continuing in native code, and is equivalent to if (p->execdata) but has no additional overhead
// note that p->codeentry may point *outside* of p->code..p->code+p->sizecode, but that pointer never gets saved to savedpc.
pc = SingleStep ? p->code : p->codeentry;
cl = ccl;
base = L->base;
k = p->k;
VM_NEXT();
}
else
{
lua_CFunction func = ccl->c.f;
int n = func(L);
// yield
if (n < 0)
goto exit;
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// note: in MULTRET context nresults starts as -1 so i != 0 condition never activates intentionally
StkId res = ci->func;
StkId vali = L->top - n;
StkId valend = L->top;
int i;
for (i = nresults; i != 0 && vali < valend; i--)
setobj2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = (nresults == LUA_MULTRET) ? res : cip->top;
base = L->base; // stack may have been reallocated, so we need to refresh base ptr
VM_NEXT();
}
}
VM_CASE(LOP_RETURN)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = &base[LUAU_INSN_A(insn)]; // note: this can point to L->top if b == LUA_MULTRET making VM_REG unsafe to use
int b = LUAU_INSN_B(insn) - 1;
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
StkId res = ci->func; // note: we assume CALL always puts func+args and expects results to start at func
StkId vali = ra;
StkId valend =
(b == LUA_MULTRET) ? L->top : ra + b; // copy as much as possible for MULTRET calls, and only as much as needed otherwise
int nresults = ci->nresults;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// note: in MULTRET context nresults starts as -1 so i != 0 condition never activates intentionally
int i;
for (i = nresults; i != 0 && vali < valend; i--)
setobj2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = (nresults == LUA_MULTRET) ? res : cip->top;
// we're done!
if (LUAU_UNLIKELY(ci->flags & LUA_CALLINFO_RETURN))
{
goto exit;
}
LUAU_ASSERT(isLua(L->ci));
2022-09-23 20:17:25 +01:00
Closure* nextcl = clvalue(cip->func);
Proto* nextproto = nextcl->l.p;
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
#if VM_HAS_NATIVE
if (LUAU_UNLIKELY((cip->flags & LUA_CALLINFO_NATIVE) && !SingleStep))
2022-09-23 20:17:25 +01:00
{
if (L->global->ecb.enter(L, nextproto) == 1)
goto reentry;
else
goto exit;
}
#endif
// reentry
pc = cip->savedpc;
2022-09-23 20:17:25 +01:00
cl = nextcl;
base = L->base;
2022-09-23 20:17:25 +01:00
k = nextproto->k;
VM_NEXT();
}
VM_CASE(LOP_JUMP)
{
Instruction insn = *pc++;
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPIF)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
pc += l_isfalse(ra) ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPIFNOT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
pc += l_isfalse(ra) ? LUAU_INSN_D(insn) : 0;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPIFEQ)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// Note that all jumps below jump by 1 in the "false" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) == bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TLIGHTUSERDATA:
pc += (pvalue(ra) == pvalue(rb) && (!FFlag::LuauTaggedLuData || lightuserdatatag(ra) == lightuserdatatag(rb))) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) == nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TVECTOR:
pc += luai_veceq(vvalue(ra), vvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
case LUA_TFUNCTION:
case LUA_TTHREAD:
Sync to upstream/release/600 (#1076) ### What's Changed - Improve readability of unions and intersections by limiting the number of elements of those types that can be presented on a single line (gated under `FFlag::LuauToStringSimpleCompositeTypesSingleLine`) - Adds a new option to the compiler `--record-stats` to record and output compilation statistics - `if...then...else` expressions are now optimized into `AND/OR` form when possible. ### VM - Add a new `buffer` type to Luau based on the [buffer RFC](https://github.com/Roblox/luau/pull/739) and additional C API functions to work with it; this release does not include the library. - Internal C API to work with string buffers has been updated to align with Lua version more closely ### Native Codegen - Added support for new X64 instruction (rev) and new A64 instruction (bswap) in the assembler - Simplified the way numerical loop condition is translated to IR ### New Type Solver - Operator inference now handled by type families - Created a new system called `Type Paths` to explain why subtyping tests fail in order to improve the quality of error messages. - Systematic changes to implement Data Flow analysis in the new solver (`Breadcrumb` removed and replaced with `RefinementKey`) --- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com>
2023-10-21 02:10:30 +01:00
case LUA_TBUFFER:
pc += gcvalue(ra) == gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TTABLE:
// fast-path: same metatable, no EQ metamethod
if (hvalue(ra)->metatable == hvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, hvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += hvalue(ra) == hvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
case LUA_TUSERDATA:
// fast-path: same metatable, no EQ metamethod or C metamethod
if (uvalue(ra)->metatable == uvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, uvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += uvalue(ra) == uvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else if (ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, ra);
setobj2s(L, top + 2, rb);
int res = int(top - base);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, res));
pc += !l_isfalse(&base[res]) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
default:
LUAU_ASSERT(!"Unknown value type");
LUAU_UNREACHABLE(); // improves switch() codegen by eliding opcode bounds checks
}
// slow-path: tables with metatables and userdata values
// note that we don't have a fast path for userdata values without metatables, since that's very rare
int res;
VM_PROTECT(res = luaV_equalval(L, ra, rb));
pc += (res == 1) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFNOTEQ)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// Note that all jumps below jump by 1 in the "true" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) != bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TLIGHTUSERDATA:
pc += (pvalue(ra) != pvalue(rb) || (FFlag::LuauTaggedLuData && lightuserdatatag(ra) != lightuserdatatag(rb))) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) != nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TVECTOR:
pc += !luai_veceq(vvalue(ra), vvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
case LUA_TFUNCTION:
case LUA_TTHREAD:
Sync to upstream/release/600 (#1076) ### What's Changed - Improve readability of unions and intersections by limiting the number of elements of those types that can be presented on a single line (gated under `FFlag::LuauToStringSimpleCompositeTypesSingleLine`) - Adds a new option to the compiler `--record-stats` to record and output compilation statistics - `if...then...else` expressions are now optimized into `AND/OR` form when possible. ### VM - Add a new `buffer` type to Luau based on the [buffer RFC](https://github.com/Roblox/luau/pull/739) and additional C API functions to work with it; this release does not include the library. - Internal C API to work with string buffers has been updated to align with Lua version more closely ### Native Codegen - Added support for new X64 instruction (rev) and new A64 instruction (bswap) in the assembler - Simplified the way numerical loop condition is translated to IR ### New Type Solver - Operator inference now handled by type families - Created a new system called `Type Paths` to explain why subtyping tests fail in order to improve the quality of error messages. - Systematic changes to implement Data Flow analysis in the new solver (`Breadcrumb` removed and replaced with `RefinementKey`) --- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com>
2023-10-21 02:10:30 +01:00
case LUA_TBUFFER:
pc += gcvalue(ra) != gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TTABLE:
// fast-path: same metatable, no EQ metamethod
if (hvalue(ra)->metatable == hvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, hvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += hvalue(ra) != hvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
case LUA_TUSERDATA:
// fast-path: same metatable, no EQ metamethod or C metamethod
if (uvalue(ra)->metatable == uvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, uvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += uvalue(ra) != uvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else if (ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, ra);
setobj2s(L, top + 2, rb);
int res = int(top - base);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, res));
pc += l_isfalse(&base[res]) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
default:
LUAU_ASSERT(!"Unknown value type");
LUAU_UNREACHABLE(); // improves switch() codegen by eliding opcode bounds checks
}
// slow-path: tables with metatables and userdata values
// note that we don't have a fast path for userdata values without metatables, since that's very rare
int res;
VM_PROTECT(res = luaV_equalval(L, ra, rb));
pc += (res == 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFLE)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "false" case to skip over aux
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(ra) && ttisnumber(rb)))
{
pc += nvalue(ra) <= nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += luaV_strcmp(tsvalue(ra), tsvalue(rb)) <= 0 ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessequal(L, ra, rb));
pc += (res == 1) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFNOTLE)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "true" case to skip over aux
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(ra) && ttisnumber(rb)))
{
pc += !(nvalue(ra) <= nvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += !(luaV_strcmp(tsvalue(ra), tsvalue(rb)) <= 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessequal(L, ra, rb));
pc += (res == 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFLT)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "false" case to skip over aux
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(ra) && ttisnumber(rb)))
{
pc += nvalue(ra) < nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += luaV_strcmp(tsvalue(ra), tsvalue(rb)) < 0 ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessthan(L, ra, rb));
pc += (res == 1) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFNOTLT)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "true" case to skip over aux
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(ra) && ttisnumber(rb)))
{
pc += !(nvalue(ra) < nvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += !(luaV_strcmp(tsvalue(ra), tsvalue(rb)) < 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessthan(L, ra, rb));
pc += (res == 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_ADD)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(rb) && ttisnumber(rc)))
{
setnvalue(ra, nvalue(rb) + nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
const float* vc = vvalue(rc);
setvvalue(ra, vb[0] + vc[0], vb[1] + vc[1], vb[2] + vc[2], vb[3] + vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_ADD)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_ADD));
VM_NEXT();
}
}
}
VM_CASE(LOP_SUB)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(rb) && ttisnumber(rc)))
{
setnvalue(ra, nvalue(rb) - nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
const float* vc = vvalue(rc);
setvvalue(ra, vb[0] - vc[0], vb[1] - vc[1], vb[2] - vc[2], vb[3] - vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_SUB)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_SUB));
VM_NEXT();
}
}
}
VM_CASE(LOP_MUL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(rb) && ttisnumber(rc)))
{
setnvalue(ra, nvalue(rb) * nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisnumber(rc))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
float vc = cast_to(float, nvalue(rc));
setvvalue(ra, vb[0] * vc, vb[1] * vc, vb[2] * vc, vb[3] * vc);
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
const float* vc = vvalue(rc);
setvvalue(ra, vb[0] * vc[0], vb[1] * vc[1], vb[2] * vc[2], vb[3] * vc[3]);
VM_NEXT();
}
else if (ttisnumber(rb) && ttisvector(rc))
{
float vb = cast_to(float, nvalue(rb));
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vc = vvalue(rc);
setvvalue(ra, vb * vc[0], vb * vc[1], vb * vc[2], vb * vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
StkId rbc = ttisnumber(rb) ? rc : rb;
const TValue* fn = 0;
if (ttisuserdata(rbc) && (fn = luaT_gettmbyobj(L, rbc, TM_MUL)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_MUL));
VM_NEXT();
}
}
}
VM_CASE(LOP_DIV)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(rb) && ttisnumber(rc)))
{
setnvalue(ra, nvalue(rb) / nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisnumber(rc))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
float vc = cast_to(float, nvalue(rc));
setvvalue(ra, vb[0] / vc, vb[1] / vc, vb[2] / vc, vb[3] / vc);
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
const float* vc = vvalue(rc);
setvvalue(ra, vb[0] / vc[0], vb[1] / vc[1], vb[2] / vc[2], vb[3] / vc[3]);
VM_NEXT();
}
else if (ttisnumber(rb) && ttisvector(rc))
{
float vb = cast_to(float, nvalue(rb));
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vc = vvalue(rc);
setvvalue(ra, vb / vc[0], vb / vc[1], vb / vc[2], vb / vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
StkId rbc = ttisnumber(rb) ? rc : rb;
const TValue* fn = 0;
if (ttisuserdata(rbc) && (fn = luaT_gettmbyobj(L, rbc, TM_DIV)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_DIV));
VM_NEXT();
}
}
}
VM_CASE(LOP_IDIV)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (LUAU_LIKELY(ttisnumber(rb) && ttisnumber(rc)))
{
setnvalue(ra, luai_numidiv(nvalue(rb), nvalue(rc)));
VM_NEXT();
}
else if (ttisvector(rb) && ttisnumber(rc))
{
const float* vb = vvalue(rb);
float vc = cast_to(float, nvalue(rc));
setvvalue(ra, float(luai_numidiv(vb[0], vc)), float(luai_numidiv(vb[1], vc)), float(luai_numidiv(vb[2], vc)),
float(luai_numidiv(vb[3], vc)));
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
StkId rbc = ttisnumber(rb) ? rc : rb;
const TValue* fn = 0;
if (ttisuserdata(rbc) && (fn = luaT_gettmbyobj(L, rbc, TM_IDIV)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_IDIV));
VM_NEXT();
}
}
}
VM_CASE(LOP_MOD)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
double nb = nvalue(rb);
double nc = nvalue(rc);
setnvalue(ra, luai_nummod(nb, nc));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_MOD));
VM_NEXT();
}
}
VM_CASE(LOP_POW)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
setnvalue(ra, pow(nvalue(rb), nvalue(rc)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_POW));
VM_NEXT();
}
}
VM_CASE(LOP_ADDK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
setnvalue(ra, nvalue(rb) + nvalue(kv));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_ADD));
VM_NEXT();
}
}
VM_CASE(LOP_SUBK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
setnvalue(ra, nvalue(rb) - nvalue(kv));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_SUB));
VM_NEXT();
}
}
VM_CASE(LOP_MULK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(rb)))
{
setnvalue(ra, nvalue(rb) * nvalue(kv));
VM_NEXT();
}
else if (ttisvector(rb))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
float vc = cast_to(float, nvalue(kv));
setvvalue(ra, vb[0] * vc, vb[1] * vc, vb[2] * vc, vb[3] * vc);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_MUL)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_MUL));
VM_NEXT();
}
}
}
VM_CASE(LOP_DIVK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(rb)))
{
setnvalue(ra, nvalue(rb) / nvalue(kv));
VM_NEXT();
}
else if (ttisvector(rb))
{
Add SUBRK and DIVRK bytecode instructions to bytecode v5 (#1115) Right now, we can compile R\*K for all arithmetic instructions, but K\*R gets compiled into two instructions (LOADN/LOADK + arithmetic opcode). This is problematic since it leads to reduced performance for some code. However, we'd like to avoid adding reverse variants of ADDK et al for all opcodes to avoid the increase in I$ footprint for interpreter. Looking at the arithmetic instructions, % and // don't have interesting use cases for K\*V; ^ is sometimes used with constant on the left hand side but this would need to call pow() by necessity in all cases so it would be slow regardless of the dispatch overhead. This leaves the four basic arithmetic operations. For + and \*, we can implement a compiler-side optimization in the future that transforms K\*R to R\*K automatically. This could either be done unconditionally at -O2, or conditionally based on the type of the value (driven by type annotations / inference) -- this technically changes behavior in presence of metamethods, although it might be sensible to just always do this because non-commutative +/* are evil. However, for - and / it is impossible for the compiler to optimize this in the future, so we need dedicated opcodes. This only increases the interpreter size by ~300 bytes (~1.5%) on X64. This makes spectral-norm and math-partial-sums 6% faster; maybe more importantly, voxelgen gets 1.5% faster (so this change does have real-world impact). To avoid the proliferation of bytecode versions this change piggybacks on the bytecode version bump that was just made in 604 for vector constants; we would still be able to enable these independently but we'll consider v5 complete when both are enabled. Related: #626 --------- Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
2023-11-28 15:35:01 +00:00
const float* vb = vvalue(rb);
float nc = cast_to(float, nvalue(kv));
setvvalue(ra, vb[0] / nc, vb[1] / nc, vb[2] / nc, vb[3] / nc);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_DIV)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_DIV));
VM_NEXT();
}
}
}
VM_CASE(LOP_IDIVK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (LUAU_LIKELY(ttisnumber(rb)))
{
setnvalue(ra, luai_numidiv(nvalue(rb), nvalue(kv)));
VM_NEXT();
}
else if (ttisvector(rb))
{
const float* vb = vvalue(rb);
float vc = cast_to(float, nvalue(kv));
setvvalue(ra, float(luai_numidiv(vb[0], vc)), float(luai_numidiv(vb[1], vc)), float(luai_numidiv(vb[2], vc)),
float(luai_numidiv(vb[3], vc)));
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_IDIV)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
VM_PROTECT(luaV_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_IDIV));
VM_NEXT();
}
}
}
VM_CASE(LOP_MODK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
double nb = nvalue(rb);
double nk = nvalue(kv);
setnvalue(ra, luai_nummod(nb, nk));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_MOD));
VM_NEXT();
}
}
VM_CASE(LOP_POWK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
double nb = nvalue(rb);
double nk = nvalue(kv);
// pow is very slow so we specialize this for ^2, ^0.5 and ^3
double r = (nk == 2.0) ? nb * nb : (nk == 0.5) ? sqrt(nb) : (nk == 3.0) ? nb * nb * nb : pow(nb, nk);
setnvalue(ra, r);
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_POW));
VM_NEXT();
}
}
VM_CASE(LOP_AND)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? rb : rc);
VM_NEXT();
}
VM_CASE(LOP_OR)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? rc : rb);
VM_NEXT();
}
VM_CASE(LOP_ANDK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? rb : kv);
VM_NEXT();
}
VM_CASE(LOP_ORK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? kv : rb);
VM_NEXT();
}
VM_CASE(LOP_CONCAT)
{
Instruction insn = *pc++;
int b = LUAU_INSN_B(insn);
int c = LUAU_INSN_C(insn);
// This call may realloc the stack! So we need to query args further down
VM_PROTECT(luaV_concat(L, c - b + 1, c));
StkId ra = VM_REG(LUAU_INSN_A(insn));
setobj2s(L, ra, base + b);
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_NOT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
int res = l_isfalse(rb);
setbvalue(ra, res);
VM_NEXT();
}
VM_CASE(LOP_MINUS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
// fast-path
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttisnumber(rb)))
{
setnvalue(ra, -nvalue(rb));
VM_NEXT();
}
else if (ttisvector(rb))
{
Sync to upstream/release/605 (#1118) - Implemented [Require by String with Relative Paths](https://github.com/luau-lang/rfcs/blob/master/docs/new-require-by-string-semantics.md) RFC - Implemented [Require by String with Aliases](https://github.com/luau-lang/rfcs/blob/master/docs/require-by-string-aliases.md) RFC with support for `paths` and `alias` arrays in .luarc - Added SUBRK and DIVRK bytecode instructions to speed up constant-number and constant/number operations - Added `--vector-lib`, `--vector-ctor` and `--vector-type` options to luau-compile to support code with vectors New Solver - Correctness fixes to subtyping - Improvements to dataflow analysis Native Code Generation - Added bytecode analysis pass to predict type tags used in operations - Fixed rare cases of numerical loops being generated without an interrupt instruction - Restored optimization data propagation into the linear block - Duplicate buffer length checks are optimized away Miscellaneous - Small performance improvements to new non-strict mode - Introduced more scripts for fuzzing Luau and processing the results, including fuzzer build support for CMake Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-12-02 07:46:57 +00:00
const float* vb = vvalue(rb);
setvvalue(ra, -vb[0], -vb[1], -vb[2], -vb[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_UNM)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 2 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
L->top = top + 2;
2022-09-23 20:17:25 +01:00
VM_PROTECT(luaV_callTM(L, 1, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rb, TM_UNM));
VM_NEXT();
}
}
}
VM_CASE(LOP_LENGTH)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
// fast-path #1: tables
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (LUAU_LIKELY(ttistable(rb)))
{
2022-07-01 00:52:43 +01:00
Table* h = hvalue(rb);
2022-08-04 23:35:33 +01:00
if (fastnotm(h->metatable, TM_LEN))
2022-07-01 00:52:43 +01:00
{
setnvalue(ra, cast_num(luaH_getn(h)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_dolen(L, ra, rb));
VM_NEXT();
}
}
// fast-path #2: strings (not very important but easy to do)
else if (ttisstring(rb))
{
2022-07-01 00:52:43 +01:00
TString* ts = tsvalue(rb);
setnvalue(ra, cast_num(ts->len));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_dolen(L, ra, rb));
VM_NEXT();
}
}
VM_CASE(LOP_NEWTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
int b = LUAU_INSN_B(insn);
uint32_t aux = *pc++;
VM_PROTECT_PC(); // luaH_new may fail due to OOM
sethvalue(L, ra, luaH_new(L, aux, b == 0 ? 0 : (1 << (b - 1))));
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_DUPTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
VM_PROTECT_PC(); // luaH_clone may fail due to OOM
sethvalue(L, ra, luaH_clone(L, hvalue(kv)));
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_SETLIST)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = &base[LUAU_INSN_B(insn)]; // note: this can point to L->top if c == LUA_MULTRET making VM_REG unsafe to use
int c = LUAU_INSN_C(insn) - 1;
uint32_t index = *pc++;
if (c == LUA_MULTRET)
{
c = int(L->top - rb);
L->top = L->ci->top;
}
Table* h = hvalue(ra);
// TODO: we really don't need this anymore
if (!ttistable(ra))
return; // temporary workaround to weaken a rather powerful exploitation primitive in case of a MITM attack on bytecode
int last = index + c - 1;
if (last > h->sizearray)
{
VM_PROTECT_PC(); // luaH_resizearray may fail due to OOM
luaH_resizearray(L, h, last);
}
TValue* array = h->array;
for (int i = 0; i < c; ++i)
setobj2t(L, &array[index + i - 1], rb + i);
luaC_barrierfast(L, h);
VM_NEXT();
}
VM_CASE(LOP_FORNPREP)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
if (!ttisnumber(ra + 0) || !ttisnumber(ra + 1) || !ttisnumber(ra + 2))
{
// slow-path: can convert arguments to numbers and trigger Lua errors
2022-07-08 02:22:39 +01:00
// Note: this doesn't reallocate stack so we don't need to recompute ra/base
VM_PROTECT_PC();
2022-09-23 20:17:25 +01:00
luaV_prepareFORN(L, ra + 0, ra + 1, ra + 2);
}
double limit = nvalue(ra + 0);
double step = nvalue(ra + 1);
double idx = nvalue(ra + 2);
// Note: make sure the loop condition is exactly the same between this and LOP_FORNLOOP so that we handle NaN/etc. consistently
pc += (step > 0 ? idx <= limit : limit <= idx) ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FORNLOOP)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
LUAU_ASSERT(ttisnumber(ra + 0) && ttisnumber(ra + 1) && ttisnumber(ra + 2));
double limit = nvalue(ra + 0);
double step = nvalue(ra + 1);
double idx = nvalue(ra + 2) + step;
setnvalue(ra + 2, idx);
// Note: make sure the loop condition is exactly the same between this and LOP_FORNPREP so that we handle NaN/etc. consistently
if (step > 0 ? idx <= limit : limit <= idx)
{
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// fallthrough to exit
VM_NEXT();
}
}
2022-05-06 01:03:43 +01:00
VM_CASE(LOP_FORGPREP)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
if (ttisfunction(ra))
{
2022-08-04 23:35:33 +01:00
// will be called during FORGLOOP
2022-05-06 01:03:43 +01:00
}
else
2022-05-06 01:03:43 +01:00
{
Table* mt = ttistable(ra) ? hvalue(ra)->metatable : ttisuserdata(ra) ? uvalue(ra)->metatable : cast_to(Table*, NULL);
if (const TValue* fn = fasttm(L, mt, TM_ITER))
{
setobj2s(L, ra + 1, ra);
setobj2s(L, ra, fn);
2022-08-04 23:35:33 +01:00
L->top = ra + 2; // func + self arg
2022-05-06 01:03:43 +01:00
LUAU_ASSERT(L->top <= L->stack_last);
VM_PROTECT(luaD_call(L, ra, 3));
L->top = L->ci->top;
2022-07-01 00:52:43 +01:00
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
2022-07-01 00:52:43 +01:00
ra = VM_REG(LUAU_INSN_A(insn));
2022-08-04 23:35:33 +01:00
// protect against __iter returning nil, since nil is used as a marker for builtin iteration in FORGLOOP
2022-07-01 00:52:43 +01:00
if (ttisnil(ra))
{
VM_PROTECT_PC(); // next call always errors
luaG_typeerror(L, ra, "call");
2022-07-01 00:52:43 +01:00
}
2022-05-06 01:03:43 +01:00
}
else if (fasttm(L, mt, TM_CALL))
{
2022-08-04 23:35:33 +01:00
// table or userdata with __call, will be called during FORGLOOP
// TODO: we might be able to stop supporting this depending on whether it's used in practice
2022-05-06 01:03:43 +01:00
}
else if (ttistable(ra))
{
2022-08-04 23:35:33 +01:00
// set up registers for builtin iteration
2022-05-06 01:03:43 +01:00
setobj2s(L, ra + 1, ra);
Add tagged lightuserdata (#1087) This change adds support for tagged lightuserdata and optional custom typenames for lightuserdata. Background: Lightuserdata is an efficient representation for many kinds of unmanaged handles and resources in a game engine. However, currently the VM only supports one kind of lightuserdata, which makes it problematic in practice. For example, it's not possible to distinguish between different kinds of lightuserdata in Lua bindings, which can lead to unsafe practices and even crashes when a wrong kind of lightuserdata is passed to a binding function. Tagged lightuserdata work similarly to tagged userdata, i.e. they allow checking the tag quickly using lua_tolightuserdatatagged (or lua_lightuserdatatag). The tag is stored in the 'extra' field of TValue so it will add no cost to the (untagged) lightuserdata type. Alternatives would be to use full userdata values or use bitpacking to embed type information into lightuserdata on application level. Unfortunately these options are not that great in practice: full userdata have major performance implications and bitpacking fails in cases where full 64 bits are already used (e.g. pointers or 64-bit hashes). Lightuserdata names are not strictly necessary but they are rather convenient when debugging Lua code. More precise error messages and tostring returning more specific typename are useful to have in practice (e.g. "resource" or "entity" instead of the more generic "userdata"). Impl note: I did not add support for renaming tags in lua_setlightuserdataname as I'm not sure if it's possible to free fixed strings. If it's simple enough, maybe we should allow renaming (although I can't think of a specific need for it)? --------- Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
2023-12-14 23:05:51 +00:00
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)), LU_TAG_ITERATOR);
2022-05-06 01:03:43 +01:00
setnilvalue(ra);
}
else
{
VM_PROTECT_PC(); // next call always errors
luaG_typeerror(L, ra, "iterate over");
2022-05-06 01:03:43 +01:00
}
}
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FORGLOOP)
{
VM_INTERRUPT();
Instruction insn = *pc++;
2022-05-06 01:03:43 +01:00
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc;
2022-05-06 01:03:43 +01:00
// fast-path: builtin table iteration
2022-07-01 00:52:43 +01:00
// note: ra=nil guarantees ra+1=table and ra+2=userdata because of the setup by FORGPREP* opcodes
// TODO: remove the table check per guarantee above
if (ttisnil(ra) && ttistable(ra + 1))
2022-05-06 01:03:43 +01:00
{
Table* h = hvalue(ra + 1);
int index = int(reinterpret_cast<uintptr_t>(pvalue(ra + 2)));
int sizearray = h->sizearray;
// clear extra variables since we might have more than two
2022-07-01 00:52:43 +01:00
// note: while aux encodes ipairs bit, when set we always use 2 variables, so it's safe to check this via a signed comparison
if (LUAU_UNLIKELY(int(aux) > 2))
2022-05-06 01:03:43 +01:00
for (int i = 2; i < int(aux); ++i)
setnilvalue(ra + 3 + i);
2022-07-01 00:52:43 +01:00
// terminate ipairs-style traversal early when encountering nil
if (int(aux) < 0 && (unsigned(index) >= unsigned(sizearray) || ttisnil(&h->array[index])))
{
pc++;
VM_NEXT();
}
2022-05-06 01:03:43 +01:00
// first we advance index through the array portion
while (unsigned(index) < unsigned(sizearray))
{
2022-07-01 00:52:43 +01:00
TValue* e = &h->array[index];
if (!ttisnil(e))
2022-05-06 01:03:43 +01:00
{
Add tagged lightuserdata (#1087) This change adds support for tagged lightuserdata and optional custom typenames for lightuserdata. Background: Lightuserdata is an efficient representation for many kinds of unmanaged handles and resources in a game engine. However, currently the VM only supports one kind of lightuserdata, which makes it problematic in practice. For example, it's not possible to distinguish between different kinds of lightuserdata in Lua bindings, which can lead to unsafe practices and even crashes when a wrong kind of lightuserdata is passed to a binding function. Tagged lightuserdata work similarly to tagged userdata, i.e. they allow checking the tag quickly using lua_tolightuserdatatagged (or lua_lightuserdatatag). The tag is stored in the 'extra' field of TValue so it will add no cost to the (untagged) lightuserdata type. Alternatives would be to use full userdata values or use bitpacking to embed type information into lightuserdata on application level. Unfortunately these options are not that great in practice: full userdata have major performance implications and bitpacking fails in cases where full 64 bits are already used (e.g. pointers or 64-bit hashes). Lightuserdata names are not strictly necessary but they are rather convenient when debugging Lua code. More precise error messages and tostring returning more specific typename are useful to have in practice (e.g. "resource" or "entity" instead of the more generic "userdata"). Impl note: I did not add support for renaming tags in lua_setlightuserdataname as I'm not sure if it's possible to free fixed strings. If it's simple enough, maybe we should allow renaming (although I can't think of a specific need for it)? --------- Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
2023-12-14 23:05:51 +00:00
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)), LU_TAG_ITERATOR);
2022-05-06 01:03:43 +01:00
setnvalue(ra + 3, double(index + 1));
2022-07-01 00:52:43 +01:00
setobj2s(L, ra + 4, e);
2022-05-06 01:03:43 +01:00
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
2022-07-01 00:52:43 +01:00
int sizenode = 1 << h->lsizenode;
2022-05-06 01:03:43 +01:00
// then we advance index through the hash portion
while (unsigned(index - sizearray) < unsigned(sizenode))
{
LuaNode* n = &h->node[index - sizearray];
if (!ttisnil(gval(n)))
{
Add tagged lightuserdata (#1087) This change adds support for tagged lightuserdata and optional custom typenames for lightuserdata. Background: Lightuserdata is an efficient representation for many kinds of unmanaged handles and resources in a game engine. However, currently the VM only supports one kind of lightuserdata, which makes it problematic in practice. For example, it's not possible to distinguish between different kinds of lightuserdata in Lua bindings, which can lead to unsafe practices and even crashes when a wrong kind of lightuserdata is passed to a binding function. Tagged lightuserdata work similarly to tagged userdata, i.e. they allow checking the tag quickly using lua_tolightuserdatatagged (or lua_lightuserdatatag). The tag is stored in the 'extra' field of TValue so it will add no cost to the (untagged) lightuserdata type. Alternatives would be to use full userdata values or use bitpacking to embed type information into lightuserdata on application level. Unfortunately these options are not that great in practice: full userdata have major performance implications and bitpacking fails in cases where full 64 bits are already used (e.g. pointers or 64-bit hashes). Lightuserdata names are not strictly necessary but they are rather convenient when debugging Lua code. More precise error messages and tostring returning more specific typename are useful to have in practice (e.g. "resource" or "entity" instead of the more generic "userdata"). Impl note: I did not add support for renaming tags in lua_setlightuserdataname as I'm not sure if it's possible to free fixed strings. If it's simple enough, maybe we should allow renaming (although I can't think of a specific need for it)? --------- Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
2023-12-14 23:05:51 +00:00
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)), LU_TAG_ITERATOR);
2022-05-06 01:03:43 +01:00
getnodekey(L, ra + 3, n);
setobj2s(L, ra + 4, gval(n));
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
// fallthrough to exit
pc++;
VM_NEXT();
}
else
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
setobj2s(L, ra + 3 + 2, ra + 2);
setobj2s(L, ra + 3 + 1, ra + 1);
setobj2s(L, ra + 3, ra);
2022-05-06 01:03:43 +01:00
2022-08-04 23:35:33 +01:00
L->top = ra + 3 + 3; // func + 2 args (state and index)
2022-05-06 01:03:43 +01:00
LUAU_ASSERT(L->top <= L->stack_last);
2022-07-01 00:52:43 +01:00
VM_PROTECT(luaD_call(L, ra + 3, uint8_t(aux)));
2022-05-06 01:03:43 +01:00
L->top = L->ci->top;
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
// copy first variable back into the iteration index
setobj2s(L, ra + 2, ra + 3);
2022-05-06 01:03:43 +01:00
// note that we need to increment pc by 1 to exit the loop since we need to skip over aux
pc += ttisnil(ra + 3) ? 1 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_FORGPREP_INEXT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: ipairs/inext
if (cl->env->safeenv && ttistable(ra + 1) && ttisnumber(ra + 2) && nvalue(ra + 2) == 0.0)
{
setnilvalue(ra);
2022-08-04 23:35:33 +01:00
// ra+1 is already the table
Add tagged lightuserdata (#1087) This change adds support for tagged lightuserdata and optional custom typenames for lightuserdata. Background: Lightuserdata is an efficient representation for many kinds of unmanaged handles and resources in a game engine. However, currently the VM only supports one kind of lightuserdata, which makes it problematic in practice. For example, it's not possible to distinguish between different kinds of lightuserdata in Lua bindings, which can lead to unsafe practices and even crashes when a wrong kind of lightuserdata is passed to a binding function. Tagged lightuserdata work similarly to tagged userdata, i.e. they allow checking the tag quickly using lua_tolightuserdatatagged (or lua_lightuserdatatag). The tag is stored in the 'extra' field of TValue so it will add no cost to the (untagged) lightuserdata type. Alternatives would be to use full userdata values or use bitpacking to embed type information into lightuserdata on application level. Unfortunately these options are not that great in practice: full userdata have major performance implications and bitpacking fails in cases where full 64 bits are already used (e.g. pointers or 64-bit hashes). Lightuserdata names are not strictly necessary but they are rather convenient when debugging Lua code. More precise error messages and tostring returning more specific typename are useful to have in practice (e.g. "resource" or "entity" instead of the more generic "userdata"). Impl note: I did not add support for renaming tags in lua_setlightuserdataname as I'm not sure if it's possible to free fixed strings. If it's simple enough, maybe we should allow renaming (although I can't think of a specific need for it)? --------- Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
2023-12-14 23:05:51 +00:00
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)), LU_TAG_ITERATOR);
}
else if (!ttisfunction(ra))
2022-05-06 01:03:43 +01:00
{
VM_PROTECT_PC(); // next call always errors
luaG_typeerror(L, ra, "iterate over");
2022-05-06 01:03:43 +01:00
}
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_DEP_FORGLOOP_INEXT)
{
LUAU_ASSERT(!"Unsupported deprecated opcode");
LUAU_UNREACHABLE();
}
VM_CASE(LOP_FORGPREP_NEXT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: pairs/next
if (cl->env->safeenv && ttistable(ra + 1) && ttisnil(ra + 2))
{
setnilvalue(ra);
2022-08-04 23:35:33 +01:00
// ra+1 is already the table
Add tagged lightuserdata (#1087) This change adds support for tagged lightuserdata and optional custom typenames for lightuserdata. Background: Lightuserdata is an efficient representation for many kinds of unmanaged handles and resources in a game engine. However, currently the VM only supports one kind of lightuserdata, which makes it problematic in practice. For example, it's not possible to distinguish between different kinds of lightuserdata in Lua bindings, which can lead to unsafe practices and even crashes when a wrong kind of lightuserdata is passed to a binding function. Tagged lightuserdata work similarly to tagged userdata, i.e. they allow checking the tag quickly using lua_tolightuserdatatagged (or lua_lightuserdatatag). The tag is stored in the 'extra' field of TValue so it will add no cost to the (untagged) lightuserdata type. Alternatives would be to use full userdata values or use bitpacking to embed type information into lightuserdata on application level. Unfortunately these options are not that great in practice: full userdata have major performance implications and bitpacking fails in cases where full 64 bits are already used (e.g. pointers or 64-bit hashes). Lightuserdata names are not strictly necessary but they are rather convenient when debugging Lua code. More precise error messages and tostring returning more specific typename are useful to have in practice (e.g. "resource" or "entity" instead of the more generic "userdata"). Impl note: I did not add support for renaming tags in lua_setlightuserdataname as I'm not sure if it's possible to free fixed strings. If it's simple enough, maybe we should allow renaming (although I can't think of a specific need for it)? --------- Co-authored-by: Petri Häkkinen <petrih@rmd.remedy.fi>
2023-12-14 23:05:51 +00:00
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)), LU_TAG_ITERATOR);
}
else if (!ttisfunction(ra))
2022-05-06 01:03:43 +01:00
{
VM_PROTECT_PC(); // next call always errors
luaG_typeerror(L, ra, "iterate over");
2022-05-06 01:03:43 +01:00
}
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_NATIVECALL)
{
Proto* p = cl->l.p;
LUAU_ASSERT(p->execdata);
CallInfo* ci = L->ci;
ci->flags = LUA_CALLINFO_NATIVE;
ci->savedpc = p->code;
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
#if VM_HAS_NATIVE
if (L->global->ecb.enter(L, p) == 1)
goto reentry;
else
goto exit;
#else
LUAU_ASSERT(!"Opcode is only valid when VM_HAS_NATIVE is defined");
LUAU_UNREACHABLE();
#endif
}
VM_CASE(LOP_GETVARARGS)
{
Instruction insn = *pc++;
int b = LUAU_INSN_B(insn) - 1;
int n = cast_int(base - L->ci->func) - cl->l.p->numparams - 1;
if (b == LUA_MULTRET)
{
VM_PROTECT(luaD_checkstack(L, n));
StkId ra = VM_REG(LUAU_INSN_A(insn)); // previous call may change the stack
for (int j = 0; j < n; j++)
setobj2s(L, ra + j, base - n + j);
L->top = ra + n;
VM_NEXT();
}
else
{
StkId ra = VM_REG(LUAU_INSN_A(insn));
for (int j = 0; j < b && j < n; j++)
setobj2s(L, ra + j, base - n + j);
for (int j = n; j < b; j++)
setnilvalue(ra + j);
VM_NEXT();
}
}
VM_CASE(LOP_DUPCLOSURE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
Closure* kcl = clvalue(kv);
VM_PROTECT_PC(); // luaF_newLclosure may fail due to OOM
// clone closure if the environment is not shared
// note: we save closure to stack early in case the code below wants to capture it by value
Closure* ncl = (kcl->env == cl->env) ? kcl : luaF_newLclosure(L, kcl->nupvalues, cl->env, kcl->l.p);
setclvalue(L, ra, ncl);
// this loop does three things:
// - if the closure was created anew, it just fills it with upvalues
// - if the closure from the constant table is used, it fills it with upvalues so that it can be shared in the future
// - if the closure is reused, it checks if the reuse is safe via rawequal, and falls back to duplicating the closure
// normally this would use two separate loops, for reuse check and upvalue setup, but MSVC codegen goes crazy if you do that
for (int ui = 0; ui < kcl->nupvalues; ++ui)
{
Instruction uinsn = pc[ui];
LUAU_ASSERT(LUAU_INSN_OP(uinsn) == LOP_CAPTURE);
LUAU_ASSERT(LUAU_INSN_A(uinsn) == LCT_VAL || LUAU_INSN_A(uinsn) == LCT_UPVAL);
TValue* uv = (LUAU_INSN_A(uinsn) == LCT_VAL) ? VM_REG(LUAU_INSN_B(uinsn)) : VM_UV(LUAU_INSN_B(uinsn));
// check if the existing closure is safe to reuse
if (ncl == kcl && luaO_rawequalObj(&ncl->l.uprefs[ui], uv))
continue;
// lazily clone the closure and update the upvalues
if (ncl == kcl && kcl->preload == 0)
{
ncl = luaF_newLclosure(L, kcl->nupvalues, cl->env, kcl->l.p);
setclvalue(L, ra, ncl);
ui = -1; // restart the loop to fill all upvalues
continue;
}
// this updates a newly created closure, or an existing closure created during preload, in which case we need a barrier
setobj(L, &ncl->l.uprefs[ui], uv);
luaC_barrier(L, ncl, uv);
}
// this is a noop if ncl is newly created or shared successfully, but it has to run after the closure is preloaded for the first time
ncl->preload = 0;
if (kcl != ncl)
VM_PROTECT(luaC_checkGC(L));
pc += kcl->nupvalues;
VM_NEXT();
}
VM_CASE(LOP_PREPVARARGS)
{
Instruction insn = *pc++;
int numparams = LUAU_INSN_A(insn);
// all fixed parameters are copied after the top so we need more stack space
VM_PROTECT(luaD_checkstack(L, cl->stacksize + numparams));
// the caller must have filled extra fixed arguments with nil
LUAU_ASSERT(cast_int(L->top - base) >= numparams);
// move fixed parameters to final position
2022-08-04 23:35:33 +01:00
StkId fixed = base; // first fixed argument
base = L->top; // final position of first argument
for (int i = 0; i < numparams; ++i)
{
setobj2s(L, base + i, fixed + i);
setnilvalue(fixed + i);
}
// rewire our stack frame to point to the new base
L->ci->base = base;
L->ci->top = base + cl->stacksize;
L->base = base;
L->top = L->ci->top;
VM_NEXT();
}
VM_CASE(LOP_JUMPBACK)
{
VM_INTERRUPT();
Instruction insn = *pc++;
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_LOADKX)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
setobj2s(L, ra, kv);
VM_NEXT();
}
VM_CASE(LOP_JUMPX)
{
VM_INTERRUPT();
Instruction insn = *pc++;
pc += LUAU_INSN_E(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FASTCALL)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
int skip = LUAU_INSN_C(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = LUAU_INSN_B(call) - 1;
int nresults = LUAU_INSN_C(call) - 1;
nparams = (nparams == LUA_MULTRET) ? int(L->top - ra - 1) : nparams;
luau_FastFunction f = luauF_table[bfid];
LUAU_ASSERT(f);
if (cl->env->safeenv)
{
VM_PROTECT_PC(); // f may fail due to OOM
int n = f(L, ra, ra + 1, nresults, ra + 2, nparams);
if (n >= 0)
{
// when nresults != MULTRET, L->top might be pointing to the middle of stack frame if nparams is equal to MULTRET
// instead of restoring L->top to L->ci->top if nparams is MULTRET, we do it unconditionally to skip an extra check
L->top = (nresults == LUA_MULTRET) ? ra + n : L->ci->top;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_COVERAGE)
{
Instruction insn = *pc++;
int hits = LUAU_INSN_E(insn);
// update hits with saturated add and patch the instruction in place
hits = (hits < (1 << 23) - 1) ? hits + 1 : hits;
VM_PATCH_E(pc - 1, hits);
VM_NEXT();
}
VM_CASE(LOP_CAPTURE)
{
LUAU_ASSERT(!"CAPTURE is a pseudo-opcode and must be executed as part of NEWCLOSURE");
LUAU_UNREACHABLE();
}
Add SUBRK and DIVRK bytecode instructions to bytecode v5 (#1115) Right now, we can compile R\*K for all arithmetic instructions, but K\*R gets compiled into two instructions (LOADN/LOADK + arithmetic opcode). This is problematic since it leads to reduced performance for some code. However, we'd like to avoid adding reverse variants of ADDK et al for all opcodes to avoid the increase in I$ footprint for interpreter. Looking at the arithmetic instructions, % and // don't have interesting use cases for K\*V; ^ is sometimes used with constant on the left hand side but this would need to call pow() by necessity in all cases so it would be slow regardless of the dispatch overhead. This leaves the four basic arithmetic operations. For + and \*, we can implement a compiler-side optimization in the future that transforms K\*R to R\*K automatically. This could either be done unconditionally at -O2, or conditionally based on the type of the value (driven by type annotations / inference) -- this technically changes behavior in presence of metamethods, although it might be sensible to just always do this because non-commutative +/* are evil. However, for - and / it is impossible for the compiler to optimize this in the future, so we need dedicated opcodes. This only increases the interpreter size by ~300 bytes (~1.5%) on X64. This makes spectral-norm and math-partial-sums 6% faster; maybe more importantly, voxelgen gets 1.5% faster (so this change does have real-world impact). To avoid the proliferation of bytecode versions this change piggybacks on the bytecode version bump that was just made in 604 for vector constants; we would still be able to enable these independently but we'll consider v5 complete when both are enabled. Related: #626 --------- Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
2023-11-28 15:35:01 +00:00
VM_CASE(LOP_SUBRK)
{
Add SUBRK and DIVRK bytecode instructions to bytecode v5 (#1115) Right now, we can compile R\*K for all arithmetic instructions, but K\*R gets compiled into two instructions (LOADN/LOADK + arithmetic opcode). This is problematic since it leads to reduced performance for some code. However, we'd like to avoid adding reverse variants of ADDK et al for all opcodes to avoid the increase in I$ footprint for interpreter. Looking at the arithmetic instructions, % and // don't have interesting use cases for K\*V; ^ is sometimes used with constant on the left hand side but this would need to call pow() by necessity in all cases so it would be slow regardless of the dispatch overhead. This leaves the four basic arithmetic operations. For + and \*, we can implement a compiler-side optimization in the future that transforms K\*R to R\*K automatically. This could either be done unconditionally at -O2, or conditionally based on the type of the value (driven by type annotations / inference) -- this technically changes behavior in presence of metamethods, although it might be sensible to just always do this because non-commutative +/* are evil. However, for - and / it is impossible for the compiler to optimize this in the future, so we need dedicated opcodes. This only increases the interpreter size by ~300 bytes (~1.5%) on X64. This makes spectral-norm and math-partial-sums 6% faster; maybe more importantly, voxelgen gets 1.5% faster (so this change does have real-world impact). To avoid the proliferation of bytecode versions this change piggybacks on the bytecode version bump that was just made in 604 for vector constants; we would still be able to enable these independently but we'll consider v5 complete when both are enabled. Related: #626 --------- Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
2023-11-28 15:35:01 +00:00
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rc))
{
setnvalue(ra, nvalue(kv) - nvalue(rc));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, kv, rc, TM_SUB));
VM_NEXT();
}
}
Add SUBRK and DIVRK bytecode instructions to bytecode v5 (#1115) Right now, we can compile R\*K for all arithmetic instructions, but K\*R gets compiled into two instructions (LOADN/LOADK + arithmetic opcode). This is problematic since it leads to reduced performance for some code. However, we'd like to avoid adding reverse variants of ADDK et al for all opcodes to avoid the increase in I$ footprint for interpreter. Looking at the arithmetic instructions, % and // don't have interesting use cases for K\*V; ^ is sometimes used with constant on the left hand side but this would need to call pow() by necessity in all cases so it would be slow regardless of the dispatch overhead. This leaves the four basic arithmetic operations. For + and \*, we can implement a compiler-side optimization in the future that transforms K\*R to R\*K automatically. This could either be done unconditionally at -O2, or conditionally based on the type of the value (driven by type annotations / inference) -- this technically changes behavior in presence of metamethods, although it might be sensible to just always do this because non-commutative +/* are evil. However, for - and / it is impossible for the compiler to optimize this in the future, so we need dedicated opcodes. This only increases the interpreter size by ~300 bytes (~1.5%) on X64. This makes spectral-norm and math-partial-sums 6% faster; maybe more importantly, voxelgen gets 1.5% faster (so this change does have real-world impact). To avoid the proliferation of bytecode versions this change piggybacks on the bytecode version bump that was just made in 604 for vector constants; we would still be able to enable these independently but we'll consider v5 complete when both are enabled. Related: #626 --------- Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
2023-11-28 15:35:01 +00:00
VM_CASE(LOP_DIVRK)
{
Add SUBRK and DIVRK bytecode instructions to bytecode v5 (#1115) Right now, we can compile R\*K for all arithmetic instructions, but K\*R gets compiled into two instructions (LOADN/LOADK + arithmetic opcode). This is problematic since it leads to reduced performance for some code. However, we'd like to avoid adding reverse variants of ADDK et al for all opcodes to avoid the increase in I$ footprint for interpreter. Looking at the arithmetic instructions, % and // don't have interesting use cases for K\*V; ^ is sometimes used with constant on the left hand side but this would need to call pow() by necessity in all cases so it would be slow regardless of the dispatch overhead. This leaves the four basic arithmetic operations. For + and \*, we can implement a compiler-side optimization in the future that transforms K\*R to R\*K automatically. This could either be done unconditionally at -O2, or conditionally based on the type of the value (driven by type annotations / inference) -- this technically changes behavior in presence of metamethods, although it might be sensible to just always do this because non-commutative +/* are evil. However, for - and / it is impossible for the compiler to optimize this in the future, so we need dedicated opcodes. This only increases the interpreter size by ~300 bytes (~1.5%) on X64. This makes spectral-norm and math-partial-sums 6% faster; maybe more importantly, voxelgen gets 1.5% faster (so this change does have real-world impact). To avoid the proliferation of bytecode versions this change piggybacks on the bytecode version bump that was just made in 604 for vector constants; we would still be able to enable these independently but we'll consider v5 complete when both are enabled. Related: #626 --------- Co-authored-by: vegorov-rbx <75688451+vegorov-rbx@users.noreply.github.com>
2023-11-28 15:35:01 +00:00
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (LUAU_LIKELY(ttisnumber(rc)))
{
setnvalue(ra, nvalue(kv) / nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rc))
{
float nb = cast_to(float, nvalue(kv));
const float* vc = vvalue(rc);
setvvalue(ra, nb / vc[0], nb / vc[1], nb / vc[2], nb / vc[3]);
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, kv, rc, TM_DIV));
VM_NEXT();
}
}
VM_CASE(LOP_FASTCALL1)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
TValue* arg = VM_REG(LUAU_INSN_B(insn));
int skip = LUAU_INSN_C(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = 1;
int nresults = LUAU_INSN_C(call) - 1;
luau_FastFunction f = luauF_table[bfid];
LUAU_ASSERT(f);
if (cl->env->safeenv)
{
VM_PROTECT_PC(); // f may fail due to OOM
2022-05-06 01:03:43 +01:00
int n = f(L, ra, arg, nresults, NULL, nparams);
if (n >= 0)
{
if (nresults == LUA_MULTRET)
L->top = ra + n;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_FASTCALL2)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
int skip = LUAU_INSN_C(insn) - 1;
uint32_t aux = *pc++;
TValue* arg1 = VM_REG(LUAU_INSN_B(insn));
TValue* arg2 = VM_REG(aux);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = 2;
int nresults = LUAU_INSN_C(call) - 1;
luau_FastFunction f = luauF_table[bfid];
LUAU_ASSERT(f);
if (cl->env->safeenv)
{
VM_PROTECT_PC(); // f may fail due to OOM
int n = f(L, ra, arg1, nresults, arg2, nparams);
if (n >= 0)
{
if (nresults == LUA_MULTRET)
L->top = ra + n;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_FASTCALL2K)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
int skip = LUAU_INSN_C(insn) - 1;
uint32_t aux = *pc++;
TValue* arg1 = VM_REG(LUAU_INSN_B(insn));
TValue* arg2 = VM_KV(aux);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = 2;
int nresults = LUAU_INSN_C(call) - 1;
luau_FastFunction f = luauF_table[bfid];
LUAU_ASSERT(f);
if (cl->env->safeenv)
{
VM_PROTECT_PC(); // f may fail due to OOM
int n = f(L, ra, arg1, nresults, arg2, nparams);
if (n >= 0)
{
if (nresults == LUA_MULTRET)
L->top = ra + n;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_BREAK)
{
LUAU_ASSERT(cl->l.p->debuginsn);
uint8_t op = cl->l.p->debuginsn[unsigned(pc - cl->l.p->code)];
LUAU_ASSERT(op != LOP_BREAK);
if (L->global->cb.debugbreak)
{
VM_PROTECT(luau_callhook(L, L->global->cb.debugbreak, NULL));
// allow debugbreak hook to put thread into error/yield state
if (L->status != 0)
goto exit;
}
VM_CONTINUE(op);
}
2022-08-04 23:35:33 +01:00
VM_CASE(LOP_JUMPXEQKNIL)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
static_assert(LUA_TNIL == 0, "we expect type-1 to be negative iff type is nil");
// condition is equivalent to: int(ttisnil(ra)) != (aux >> 31)
pc += int((ttype(ra) - 1) ^ aux) < 0 ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPXEQKB)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
pc += int(ttisboolean(ra) && bvalue(ra) == int(aux & 1)) != (aux >> 31) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPXEQKN)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(aux & 0xffffff);
LUAU_ASSERT(ttisnumber(kv));
#if defined(__aarch64__)
// On several ARM chips (Apple M1/M2, Neoverse N1), comparing the result of a floating-point comparison is expensive, and a branch
// is much cheaper; on some 32-bit ARM chips (Cortex A53) the performance is about the same so we prefer less branchy variant there
if (aux >> 31)
pc += !(ttisnumber(ra) && nvalue(ra) == nvalue(kv)) ? LUAU_INSN_D(insn) : 1;
else
pc += (ttisnumber(ra) && nvalue(ra) == nvalue(kv)) ? LUAU_INSN_D(insn) : 1;
#else
2022-08-04 23:35:33 +01:00
pc += int(ttisnumber(ra) && nvalue(ra) == nvalue(kv)) != (aux >> 31) ? LUAU_INSN_D(insn) : 1;
#endif
2022-08-04 23:35:33 +01:00
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPXEQKS)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(aux & 0xffffff);
LUAU_ASSERT(ttisstring(kv));
pc += int(ttisstring(ra) && gcvalue(ra) == gcvalue(kv)) != (aux >> 31) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
#if !VM_USE_CGOTO
default:
LUAU_ASSERT(!"Unknown opcode");
LUAU_UNREACHABLE(); // improves switch() codegen by eliding opcode bounds checks
#endif
}
}
exit:;
}
void luau_execute(lua_State* L)
{
if (L->singlestep)
luau_execute<true>(L);
else
luau_execute<false>(L);
}
int luau_precall(lua_State* L, StkId func, int nresults)
{
if (!ttisfunction(func))
{
2022-09-23 20:17:25 +01:00
luaV_tryfuncTM(L, func);
// L->top is incremented by tryfuncTM
}
Closure* ccl = clvalue(func);
CallInfo* ci = incr_ci(L);
ci->func = func;
ci->base = func + 1;
ci->top = L->top + ccl->stacksize;
ci->savedpc = NULL;
ci->flags = 0;
ci->nresults = nresults;
L->base = ci->base;
// Note: L->top is assigned externally
luaD_checkstack(L, ccl->stacksize);
LUAU_ASSERT(ci->top <= L->stack_last);
if (!ccl->isC)
{
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
Proto* p = ccl->l.p;
// fill unused parameters with nil
StkId argi = L->top;
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
StkId argend = L->base + p->numparams;
while (argi < argend)
2022-08-04 23:35:33 +01:00
setnilvalue(argi++); // complete missing arguments
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
L->top = p->is_vararg ? argi : ci->top;
ci->savedpc = p->code;
Sync to upstream/release/588 (#992) Type checker/autocomplete: * `Luau::autocomplete` no longer performs typechecking internally, make sure to run `Frontend::check` before performing autocomplete requests * Autocomplete string suggestions without "" are now only suggested inside the "" * Autocomplete suggestions now include `function (anonymous autofilled)` key with a full suggestion for the function expression (with arguments included) stored in `AutocompleteEntry::insertText` * `AutocompleteEntry::indexedWithSelf` is provided for function call suggestions made with `:` * Cyclic modules now see each other type exports as `any` to prevent memory use-after-free (similar to module return type) Runtime: * Updated inline/loop unroll cost model to better handle assignments (Fixes https://github.com/Roblox/luau/issues/978) * `math.noise` speed was improved by ~30% * `table.concat` speed was improved by ~5-7% * `tonumber` and `tostring` now have fastcall paths that execute ~1.5x and ~2.5x faster respectively (fixes #777) * Fixed crash in `luaL_typename` when index refers to a non-existing value * Fixed potential out of memory scenario when using `string.sub` or `string.char` in a loop * Fixed behavior of some fastcall builtins when called without arguments under -O2 to match original functions * Support for native code execution in VM is now enabled by default (note: native code still has to be generated explicitly) * `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When set, only modules that have a `--!native` hot-comment at the top will be compiled to native code In our new typechecker: * Generic type packs are no longer considered to be variadic during unification * Timeout and cancellation now works in new solver * Fixed false positive errors around 'table' and 'function' type refinements * Table literals now use covariant unification rules. This is sound since literal has no type specified and has no aliases * Fixed issues with blocked types escaping the constraint solver * Fixed more places where error messages that should've been suppressed were still reported * Fixed errors when iterating over a top table type In our native code generation (jit): * 'DebugLuauAbortingChecks' flag is now supported on A64 * LOP_NEWCLOSURE has been translated to IR
2023-07-28 16:13:53 +01:00
#if VM_HAS_NATIVE
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
if (p->execdata)
ci->flags = LUA_CALLINFO_NATIVE;
Sync to upstream/release/577 (#934) Lots of things going on this week: * Fix a crash that could occur in the presence of a cyclic union. We shouldn't be creating cyclic unions, but we shouldn't be crashing when they arise either. * Minor cleanup of `luau_precall` * Internal change to make L->top handling slightly more uniform * Optimize SETGLOBAL & GETGLOBAL fallback C functions. * https://github.com/Roblox/luau/pull/929 * The syntax to the `luau-reduce` commandline tool has changed. It now accepts a script, a command to execute, and an error to search for. It no longer automatically passes the script to the command which makes it a lot more flexible. Also be warned that it edits the script it is passed **in place**. Do not point it at something that is not in source control! New solver * Switch to a greedier but more fallible algorithm for simplifying union and intersection types that are created as part of refinement calculation. This has much better and more predictable performance. * Fix a constraint cycle in recursive function calls. * Much improved inference of binary addition. Functions like `function add(x, y) return x + y end` can now be inferred without annotations. We also accurately typecheck calls to functions like this. * Many small bugfixes surrounding things like table indexers * Add support for indexers on class types. This was previously added to the old solver; we now add it to the new one for feature parity. JIT * https://github.com/Roblox/luau/pull/931 * Fuse key.value and key.tt loads for CEHCK_SLOT_MATCH in A64 * Implement remaining aliases of BFM for A64 * Implement new callinfo flag for A64 * Add instruction simplification for int->num->int conversion chains * Don't even load execdata for X64 calls * Treat opcode fallbacks the same as manually written fallbacks --------- Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-05-19 20:37:30 +01:00
#endif
return PCRLUA;
}
else
{
lua_CFunction func = ccl->c.f;
int n = func(L);
// yield
if (n < 0)
return PCRYIELD;
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// TODO: it might be worthwhile to handle the case when nresults==b explicitly?
StkId res = ci->func;
StkId vali = L->top - n;
StkId valend = L->top;
int i;
for (i = nresults; i != 0 && vali < valend; i--)
setobj2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = res;
return PCRC;
}
}
void luau_poscall(lua_State* L, StkId first)
{
// finish interrupted execution of `OP_CALL'
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// TODO: it might be worthwhile to handle the case when nresults==b explicitly?
StkId res = ci->func;
StkId vali = first;
StkId valend = L->top;
int i;
for (i = ci->nresults; i != 0 && vali < valend; i--)
setobj2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = (ci->nresults == LUA_MULTRET) ? res : cip->top;
}