luau/VM/src/lvmexecute.cpp

3175 lines
121 KiB
C++
Raw Normal View History

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
// This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details
#include "lvm.h"
#include "lstate.h"
#include "ltable.h"
#include "lfunc.h"
#include "lstring.h"
#include "lgc.h"
#include "lmem.h"
#include "ldebug.h"
#include "ldo.h"
#include "lbuiltins.h"
#include "lnumutils.h"
#include "lbytecode.h"
#include <string.h>
LUAU_FASTFLAG(LuauSimplerUpval)
LUAU_FASTFLAG(LuauNoSleepBit)
2022-07-01 00:52:43 +01:00
// Disable c99-designator to avoid the warning in CGOTO dispatch table
#ifdef __clang__
#if __has_warning("-Wc99-designator")
#pragma clang diagnostic ignored "-Wc99-designator"
#endif
#endif
// When working with VM code, pay attention to these rules for correctness:
// 1. Many external Lua functions can fail; for them to fail and be able to generate a proper stack, we need to copy pc to L->ci->savedpc before the
// call
// 2. Many external Lua functions can reallocate the stack. This invalidates stack pointers in VM C stack frame, most importantly base, but also
// ra/rb/rc!
// 3. VM_PROTECT macro saves savedpc and restores base for you; most external calls need to be wrapped into that. However, it does NOT restore
// ra/rb/rc!
// 4. When copying an object to any existing object as a field, generally speaking you need to call luaC_barrier! Be careful with all setobj calls
2022-07-29 05:24:07 +01:00
// 5. To make 4 easier to follow, please use setobj2s for copies to stack, setobj2t for writes to tables, and setobj for other copies.
// 6. You can define HARDSTACKTESTS in llimits.h which will aggressively realloc stack; with address sanitizer this should be effective at finding
// stack corruption bugs
// 7. Many external Lua functions can call GC! GC will *not* traverse pointers to new objects that aren't reachable from Lua root. Be careful when
// creating new Lua objects, store them to stack soon.
// When calling luau_callTM, we usually push the arguments to the top of the stack.
// This is safe to do for complicated reasons:
2022-02-18 01:18:01 +00:00
// - stack guarantees EXTRA_STACK room beyond stack_last (see luaD_reallocstack)
// - stack reallocation copies values past stack_last
// All external function calls that can cause stack realloc or Lua calls have to be wrapped in VM_PROTECT
// This makes sure that we save the pc (in case the Lua call needs to generate a backtrace) before the call,
// and restores the stack pointer after in case stack gets reallocated
// Should only be used on the slow paths.
#define VM_PROTECT(x) \
{ \
L->ci->savedpc = pc; \
{ \
x; \
}; \
base = L->base; \
}
// Some external functions can cause an error, but never reallocate the stack; for these, VM_PROTECT_PC() is
// a cheaper version of VM_PROTECT that can be called before the external call.
#define VM_PROTECT_PC() L->ci->savedpc = pc
#define VM_REG(i) (LUAU_ASSERT(unsigned(i) < unsigned(L->top - base)), &base[i])
#define VM_KV(i) (LUAU_ASSERT(unsigned(i) < unsigned(cl->l.p->sizek)), &k[i])
#define VM_UV(i) (LUAU_ASSERT(unsigned(i) < unsigned(cl->nupvalues)), &cl->l.uprefs[i])
#define VM_PATCH_C(pc, slot) *const_cast<Instruction*>(pc) = ((uint8_t(slot) << 24) | (0x00ffffffu & *(pc)))
#define VM_PATCH_E(pc, slot) *const_cast<Instruction*>(pc) = ((uint32_t(slot) << 8) | (0x000000ffu & *(pc)))
// NOTE: If debugging the Luau code, disable this macro to prevent timeouts from
// occurring when tracing code in Visual Studio / XCode
#if 0
#define VM_INTERRUPT()
#else
#define VM_INTERRUPT() \
{ \
void (*interrupt)(lua_State*, int) = L->global->cb.interrupt; \
if (LUAU_UNLIKELY(!!interrupt)) \
{ /* the interrupt hook is called right before we advance pc */ \
VM_PROTECT(L->ci->savedpc++; interrupt(L, -1)); \
2022-03-18 00:46:04 +00:00
if (L->status != 0) \
{ \
L->ci->savedpc--; \
goto exit; \
} \
} \
}
#endif
#define VM_DISPATCH_OP(op) &&CASE_##op
#define VM_DISPATCH_TABLE() \
VM_DISPATCH_OP(LOP_NOP), VM_DISPATCH_OP(LOP_BREAK), VM_DISPATCH_OP(LOP_LOADNIL), VM_DISPATCH_OP(LOP_LOADB), VM_DISPATCH_OP(LOP_LOADN), \
VM_DISPATCH_OP(LOP_LOADK), VM_DISPATCH_OP(LOP_MOVE), VM_DISPATCH_OP(LOP_GETGLOBAL), VM_DISPATCH_OP(LOP_SETGLOBAL), \
VM_DISPATCH_OP(LOP_GETUPVAL), VM_DISPATCH_OP(LOP_SETUPVAL), VM_DISPATCH_OP(LOP_CLOSEUPVALS), VM_DISPATCH_OP(LOP_GETIMPORT), \
VM_DISPATCH_OP(LOP_GETTABLE), VM_DISPATCH_OP(LOP_SETTABLE), VM_DISPATCH_OP(LOP_GETTABLEKS), VM_DISPATCH_OP(LOP_SETTABLEKS), \
VM_DISPATCH_OP(LOP_GETTABLEN), VM_DISPATCH_OP(LOP_SETTABLEN), VM_DISPATCH_OP(LOP_NEWCLOSURE), VM_DISPATCH_OP(LOP_NAMECALL), \
VM_DISPATCH_OP(LOP_CALL), VM_DISPATCH_OP(LOP_RETURN), VM_DISPATCH_OP(LOP_JUMP), VM_DISPATCH_OP(LOP_JUMPBACK), VM_DISPATCH_OP(LOP_JUMPIF), \
VM_DISPATCH_OP(LOP_JUMPIFNOT), VM_DISPATCH_OP(LOP_JUMPIFEQ), VM_DISPATCH_OP(LOP_JUMPIFLE), VM_DISPATCH_OP(LOP_JUMPIFLT), \
VM_DISPATCH_OP(LOP_JUMPIFNOTEQ), VM_DISPATCH_OP(LOP_JUMPIFNOTLE), VM_DISPATCH_OP(LOP_JUMPIFNOTLT), VM_DISPATCH_OP(LOP_ADD), \
VM_DISPATCH_OP(LOP_SUB), VM_DISPATCH_OP(LOP_MUL), VM_DISPATCH_OP(LOP_DIV), VM_DISPATCH_OP(LOP_MOD), VM_DISPATCH_OP(LOP_POW), \
VM_DISPATCH_OP(LOP_ADDK), VM_DISPATCH_OP(LOP_SUBK), VM_DISPATCH_OP(LOP_MULK), VM_DISPATCH_OP(LOP_DIVK), VM_DISPATCH_OP(LOP_MODK), \
VM_DISPATCH_OP(LOP_POWK), VM_DISPATCH_OP(LOP_AND), VM_DISPATCH_OP(LOP_OR), VM_DISPATCH_OP(LOP_ANDK), VM_DISPATCH_OP(LOP_ORK), \
VM_DISPATCH_OP(LOP_CONCAT), VM_DISPATCH_OP(LOP_NOT), VM_DISPATCH_OP(LOP_MINUS), VM_DISPATCH_OP(LOP_LENGTH), VM_DISPATCH_OP(LOP_NEWTABLE), \
VM_DISPATCH_OP(LOP_DUPTABLE), VM_DISPATCH_OP(LOP_SETLIST), VM_DISPATCH_OP(LOP_FORNPREP), VM_DISPATCH_OP(LOP_FORNLOOP), \
VM_DISPATCH_OP(LOP_FORGLOOP), VM_DISPATCH_OP(LOP_FORGPREP_INEXT), VM_DISPATCH_OP(LOP_FORGLOOP_INEXT), VM_DISPATCH_OP(LOP_FORGPREP_NEXT), \
VM_DISPATCH_OP(LOP_FORGLOOP_NEXT), VM_DISPATCH_OP(LOP_GETVARARGS), VM_DISPATCH_OP(LOP_DUPCLOSURE), VM_DISPATCH_OP(LOP_PREPVARARGS), \
VM_DISPATCH_OP(LOP_LOADKX), VM_DISPATCH_OP(LOP_JUMPX), VM_DISPATCH_OP(LOP_FASTCALL), VM_DISPATCH_OP(LOP_COVERAGE), \
VM_DISPATCH_OP(LOP_CAPTURE), VM_DISPATCH_OP(LOP_JUMPIFEQK), VM_DISPATCH_OP(LOP_JUMPIFNOTEQK), VM_DISPATCH_OP(LOP_FASTCALL1), \
2022-08-04 23:35:33 +01:00
VM_DISPATCH_OP(LOP_FASTCALL2), VM_DISPATCH_OP(LOP_FASTCALL2K), VM_DISPATCH_OP(LOP_FORGPREP), VM_DISPATCH_OP(LOP_JUMPXEQKNIL), \
VM_DISPATCH_OP(LOP_JUMPXEQKB), VM_DISPATCH_OP(LOP_JUMPXEQKN), VM_DISPATCH_OP(LOP_JUMPXEQKS),
#if defined(__GNUC__) || defined(__clang__)
#define VM_USE_CGOTO 1
#else
#define VM_USE_CGOTO 0
#endif
/**
* These macros help dispatching Luau opcodes using either case
* statements or computed goto.
* VM_CASE(op) Generates either a case statement or a label
* VM_NEXT() fetch a byte and dispatch or jump to the beginning of the switch statement
* VM_CONTINUE() Use an opcode override to dispatch with computed goto or
* switch statement to skip a LOP_BREAK instruction.
*/
#if VM_USE_CGOTO
#define VM_CASE(op) CASE_##op:
#define VM_NEXT() goto*(SingleStep ? &&dispatch : kDispatchTable[LUAU_INSN_OP(*pc)])
#define VM_CONTINUE(op) goto* kDispatchTable[uint8_t(op)]
#else
#define VM_CASE(op) case op:
#define VM_NEXT() goto dispatch
#define VM_CONTINUE(op) \
dispatchOp = uint8_t(op); \
goto dispatchContinue
#endif
LUAU_NOINLINE static void luau_prepareFORN(lua_State* L, StkId plimit, StkId pstep, StkId pinit)
{
if (!ttisnumber(pinit) && !luaV_tonumber(pinit, pinit))
luaG_forerror(L, pinit, "initial value");
if (!ttisnumber(plimit) && !luaV_tonumber(plimit, plimit))
luaG_forerror(L, plimit, "limit");
if (!ttisnumber(pstep) && !luaV_tonumber(pstep, pstep))
luaG_forerror(L, pstep, "step");
}
LUAU_NOINLINE static bool luau_loopFORG(lua_State* L, int a, int c)
{
2022-05-06 01:03:43 +01:00
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
StkId ra = &L->base[a];
2022-05-06 01:03:43 +01:00
LUAU_ASSERT(ra + 3 <= L->top);
setobjs2s(L, ra + 3 + 2, ra + 2);
setobjs2s(L, ra + 3 + 1, ra + 1);
setobjs2s(L, ra + 3, ra);
2022-08-04 23:35:33 +01:00
L->top = ra + 3 + 3; // func. + 2 args (state and index)
LUAU_ASSERT(L->top <= L->stack_last);
luaD_call(L, ra + 3, c);
L->top = L->ci->top;
// recompute ra since stack might have been reallocated
ra = &L->base[a];
LUAU_ASSERT(ra < L->top);
// copy first variable back into the iteration index
setobjs2s(L, ra + 2, ra + 3);
return ttisnil(ra + 2);
}
// calls a C function f with no yielding support; optionally save one resulting value to the res register
// the function and arguments have to already be pushed to L->top
LUAU_NOINLINE static void luau_callTM(lua_State* L, int nparams, int res)
{
++L->nCcalls;
if (L->nCcalls >= LUAI_MAXCCALLS)
luaD_checkCstack(L);
luaD_checkstack(L, LUA_MINSTACK);
StkId top = L->top;
StkId fun = top - nparams - 1;
CallInfo* ci = incr_ci(L);
ci->func = fun;
ci->base = fun + 1;
ci->top = top + LUA_MINSTACK;
ci->savedpc = NULL;
ci->flags = 0;
ci->nresults = (res >= 0);
LUAU_ASSERT(ci->top <= L->stack_last);
LUAU_ASSERT(ttisfunction(ci->func));
LUAU_ASSERT(clvalue(ci->func)->isC);
L->base = fun + 1;
LUAU_ASSERT(L->top == L->base + nparams);
lua_CFunction func = clvalue(fun)->c.f;
int n = func(L);
LUAU_ASSERT(n >= 0); // yields should have been blocked by nCcalls
// ci is our callinfo, cip is our parent
// note that we read L->ci again since it may have been reallocated by the call
CallInfo* cip = L->ci - 1;
// copy return value into parent stack
if (res >= 0)
{
if (n > 0)
{
setobj2s(L, &cip->base[res], L->top - n);
}
else
{
setnilvalue(&cip->base[res]);
}
}
L->ci = cip;
L->base = cip->base;
L->top = cip->top;
--L->nCcalls;
}
LUAU_NOINLINE static void luau_tryfuncTM(lua_State* L, StkId func)
{
const TValue* tm = luaT_gettmbyobj(L, func, TM_CALL);
if (!ttisfunction(tm))
luaG_typeerror(L, func, "call");
2022-08-04 23:35:33 +01:00
for (StkId p = L->top; p > func; p--) // open space for metamethod
setobjs2s(L, p, p - 1);
2022-08-04 23:35:33 +01:00
L->top++; // stack space pre-allocated by the caller
setobj2s(L, func, tm); // tag method is the new function to be called
}
LUAU_NOINLINE void luau_callhook(lua_State* L, lua_Hook hook, void* userdata)
{
ptrdiff_t base = savestack(L, L->base);
ptrdiff_t top = savestack(L, L->top);
ptrdiff_t ci_top = savestack(L, L->ci->top);
int status = L->status;
// if the hook is called externally on a paused thread, we need to make sure the paused thread can emit Lua calls
if (status == LUA_YIELD || status == LUA_BREAK)
{
L->status = 0;
L->base = L->ci->base;
}
2022-08-04 23:35:33 +01:00
luaD_checkstack(L, LUA_MINSTACK); // ensure minimum stack size
L->ci->top = L->top + LUA_MINSTACK;
LUAU_ASSERT(L->ci->top <= L->stack_last);
// note: the pc expectations of the hook are matching the general "pc points to next instruction"
// however, for the hook to be able to continue execution from the same point, this is called with savedpc at the *current* instruction
if (L->ci->savedpc)
L->ci->savedpc++;
Closure* cl = clvalue(L->ci->func);
lua_Debug ar;
ar.currentline = cl->isC ? -1 : luaG_getline(cl->l.p, pcRel(L->ci->savedpc, cl->l.p));
ar.userdata = userdata;
hook(L, &ar);
if (L->ci->savedpc)
L->ci->savedpc--;
L->ci->top = restorestack(L, ci_top);
L->top = restorestack(L, top);
// note that we only restore the paused state if the hook hasn't yielded by itself
if (status == LUA_YIELD && L->status != LUA_YIELD)
{
L->status = LUA_YIELD;
L->base = restorestack(L, base);
}
else if (status == LUA_BREAK)
{
LUAU_ASSERT(L->status != LUA_BREAK); // hook shouldn't break again
L->status = LUA_BREAK;
L->base = restorestack(L, base);
}
}
inline bool luau_skipstep(uint8_t op)
{
return op == LOP_PREPVARARGS || op == LOP_BREAK;
}
template<bool SingleStep>
static void luau_execute(lua_State* L)
{
#if VM_USE_CGOTO
static const void* kDispatchTable[256] = {VM_DISPATCH_TABLE()};
#endif
// the critical interpreter state, stored in locals for performance
// the hope is that these map to registers without spilling (which is not true for x86 :/)
Closure* cl;
StkId base;
TValue* k;
const Instruction* pc;
LUAU_ASSERT(isLua(L->ci));
LUAU_ASSERT(luaC_threadactive(L));
LUAU_ASSERT(!luaC_threadsleeping(L));
LUAU_ASSERT(!FFlag::LuauNoSleepBit || !isblack(obj2gco(L))); // we don't use luaC_threadbarrier because active threads never turn black
pc = L->ci->savedpc;
cl = clvalue(L->ci->func);
base = L->base;
k = cl->l.p->k;
VM_NEXT(); // starts the interpreter "loop"
{
dispatch:
// Note: this code doesn't always execute! on some platforms we use computed goto which bypasses all of this unless we run in single-step mode
// Therefore only ever put assertions here.
LUAU_ASSERT(base == L->base && L->base == L->ci->base);
LUAU_ASSERT(base <= L->top && L->top <= L->stack + L->stacksize);
// ... and singlestep logic :)
if (SingleStep)
{
if (L->global->cb.debugstep && !luau_skipstep(LUAU_INSN_OP(*pc)))
{
VM_PROTECT(luau_callhook(L, L->global->cb.debugstep, NULL));
// allow debugstep hook to put thread into error/yield state
if (L->status != 0)
goto exit;
}
#if VM_USE_CGOTO
VM_CONTINUE(LUAU_INSN_OP(*pc));
#endif
}
#if !VM_USE_CGOTO
size_t dispatchOp = LUAU_INSN_OP(*pc);
dispatchContinue:
switch (dispatchOp)
#endif
{
VM_CASE(LOP_NOP)
{
Instruction insn = *pc++;
LUAU_ASSERT(insn == 0);
VM_NEXT();
}
VM_CASE(LOP_LOADNIL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
setnilvalue(ra);
VM_NEXT();
}
VM_CASE(LOP_LOADB)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
setbvalue(ra, LUAU_INSN_B(insn));
pc += LUAU_INSN_C(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_LOADN)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
setnvalue(ra, LUAU_INSN_D(insn));
VM_NEXT();
}
VM_CASE(LOP_LOADK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
setobj2s(L, ra, kv);
VM_NEXT();
}
VM_CASE(LOP_MOVE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
setobj2s(L, ra, rb);
VM_NEXT();
}
VM_CASE(LOP_GETGLOBAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: value is in expected slot
Table* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv)) && !ttisnil(gval(n)))
{
setobj2s(L, ra, gval(n));
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __index metamethod
TValue g;
sethvalue(L, &g, h);
L->cachedslot = slot;
VM_PROTECT(luaV_gettable(L, &g, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
VM_CASE(LOP_SETGLOBAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: value is in expected slot
Table* h = cl->env;
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n)) && !h->readonly))
{
2022-07-29 05:24:07 +01:00
setobj2t(L, gval(n), ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __newindex metamethod
TValue g;
sethvalue(L, &g, h);
L->cachedslot = slot;
VM_PROTECT(luaV_settable(L, &g, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
VM_CASE(LOP_GETUPVAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* ur = VM_UV(LUAU_INSN_B(insn));
TValue* v = ttisupval(ur) ? upvalue(ur)->v : ur;
setobj2s(L, ra, v);
VM_NEXT();
}
VM_CASE(LOP_SETUPVAL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* ur = VM_UV(LUAU_INSN_B(insn));
UpVal* uv = upvalue(ur);
setobj(L, uv->v, ra);
luaC_barrier(L, uv, ra);
if (!FFlag::LuauSimplerUpval)
luaC_upvalbarrier(L, uv, uv->v);
VM_NEXT();
}
VM_CASE(LOP_CLOSEUPVALS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
if (L->openupval && L->openupval->v >= ra)
luaF_close(L, ra);
VM_NEXT();
}
VM_CASE(LOP_GETIMPORT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
// fast-path: import resolution was successful and closure environment is "safe" for import
if (!ttisnil(kv) && cl->env->safeenv)
{
setobj2s(L, ra, kv);
pc++; // skip over AUX
VM_NEXT();
}
else
{
uint32_t aux = *pc++;
VM_PROTECT(luaV_getimport(L, cl->env, k, aux, /* propagatenil= */ false));
ra = VM_REG(LUAU_INSN_A(insn)); // previous call may change the stack
setobj2s(L, ra, L->top - 1);
L->top--;
VM_NEXT();
}
}
VM_CASE(LOP_GETTABLEKS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: built-in table
if (ttistable(rb))
{
Table* h = hvalue(rb);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
// fast-path: value is in expected slot
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n))))
{
setobj2s(L, ra, gval(n));
VM_NEXT();
}
else if (!h->metatable)
{
// fast-path: value is not in expected slot, but the table lookup doesn't involve metatable
const TValue* res = luaH_getstr(h, tsvalue(kv));
if (res != luaO_nilobject)
{
int cachedslot = gval2slot(h, res);
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, cachedslot);
}
setobj2s(L, ra, res);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __index metamethod
L->cachedslot = slot;
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
else
{
// fast-path: user data with C __index TM
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = fasttm(L, uvalue(rb)->metatable, TM_INDEX)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
L->cachedslot = LUAU_INSN_C(insn);
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
else if (ttisvector(rb))
{
// fast-path: quick case-insensitive comparison with "X"/"Y"/"Z"
const char* name = getstr(tsvalue(kv));
int ic = (name[0] | ' ') - 'x';
#if LUA_VECTOR_SIZE == 4
// 'w' is before 'x' in ascii, so ic is -1 when indexing with 'w'
if (ic == -1)
ic = 3;
#endif
if (unsigned(ic) < LUA_VECTOR_SIZE && name[1] == '\0')
{
2022-02-11 19:02:09 +00:00
const float* v = rb->value.v; // silences ubsan when indexing v[]
setnvalue(ra, v[ic]);
VM_NEXT();
}
fn = fasttm(L, L->global->mt[LUA_TVECTOR], TM_INDEX);
if (fn && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
L->cachedslot = LUAU_INSN_C(insn);
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// slow-path, may invoke Lua calls via __index metamethod
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
VM_NEXT();
}
VM_CASE(LOP_SETTABLEKS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
// fast-path: built-in table
if (ttistable(rb))
{
Table* h = hvalue(rb);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
// fast-path: value is in expected slot
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n)) && !h->readonly))
{
2022-07-29 05:24:07 +01:00
setobj2t(L, gval(n), ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
else if (fastnotm(h->metatable, TM_NEWINDEX) && !h->readonly)
{
VM_PROTECT_PC(); // set may fail
TValue* res = luaH_setstr(L, h, tsvalue(kv));
2022-02-04 16:45:57 +00:00
int cachedslot = gval2slot(h, res);
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, cachedslot);
2022-07-29 05:24:07 +01:00
setobj2t(L, res, ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __newindex metamethod
L->cachedslot = slot;
VM_PROTECT(luaV_settable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
}
else
{
// fast-path: user data with C __newindex TM
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = fasttm(L, uvalue(rb)->metatable, TM_NEWINDEX)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 4 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
setobj2s(L, top + 3, ra);
L->top = top + 4;
L->cachedslot = LUAU_INSN_C(insn);
VM_PROTECT(luau_callTM(L, 3, -1));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
VM_NEXT();
}
else
{
// slow-path, may invoke Lua calls via __newindex metamethod
VM_PROTECT(luaV_settable(L, rb, kv, ra));
VM_NEXT();
}
}
}
VM_CASE(LOP_GETTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path: array lookup
if (ttistable(rb) && ttisnumber(rc))
{
Table* h = hvalue(rb);
double indexd = nvalue(rc);
int index = int(indexd);
// index has to be an exact integer and in-bounds for the array portion
if (LUAU_LIKELY(unsigned(index - 1) < unsigned(h->sizearray) && !h->metatable && double(index) == indexd))
{
setobj2s(L, ra, &h->array[unsigned(index - 1)]);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// slow-path: handles out of bounds array lookups, non-integer numeric keys, non-array table lookup, __index MT calls
VM_PROTECT(luaV_gettable(L, rb, rc, ra));
VM_NEXT();
}
VM_CASE(LOP_SETTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path: array assign
if (ttistable(rb) && ttisnumber(rc))
{
Table* h = hvalue(rb);
double indexd = nvalue(rc);
int index = int(indexd);
// index has to be an exact integer and in-bounds for the array portion
if (LUAU_LIKELY(unsigned(index - 1) < unsigned(h->sizearray) && !h->metatable && !h->readonly && double(index) == indexd))
{
setobj2t(L, &h->array[unsigned(index - 1)], ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
2022-07-08 02:22:39 +01:00
// slow-path: handles out of bounds array assignments, non-integer numeric keys, non-array table access, __newindex MT calls
VM_PROTECT(luaV_settable(L, rb, rc, ra));
VM_NEXT();
}
VM_CASE(LOP_GETTABLEN)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
int c = LUAU_INSN_C(insn);
// fast-path: array lookup
if (ttistable(rb))
{
Table* h = hvalue(rb);
if (LUAU_LIKELY(unsigned(c) < unsigned(h->sizearray) && !h->metatable))
{
setobj2s(L, ra, &h->array[c]);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
// slow-path: handles out of bounds array lookups
TValue n;
setnvalue(&n, c + 1);
VM_PROTECT(luaV_gettable(L, rb, &n, ra));
VM_NEXT();
}
VM_CASE(LOP_SETTABLEN)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
int c = LUAU_INSN_C(insn);
// fast-path: array assign
if (ttistable(rb))
{
Table* h = hvalue(rb);
if (LUAU_LIKELY(unsigned(c) < unsigned(h->sizearray) && !h->metatable && !h->readonly))
{
setobj2t(L, &h->array[c], ra);
luaC_barriert(L, h, ra);
VM_NEXT();
}
2022-07-08 02:22:39 +01:00
// fall through to slow path
}
// slow-path: handles out of bounds array lookups
TValue n;
setnvalue(&n, c + 1);
VM_PROTECT(luaV_settable(L, rb, &n, ra));
VM_NEXT();
}
VM_CASE(LOP_NEWCLOSURE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
Proto* pv = cl->l.p->p[LUAU_INSN_D(insn)];
LUAU_ASSERT(unsigned(LUAU_INSN_D(insn)) < unsigned(cl->l.p->sizep));
// note: we save closure to stack early in case the code below wants to capture it by value
Closure* ncl = luaF_newLclosure(L, pv->nups, cl->env, pv);
setclvalue(L, ra, ncl);
for (int ui = 0; ui < pv->nups; ++ui)
{
Instruction uinsn = *pc++;
LUAU_ASSERT(LUAU_INSN_OP(uinsn) == LOP_CAPTURE);
switch (LUAU_INSN_A(uinsn))
{
case LCT_VAL:
setobj(L, &ncl->l.uprefs[ui], VM_REG(LUAU_INSN_B(uinsn)));
break;
case LCT_REF:
setupvalue(L, &ncl->l.uprefs[ui], luaF_findupval(L, VM_REG(LUAU_INSN_B(uinsn))));
break;
case LCT_UPVAL:
setobj(L, &ncl->l.uprefs[ui], VM_UV(LUAU_INSN_B(uinsn)));
break;
default:
LUAU_ASSERT(!"Unknown upvalue capture type");
}
}
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_NAMECALL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
LUAU_ASSERT(ttisstring(kv));
if (ttistable(rb))
{
Table* h = hvalue(rb);
// note: we can't use nodemask8 here because we need to query the main position of the table, and 8-bit nodemask8 only works
// for predictive lookups
LuaNode* n = &h->node[tsvalue(kv)->hash & (sizenode(h) - 1)];
const TValue* mt = 0;
const LuaNode* mtn = 0;
// fast-path: key is in the table in expected slot
if (ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n)))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, gval(n));
}
// fast-path: key is absent from the base, table has an __index table, and it has the result in the expected slot
else if (gnext(n) == 0 && (mt = fasttm(L, hvalue(rb)->metatable, TM_INDEX)) && ttistable(mt) &&
(mtn = &hvalue(mt)->node[LUAU_INSN_C(insn) & hvalue(mt)->nodemask8]) && ttisstring(gkey(mtn)) &&
tsvalue(gkey(mtn)) == tsvalue(kv) && !ttisnil(gval(mtn)))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, gval(mtn));
}
else
{
// slow-path: handles full table lookup
setobj2s(L, ra + 1, rb);
L->cachedslot = LUAU_INSN_C(insn);
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
if (ttisnil(ra))
2022-08-04 23:35:33 +01:00
luaG_methoderror(L, ra + 1, tsvalue(kv));
}
}
else
{
Table* mt = ttisuserdata(rb) ? uvalue(rb)->metatable : L->global->mt[ttype(rb)];
const TValue* tmi = 0;
// fast-path: metatable with __namecall
if (const TValue* fn = fasttm(L, mt, TM_NAMECALL))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, fn);
L->namecall = tsvalue(kv);
}
else if ((tmi = fasttm(L, mt, TM_INDEX)) && ttistable(tmi))
{
Table* h = hvalue(tmi);
int slot = LUAU_INSN_C(insn) & h->nodemask8;
LuaNode* n = &h->node[slot];
// fast-path: metatable with __index that has method in expected slot
if (LUAU_LIKELY(ttisstring(gkey(n)) && tsvalue(gkey(n)) == tsvalue(kv) && !ttisnil(gval(n))))
{
// note: order of copies allows rb to alias ra+1 or ra
setobj2s(L, ra + 1, rb);
setobj2s(L, ra, gval(n));
}
else
{
// slow-path: handles slot mismatch
setobj2s(L, ra + 1, rb);
L->cachedslot = slot;
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
// save cachedslot to accelerate future lookups; patches currently executing instruction since pc-2 rolls back two pc++
VM_PATCH_C(pc - 2, L->cachedslot);
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
if (ttisnil(ra))
2022-08-04 23:35:33 +01:00
luaG_methoderror(L, ra + 1, tsvalue(kv));
}
}
else
{
// slow-path: handles non-table __index
setobj2s(L, ra + 1, rb);
VM_PROTECT(luaV_gettable(L, rb, kv, ra));
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
if (ttisnil(ra))
2022-08-04 23:35:33 +01:00
luaG_methoderror(L, ra + 1, tsvalue(kv));
}
}
// intentional fallthrough to CALL
LUAU_ASSERT(LUAU_INSN_OP(*pc) == LOP_CALL);
}
VM_CASE(LOP_CALL)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
int nparams = LUAU_INSN_B(insn) - 1;
int nresults = LUAU_INSN_C(insn) - 1;
StkId argtop = L->top;
argtop = (nparams == LUA_MULTRET) ? argtop : ra + 1 + nparams;
// slow-path: not a function call
if (LUAU_UNLIKELY(!ttisfunction(ra)))
{
VM_PROTECT(luau_tryfuncTM(L, ra));
argtop++; // __call adds an extra self
}
Closure* ccl = clvalue(ra);
L->ci->savedpc = pc;
CallInfo* ci = incr_ci(L);
ci->func = ra;
ci->base = ra + 1;
ci->top = argtop + ccl->stacksize; // note: technically UB since we haven't reallocated the stack yet
ci->savedpc = NULL;
ci->flags = 0;
ci->nresults = nresults;
L->base = ci->base;
L->top = argtop;
// note: this reallocs stack, but we don't need to VM_PROTECT this
// this is because we're going to modify base/savedpc manually anyhow
// crucially, we can't use ra/argtop after this line
luaD_checkstack(L, ccl->stacksize);
LUAU_ASSERT(ci->top <= L->stack_last);
if (!ccl->isC)
{
Proto* p = ccl->l.p;
// fill unused parameters with nil
StkId argi = L->top;
StkId argend = L->base + p->numparams;
while (argi < argend)
2022-08-04 23:35:33 +01:00
setnilvalue(argi++); // complete missing arguments
L->top = p->is_vararg ? argi : ci->top;
// reentry
pc = p->code;
cl = ccl;
base = L->base;
k = p->k;
VM_NEXT();
}
else
{
lua_CFunction func = ccl->c.f;
int n = func(L);
// yield
if (n < 0)
goto exit;
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// note: in MULTRET context nresults starts as -1 so i != 0 condition never activates intentionally
StkId res = ci->func;
StkId vali = L->top - n;
StkId valend = L->top;
int i;
for (i = nresults; i != 0 && vali < valend; i--)
setobjs2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = (nresults == LUA_MULTRET) ? res : cip->top;
base = L->base; // stack may have been reallocated, so we need to refresh base ptr
VM_NEXT();
}
}
VM_CASE(LOP_RETURN)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = &base[LUAU_INSN_A(insn)]; // note: this can point to L->top if b == LUA_MULTRET making VM_REG unsafe to use
int b = LUAU_INSN_B(insn) - 1;
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
StkId res = ci->func; // note: we assume CALL always puts func+args and expects results to start at func
StkId vali = ra;
StkId valend =
(b == LUA_MULTRET) ? L->top : ra + b; // copy as much as possible for MULTRET calls, and only as much as needed otherwise
int nresults = ci->nresults;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// note: in MULTRET context nresults starts as -1 so i != 0 condition never activates intentionally
int i;
for (i = nresults; i != 0 && vali < valend; i--)
setobjs2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = (nresults == LUA_MULTRET) ? res : cip->top;
// we're done!
if (LUAU_UNLIKELY(ci->flags & LUA_CALLINFO_RETURN))
{
L->top = res;
goto exit;
}
LUAU_ASSERT(isLua(L->ci));
// reentry
pc = cip->savedpc;
cl = clvalue(cip->func);
base = L->base;
k = cl->l.p->k;
VM_NEXT();
}
VM_CASE(LOP_JUMP)
{
Instruction insn = *pc++;
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPIF)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
pc += l_isfalse(ra) ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPIFNOT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
pc += l_isfalse(ra) ? LUAU_INSN_D(insn) : 0;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPIFEQ)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// Note that all jumps below jump by 1 in the "false" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) == bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TLIGHTUSERDATA:
pc += pvalue(ra) == pvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) == nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TVECTOR:
pc += luai_veceq(vvalue(ra), vvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
case LUA_TFUNCTION:
case LUA_TTHREAD:
pc += gcvalue(ra) == gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TTABLE:
// fast-path: same metatable, no EQ metamethod
if (hvalue(ra)->metatable == hvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, hvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += hvalue(ra) == hvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
case LUA_TUSERDATA:
// fast-path: same metatable, no EQ metamethod or C metamethod
if (uvalue(ra)->metatable == uvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, uvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += uvalue(ra) == uvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else if (ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, ra);
setobj2s(L, top + 2, rb);
int res = int(top - base);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, res));
pc += !l_isfalse(&base[res]) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
default:;
}
// slow-path: tables with metatables and userdata values
// note that we don't have a fast path for userdata values without metatables, since that's very rare
int res;
VM_PROTECT(res = luaV_equalval(L, ra, rb));
pc += (res == 1) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFNOTEQ)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// Note that all jumps below jump by 1 in the "true" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) != bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TLIGHTUSERDATA:
pc += pvalue(ra) != pvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) != nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TVECTOR:
pc += !luai_veceq(vvalue(ra), vvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
case LUA_TFUNCTION:
case LUA_TTHREAD:
pc += gcvalue(ra) != gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TTABLE:
// fast-path: same metatable, no EQ metamethod
if (hvalue(ra)->metatable == hvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, hvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += hvalue(ra) != hvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
case LUA_TUSERDATA:
// fast-path: same metatable, no EQ metamethod or C metamethod
if (uvalue(ra)->metatable == uvalue(rb)->metatable)
{
const TValue* fn = fasttm(L, uvalue(ra)->metatable, TM_EQ);
if (!fn)
{
pc += uvalue(ra) != uvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else if (ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, ra);
setobj2s(L, top + 2, rb);
int res = int(top - base);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, res));
pc += l_isfalse(&base[res]) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
// slow path after switch()
break;
default:;
}
// slow-path: tables with metatables and userdata values
// note that we don't have a fast path for userdata values without metatables, since that's very rare
int res;
VM_PROTECT(res = luaV_equalval(L, ra, rb));
pc += (res == 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFLE)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "false" case to skip over aux
if (ttisnumber(ra) && ttisnumber(rb))
{
pc += nvalue(ra) <= nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += luaV_strcmp(tsvalue(ra), tsvalue(rb)) <= 0 ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessequal(L, ra, rb));
pc += (res == 1) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFNOTLE)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "true" case to skip over aux
if (ttisnumber(ra) && ttisnumber(rb))
{
pc += !(nvalue(ra) <= nvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += !(luaV_strcmp(tsvalue(ra), tsvalue(rb)) <= 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessequal(L, ra, rb));
pc += (res == 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFLT)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "false" case to skip over aux
if (ttisnumber(ra) && ttisnumber(rb))
{
pc += nvalue(ra) < nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += luaV_strcmp(tsvalue(ra), tsvalue(rb)) < 0 ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessthan(L, ra, rb));
pc += (res == 1) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFNOTLT)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(aux);
// fast-path: number
// Note that all jumps below jump by 1 in the "true" case to skip over aux
if (ttisnumber(ra) && ttisnumber(rb))
{
pc += !(nvalue(ra) < nvalue(rb)) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
// fast-path: string
else if (ttisstring(ra) && ttisstring(rb))
{
pc += !(luaV_strcmp(tsvalue(ra), tsvalue(rb)) < 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
int res;
VM_PROTECT(res = luaV_lessthan(L, ra, rb));
pc += (res == 0) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_ADD)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
setnvalue(ra, nvalue(rb) + nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
const float* vb = rb->value.v;
const float* vc = rc->value.v;
setvvalue(ra, vb[0] + vc[0], vb[1] + vc[1], vb[2] + vc[2], vb[3] + vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_ADD)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_ADD));
VM_NEXT();
}
}
}
VM_CASE(LOP_SUB)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
setnvalue(ra, nvalue(rb) - nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
const float* vb = rb->value.v;
const float* vc = rc->value.v;
setvvalue(ra, vb[0] - vc[0], vb[1] - vc[1], vb[2] - vc[2], vb[3] - vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_SUB)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_SUB));
VM_NEXT();
}
}
}
VM_CASE(LOP_MUL)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
setnvalue(ra, nvalue(rb) * nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisnumber(rc))
{
const float* vb = rb->value.v;
float vc = cast_to(float, nvalue(rc));
setvvalue(ra, vb[0] * vc, vb[1] * vc, vb[2] * vc, vb[3] * vc);
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
const float* vb = rb->value.v;
const float* vc = rc->value.v;
setvvalue(ra, vb[0] * vc[0], vb[1] * vc[1], vb[2] * vc[2], vb[3] * vc[3]);
VM_NEXT();
}
else if (ttisnumber(rb) && ttisvector(rc))
{
float vb = cast_to(float, nvalue(rb));
const float* vc = rc->value.v;
setvvalue(ra, vb * vc[0], vb * vc[1], vb * vc[2], vb * vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
StkId rbc = ttisnumber(rb) ? rc : rb;
const TValue* fn = 0;
if (ttisuserdata(rbc) && (fn = luaT_gettmbyobj(L, rbc, TM_MUL)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_MUL));
VM_NEXT();
}
}
}
VM_CASE(LOP_DIV)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
setnvalue(ra, nvalue(rb) / nvalue(rc));
VM_NEXT();
}
else if (ttisvector(rb) && ttisnumber(rc))
{
const float* vb = rb->value.v;
float vc = cast_to(float, nvalue(rc));
setvvalue(ra, vb[0] / vc, vb[1] / vc, vb[2] / vc, vb[3] / vc);
VM_NEXT();
}
else if (ttisvector(rb) && ttisvector(rc))
{
const float* vb = rb->value.v;
const float* vc = rc->value.v;
setvvalue(ra, vb[0] / vc[0], vb[1] / vc[1], vb[2] / vc[2], vb[3] / vc[3]);
VM_NEXT();
}
else if (ttisnumber(rb) && ttisvector(rc))
{
float vb = cast_to(float, nvalue(rb));
const float* vc = rc->value.v;
setvvalue(ra, vb / vc[0], vb / vc[1], vb / vc[2], vb / vc[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
StkId rbc = ttisnumber(rb) ? rc : rb;
const TValue* fn = 0;
if (ttisuserdata(rbc) && (fn = luaT_gettmbyobj(L, rbc, TM_DIV)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, rc);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_DIV));
VM_NEXT();
}
}
}
VM_CASE(LOP_MOD)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
double nb = nvalue(rb);
double nc = nvalue(rc);
setnvalue(ra, luai_nummod(nb, nc));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_MOD));
VM_NEXT();
}
}
VM_CASE(LOP_POW)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb) && ttisnumber(rc))
{
setnvalue(ra, pow(nvalue(rb), nvalue(rc)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rc, TM_POW));
VM_NEXT();
}
}
VM_CASE(LOP_ADDK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
setnvalue(ra, nvalue(rb) + nvalue(kv));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_ADD));
VM_NEXT();
}
}
VM_CASE(LOP_SUBK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
setnvalue(ra, nvalue(rb) - nvalue(kv));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_SUB));
VM_NEXT();
}
}
VM_CASE(LOP_MULK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
setnvalue(ra, nvalue(rb) * nvalue(kv));
VM_NEXT();
}
else if (ttisvector(rb))
{
const float* vb = rb->value.v;
float vc = cast_to(float, nvalue(kv));
setvvalue(ra, vb[0] * vc, vb[1] * vc, vb[2] * vc, vb[3] * vc);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_MUL)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_MUL));
VM_NEXT();
}
}
}
VM_CASE(LOP_DIVK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
setnvalue(ra, nvalue(rb) / nvalue(kv));
VM_NEXT();
}
else if (ttisvector(rb))
{
const float* vb = rb->value.v;
float vc = cast_to(float, nvalue(kv));
setvvalue(ra, vb[0] / vc, vb[1] / vc, vb[2] / vc, vb[3] / vc);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_DIV)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 3 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
setobj2s(L, top + 2, kv);
L->top = top + 3;
VM_PROTECT(luau_callTM(L, 2, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_DIV));
VM_NEXT();
}
}
}
VM_CASE(LOP_MODK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
double nb = nvalue(rb);
double nk = nvalue(kv);
setnvalue(ra, luai_nummod(nb, nk));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_MOD));
VM_NEXT();
}
}
VM_CASE(LOP_POWK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
// fast-path
if (ttisnumber(rb))
{
double nb = nvalue(rb);
double nk = nvalue(kv);
// pow is very slow so we specialize this for ^2, ^0.5 and ^3
double r = (nk == 2.0) ? nb * nb : (nk == 0.5) ? sqrt(nb) : (nk == 3.0) ? nb * nb * nb : pow(nb, nk);
setnvalue(ra, r);
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, kv, TM_POW));
VM_NEXT();
}
}
VM_CASE(LOP_AND)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? rb : rc);
VM_NEXT();
}
VM_CASE(LOP_OR)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
StkId rc = VM_REG(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? rc : rb);
VM_NEXT();
}
VM_CASE(LOP_ANDK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? rb : kv);
VM_NEXT();
}
VM_CASE(LOP_ORK)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
TValue* kv = VM_KV(LUAU_INSN_C(insn));
setobj2s(L, ra, l_isfalse(rb) ? kv : rb);
VM_NEXT();
}
VM_CASE(LOP_CONCAT)
{
Instruction insn = *pc++;
int b = LUAU_INSN_B(insn);
int c = LUAU_INSN_C(insn);
// This call may realloc the stack! So we need to query args further down
VM_PROTECT(luaV_concat(L, c - b + 1, c));
StkId ra = VM_REG(LUAU_INSN_A(insn));
setobjs2s(L, ra, base + b);
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_NOT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
int res = l_isfalse(rb);
setbvalue(ra, res);
VM_NEXT();
}
VM_CASE(LOP_MINUS)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
// fast-path
if (ttisnumber(rb))
{
setnvalue(ra, -nvalue(rb));
VM_NEXT();
}
else if (ttisvector(rb))
{
const float* vb = rb->value.v;
setvvalue(ra, -vb[0], -vb[1], -vb[2], -vb[3]);
VM_NEXT();
}
else
{
// fast-path for userdata with C functions
const TValue* fn = 0;
if (ttisuserdata(rb) && (fn = luaT_gettmbyobj(L, rb, TM_UNM)) && ttisfunction(fn) && clvalue(fn)->isC)
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
LUAU_ASSERT(L->top + 2 < L->stack + L->stacksize);
StkId top = L->top;
setobj2s(L, top + 0, fn);
setobj2s(L, top + 1, rb);
L->top = top + 2;
VM_PROTECT(luau_callTM(L, 1, LUAU_INSN_A(insn)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_doarith(L, ra, rb, rb, TM_UNM));
VM_NEXT();
}
}
}
VM_CASE(LOP_LENGTH)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = VM_REG(LUAU_INSN_B(insn));
// fast-path #1: tables
if (ttistable(rb))
{
2022-07-01 00:52:43 +01:00
Table* h = hvalue(rb);
2022-08-04 23:35:33 +01:00
if (fastnotm(h->metatable, TM_LEN))
2022-07-01 00:52:43 +01:00
{
setnvalue(ra, cast_num(luaH_getn(h)));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_dolen(L, ra, rb));
VM_NEXT();
}
}
// fast-path #2: strings (not very important but easy to do)
else if (ttisstring(rb))
{
2022-07-01 00:52:43 +01:00
TString* ts = tsvalue(rb);
setnvalue(ra, cast_num(ts->len));
VM_NEXT();
}
else
{
// slow-path, may invoke C/Lua via metamethods
VM_PROTECT(luaV_dolen(L, ra, rb));
VM_NEXT();
}
}
VM_CASE(LOP_NEWTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
int b = LUAU_INSN_B(insn);
uint32_t aux = *pc++;
sethvalue(L, ra, luaH_new(L, aux, b == 0 ? 0 : (1 << (b - 1))));
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_DUPTABLE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
sethvalue(L, ra, luaH_clone(L, hvalue(kv)));
VM_PROTECT(luaC_checkGC(L));
VM_NEXT();
}
VM_CASE(LOP_SETLIST)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
StkId rb = &base[LUAU_INSN_B(insn)]; // note: this can point to L->top if c == LUA_MULTRET making VM_REG unsafe to use
int c = LUAU_INSN_C(insn) - 1;
uint32_t index = *pc++;
if (c == LUA_MULTRET)
{
c = int(L->top - rb);
L->top = L->ci->top;
}
Table* h = hvalue(ra);
if (!ttistable(ra))
return; // temporary workaround to weaken a rather powerful exploitation primitive in case of a MITM attack on bytecode
int last = index + c - 1;
if (last > h->sizearray)
luaH_resizearray(L, h, last);
TValue* array = h->array;
for (int i = 0; i < c; ++i)
setobj2t(L, &array[index + i - 1], rb + i);
luaC_barrierfast(L, h);
VM_NEXT();
}
VM_CASE(LOP_FORNPREP)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
if (!ttisnumber(ra + 0) || !ttisnumber(ra + 1) || !ttisnumber(ra + 2))
{
// slow-path: can convert arguments to numbers and trigger Lua errors
2022-07-08 02:22:39 +01:00
// Note: this doesn't reallocate stack so we don't need to recompute ra/base
VM_PROTECT_PC();
luau_prepareFORN(L, ra + 0, ra + 1, ra + 2);
}
double limit = nvalue(ra + 0);
double step = nvalue(ra + 1);
double idx = nvalue(ra + 2);
// Note: make sure the loop condition is exactly the same between this and LOP_FORNLOOP so that we handle NaN/etc. consistently
pc += (step > 0 ? idx <= limit : limit <= idx) ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FORNLOOP)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
LUAU_ASSERT(ttisnumber(ra + 0) && ttisnumber(ra + 1) && ttisnumber(ra + 2));
double limit = nvalue(ra + 0);
double step = nvalue(ra + 1);
double idx = nvalue(ra + 2) + step;
setnvalue(ra + 2, idx);
// Note: make sure the loop condition is exactly the same between this and LOP_FORNPREP so that we handle NaN/etc. consistently
if (step > 0 ? idx <= limit : limit <= idx)
{
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// fallthrough to exit
VM_NEXT();
}
}
2022-05-06 01:03:43 +01:00
VM_CASE(LOP_FORGPREP)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
if (ttisfunction(ra))
{
2022-08-04 23:35:33 +01:00
// will be called during FORGLOOP
2022-05-06 01:03:43 +01:00
}
else
2022-05-06 01:03:43 +01:00
{
Table* mt = ttistable(ra) ? hvalue(ra)->metatable : ttisuserdata(ra) ? uvalue(ra)->metatable : cast_to(Table*, NULL);
if (const TValue* fn = fasttm(L, mt, TM_ITER))
{
setobj2s(L, ra + 1, ra);
setobj2s(L, ra, fn);
2022-08-04 23:35:33 +01:00
L->top = ra + 2; // func + self arg
2022-05-06 01:03:43 +01:00
LUAU_ASSERT(L->top <= L->stack_last);
VM_PROTECT(luaD_call(L, ra, 3));
L->top = L->ci->top;
2022-07-01 00:52:43 +01:00
2022-08-04 23:35:33 +01:00
// recompute ra since stack might have been reallocated
2022-07-01 00:52:43 +01:00
ra = VM_REG(LUAU_INSN_A(insn));
2022-08-04 23:35:33 +01:00
// protect against __iter returning nil, since nil is used as a marker for builtin iteration in FORGLOOP
2022-07-01 00:52:43 +01:00
if (ttisnil(ra))
{
VM_PROTECT(luaG_typeerror(L, ra, "call"));
}
2022-05-06 01:03:43 +01:00
}
else if (fasttm(L, mt, TM_CALL))
{
2022-08-04 23:35:33 +01:00
// table or userdata with __call, will be called during FORGLOOP
// TODO: we might be able to stop supporting this depending on whether it's used in practice
2022-05-06 01:03:43 +01:00
}
else if (ttistable(ra))
{
2022-08-04 23:35:33 +01:00
// set up registers for builtin iteration
2022-05-06 01:03:43 +01:00
setobj2s(L, ra + 1, ra);
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)));
setnilvalue(ra);
}
else
{
VM_PROTECT(luaG_typeerror(L, ra, "iterate over"));
}
}
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FORGLOOP)
{
VM_INTERRUPT();
Instruction insn = *pc++;
2022-05-06 01:03:43 +01:00
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc;
2022-05-06 01:03:43 +01:00
// fast-path: builtin table iteration
2022-07-01 00:52:43 +01:00
// note: ra=nil guarantees ra+1=table and ra+2=userdata because of the setup by FORGPREP* opcodes
// TODO: remove the table check per guarantee above
if (ttisnil(ra) && ttistable(ra + 1))
2022-05-06 01:03:43 +01:00
{
Table* h = hvalue(ra + 1);
int index = int(reinterpret_cast<uintptr_t>(pvalue(ra + 2)));
int sizearray = h->sizearray;
// clear extra variables since we might have more than two
2022-07-01 00:52:43 +01:00
// note: while aux encodes ipairs bit, when set we always use 2 variables, so it's safe to check this via a signed comparison
if (LUAU_UNLIKELY(int(aux) > 2))
2022-05-06 01:03:43 +01:00
for (int i = 2; i < int(aux); ++i)
setnilvalue(ra + 3 + i);
2022-07-01 00:52:43 +01:00
// terminate ipairs-style traversal early when encountering nil
if (int(aux) < 0 && (unsigned(index) >= unsigned(sizearray) || ttisnil(&h->array[index])))
{
pc++;
VM_NEXT();
}
2022-05-06 01:03:43 +01:00
// first we advance index through the array portion
while (unsigned(index) < unsigned(sizearray))
{
2022-07-01 00:52:43 +01:00
TValue* e = &h->array[index];
if (!ttisnil(e))
2022-05-06 01:03:43 +01:00
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
setnvalue(ra + 3, double(index + 1));
2022-07-01 00:52:43 +01:00
setobj2s(L, ra + 4, e);
2022-05-06 01:03:43 +01:00
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
2022-07-01 00:52:43 +01:00
int sizenode = 1 << h->lsizenode;
2022-05-06 01:03:43 +01:00
// then we advance index through the hash portion
while (unsigned(index - sizearray) < unsigned(sizenode))
{
LuaNode* n = &h->node[index - sizearray];
if (!ttisnil(gval(n)))
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
getnodekey(L, ra + 3, n);
setobj2s(L, ra + 4, gval(n));
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
// fallthrough to exit
pc++;
VM_NEXT();
}
else
{
// note: it's safe to push arguments past top for complicated reasons (see top of the file)
setobjs2s(L, ra + 3 + 2, ra + 2);
setobjs2s(L, ra + 3 + 1, ra + 1);
setobjs2s(L, ra + 3, ra);
2022-08-04 23:35:33 +01:00
L->top = ra + 3 + 3; // func + 2 args (state and index)
2022-05-06 01:03:43 +01:00
LUAU_ASSERT(L->top <= L->stack_last);
2022-07-01 00:52:43 +01:00
VM_PROTECT(luaD_call(L, ra + 3, uint8_t(aux)));
2022-05-06 01:03:43 +01:00
L->top = L->ci->top;
// recompute ra since stack might have been reallocated
ra = VM_REG(LUAU_INSN_A(insn));
// copy first variable back into the iteration index
setobjs2s(L, ra + 2, ra + 3);
// note that we need to increment pc by 1 to exit the loop since we need to skip over aux
pc += ttisnil(ra + 3) ? 1 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_FORGPREP_INEXT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: ipairs/inext
if (cl->env->safeenv && ttistable(ra + 1) && ttisnumber(ra + 2) && nvalue(ra + 2) == 0.0)
{
setnilvalue(ra);
2022-08-04 23:35:33 +01:00
// ra+1 is already the table
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)));
}
else if (!ttisfunction(ra))
2022-05-06 01:03:43 +01:00
{
VM_PROTECT(luaG_typeerror(L, ra, "iterate over"));
}
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FORGLOOP_INEXT)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: ipairs/inext
if (ttisnil(ra) && ttistable(ra + 1) && ttislightuserdata(ra + 2))
{
Table* h = hvalue(ra + 1);
int index = int(reinterpret_cast<uintptr_t>(pvalue(ra + 2)));
// if 1-based index of the last iteration is in bounds, this means 0-based index of the current iteration is in bounds
if (unsigned(index) < unsigned(h->sizearray))
{
// note that nil elements inside the array terminate the traversal
if (!ttisnil(&h->array[index]))
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
setnvalue(ra + 3, double(index + 1));
setobj2s(L, ra + 4, &h->array[index]);
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// fallthrough to exit
VM_NEXT();
}
}
else
{
2022-05-06 01:03:43 +01:00
// fallthrough to exit
VM_NEXT();
}
}
else
{
// slow-path; can call Lua/C generators
bool stop;
VM_PROTECT(stop = luau_loopFORG(L, LUAU_INSN_A(insn), 2));
pc += stop ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_FORGPREP_NEXT)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: pairs/next
if (cl->env->safeenv && ttistable(ra + 1) && ttisnil(ra + 2))
{
setnilvalue(ra);
2022-08-04 23:35:33 +01:00
// ra+1 is already the table
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(0)));
}
else if (!ttisfunction(ra))
2022-05-06 01:03:43 +01:00
{
VM_PROTECT(luaG_typeerror(L, ra, "iterate over"));
}
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FORGLOOP_NEXT)
{
VM_INTERRUPT();
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
// fast-path: pairs/next
if (ttisnil(ra) && ttistable(ra + 1) && ttislightuserdata(ra + 2))
{
Table* h = hvalue(ra + 1);
int index = int(reinterpret_cast<uintptr_t>(pvalue(ra + 2)));
int sizearray = h->sizearray;
int sizenode = 1 << h->lsizenode;
// first we advance index through the array portion
while (unsigned(index) < unsigned(sizearray))
{
if (!ttisnil(&h->array[index]))
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
setnvalue(ra + 3, double(index + 1));
setobj2s(L, ra + 4, &h->array[index]);
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
// then we advance index through the hash portion
while (unsigned(index - sizearray) < unsigned(sizenode))
{
LuaNode* n = &h->node[index - sizearray];
if (!ttisnil(gval(n)))
{
setpvalue(ra + 2, reinterpret_cast<void*>(uintptr_t(index + 1)));
getnodekey(L, ra + 3, n);
setobj2s(L, ra + 4, gval(n));
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
index++;
}
// fallthrough to exit
VM_NEXT();
}
else
{
// slow-path; can call Lua/C generators
bool stop;
VM_PROTECT(stop = luau_loopFORG(L, LUAU_INSN_A(insn), 2));
pc += stop ? 0 : LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_GETVARARGS)
{
Instruction insn = *pc++;
int b = LUAU_INSN_B(insn) - 1;
int n = cast_int(base - L->ci->func) - cl->l.p->numparams - 1;
if (b == LUA_MULTRET)
{
VM_PROTECT(luaD_checkstack(L, n));
StkId ra = VM_REG(LUAU_INSN_A(insn)); // previous call may change the stack
for (int j = 0; j < n; j++)
setobjs2s(L, ra + j, base - n + j);
L->top = ra + n;
VM_NEXT();
}
else
{
StkId ra = VM_REG(LUAU_INSN_A(insn));
for (int j = 0; j < b && j < n; j++)
setobjs2s(L, ra + j, base - n + j);
for (int j = n; j < b; j++)
setnilvalue(ra + j);
VM_NEXT();
}
}
VM_CASE(LOP_DUPCLOSURE)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(LUAU_INSN_D(insn));
Closure* kcl = clvalue(kv);
// clone closure if the environment is not shared
// note: we save closure to stack early in case the code below wants to capture it by value
Closure* ncl = (kcl->env == cl->env) ? kcl : luaF_newLclosure(L, kcl->nupvalues, cl->env, kcl->l.p);
setclvalue(L, ra, ncl);
// this loop does three things:
// - if the closure was created anew, it just fills it with upvalues
// - if the closure from the constant table is used, it fills it with upvalues so that it can be shared in the future
// - if the closure is reused, it checks if the reuse is safe via rawequal, and falls back to duplicating the closure
// normally this would use two separate loops, for reuse check and upvalue setup, but MSVC codegen goes crazy if you do that
for (int ui = 0; ui < kcl->nupvalues; ++ui)
{
Instruction uinsn = pc[ui];
LUAU_ASSERT(LUAU_INSN_OP(uinsn) == LOP_CAPTURE);
LUAU_ASSERT(LUAU_INSN_A(uinsn) == LCT_VAL || LUAU_INSN_A(uinsn) == LCT_UPVAL);
TValue* uv = (LUAU_INSN_A(uinsn) == LCT_VAL) ? VM_REG(LUAU_INSN_B(uinsn)) : VM_UV(LUAU_INSN_B(uinsn));
// check if the existing closure is safe to reuse
if (ncl == kcl && luaO_rawequalObj(&ncl->l.uprefs[ui], uv))
continue;
// lazily clone the closure and update the upvalues
if (ncl == kcl && kcl->preload == 0)
{
ncl = luaF_newLclosure(L, kcl->nupvalues, cl->env, kcl->l.p);
setclvalue(L, ra, ncl);
ui = -1; // restart the loop to fill all upvalues
continue;
}
// this updates a newly created closure, or an existing closure created during preload, in which case we need a barrier
setobj(L, &ncl->l.uprefs[ui], uv);
luaC_barrier(L, ncl, uv);
}
// this is a noop if ncl is newly created or shared successfully, but it has to run after the closure is preloaded for the first time
ncl->preload = 0;
if (kcl != ncl)
VM_PROTECT(luaC_checkGC(L));
pc += kcl->nupvalues;
VM_NEXT();
}
VM_CASE(LOP_PREPVARARGS)
{
Instruction insn = *pc++;
int numparams = LUAU_INSN_A(insn);
// all fixed parameters are copied after the top so we need more stack space
VM_PROTECT(luaD_checkstack(L, cl->stacksize + numparams));
// the caller must have filled extra fixed arguments with nil
LUAU_ASSERT(cast_int(L->top - base) >= numparams);
// move fixed parameters to final position
2022-08-04 23:35:33 +01:00
StkId fixed = base; // first fixed argument
base = L->top; // final position of first argument
for (int i = 0; i < numparams; ++i)
{
setobjs2s(L, base + i, fixed + i);
setnilvalue(fixed + i);
}
// rewire our stack frame to point to the new base
L->ci->base = base;
L->ci->top = base + cl->stacksize;
L->base = base;
L->top = L->ci->top;
VM_NEXT();
}
VM_CASE(LOP_JUMPBACK)
{
VM_INTERRUPT();
Instruction insn = *pc++;
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_LOADKX)
{
Instruction insn = *pc++;
StkId ra = VM_REG(LUAU_INSN_A(insn));
uint32_t aux = *pc++;
TValue* kv = VM_KV(aux);
setobj2s(L, ra, kv);
VM_NEXT();
}
VM_CASE(LOP_JUMPX)
{
VM_INTERRUPT();
Instruction insn = *pc++;
pc += LUAU_INSN_E(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_FASTCALL)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
int skip = LUAU_INSN_C(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = LUAU_INSN_B(call) - 1;
int nresults = LUAU_INSN_C(call) - 1;
nparams = (nparams == LUA_MULTRET) ? int(L->top - ra - 1) : nparams;
luau_FastFunction f = luauF_table[bfid];
if (cl->env->safeenv && f)
{
VM_PROTECT_PC();
int n = f(L, ra, ra + 1, nresults, ra + 2, nparams);
if (n >= 0)
{
L->top = (nresults == LUA_MULTRET) ? ra + n : L->ci->top;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_COVERAGE)
{
Instruction insn = *pc++;
int hits = LUAU_INSN_E(insn);
// update hits with saturated add and patch the instruction in place
hits = (hits < (1 << 23) - 1) ? hits + 1 : hits;
VM_PATCH_E(pc - 1, hits);
VM_NEXT();
}
VM_CASE(LOP_CAPTURE)
{
LUAU_ASSERT(!"CAPTURE is a pseudo-opcode and must be executed as part of NEWCLOSURE");
LUAU_UNREACHABLE();
}
VM_CASE(LOP_JUMPIFEQK)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* rb = VM_KV(aux);
// Note that all jumps below jump by 1 in the "false" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) == bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) == nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
pc += gcvalue(ra) == gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
default:;
}
LUAU_ASSERT(!"Constant is expected to be of primitive type");
}
else
{
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_JUMPIFNOTEQK)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* rb = VM_KV(aux);
// Note that all jumps below jump by 1 in the "true" case to skip over aux
if (ttype(ra) == ttype(rb))
{
switch (ttype(ra))
{
case LUA_TNIL:
pc += 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TBOOLEAN:
pc += bvalue(ra) != bvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TNUMBER:
pc += nvalue(ra) != nvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
case LUA_TSTRING:
pc += gcvalue(ra) != gcvalue(rb) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
default:;
}
LUAU_ASSERT(!"Constant is expected to be of primitive type");
}
else
{
pc += LUAU_INSN_D(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
}
VM_CASE(LOP_FASTCALL1)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
TValue* arg = VM_REG(LUAU_INSN_B(insn));
int skip = LUAU_INSN_C(insn);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = 1;
int nresults = LUAU_INSN_C(call) - 1;
luau_FastFunction f = luauF_table[bfid];
if (cl->env->safeenv && f)
{
VM_PROTECT_PC();
2022-05-06 01:03:43 +01:00
int n = f(L, ra, arg, nresults, NULL, nparams);
if (n >= 0)
{
L->top = (nresults == LUA_MULTRET) ? ra + n : L->ci->top;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_FASTCALL2)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
int skip = LUAU_INSN_C(insn) - 1;
uint32_t aux = *pc++;
TValue* arg1 = VM_REG(LUAU_INSN_B(insn));
TValue* arg2 = VM_REG(aux);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = 2;
int nresults = LUAU_INSN_C(call) - 1;
luau_FastFunction f = luauF_table[bfid];
if (cl->env->safeenv && f)
{
VM_PROTECT_PC();
int n = f(L, ra, arg1, nresults, arg2, nparams);
if (n >= 0)
{
L->top = (nresults == LUA_MULTRET) ? ra + n : L->ci->top;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_FASTCALL2K)
{
Instruction insn = *pc++;
int bfid = LUAU_INSN_A(insn);
int skip = LUAU_INSN_C(insn) - 1;
uint32_t aux = *pc++;
TValue* arg1 = VM_REG(LUAU_INSN_B(insn));
TValue* arg2 = VM_KV(aux);
LUAU_ASSERT(unsigned(pc - cl->l.p->code + skip) < unsigned(cl->l.p->sizecode));
Instruction call = pc[skip];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
StkId ra = VM_REG(LUAU_INSN_A(call));
int nparams = 2;
int nresults = LUAU_INSN_C(call) - 1;
luau_FastFunction f = luauF_table[bfid];
if (cl->env->safeenv && f)
{
VM_PROTECT_PC();
int n = f(L, ra, arg1, nresults, arg2, nparams);
if (n >= 0)
{
L->top = (nresults == LUA_MULTRET) ? ra + n : L->ci->top;
pc += skip + 1; // skip instructions that compute function as well as CALL
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
else
{
// continue execution through the fallback code
VM_NEXT();
}
}
VM_CASE(LOP_BREAK)
{
LUAU_ASSERT(cl->l.p->debuginsn);
uint8_t op = cl->l.p->debuginsn[unsigned(pc - cl->l.p->code)];
LUAU_ASSERT(op != LOP_BREAK);
if (L->global->cb.debugbreak)
{
VM_PROTECT(luau_callhook(L, L->global->cb.debugbreak, NULL));
// allow debugbreak hook to put thread into error/yield state
if (L->status != 0)
goto exit;
}
VM_CONTINUE(op);
}
2022-08-04 23:35:33 +01:00
VM_CASE(LOP_JUMPXEQKNIL)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
static_assert(LUA_TNIL == 0, "we expect type-1 to be negative iff type is nil");
// condition is equivalent to: int(ttisnil(ra)) != (aux >> 31)
pc += int((ttype(ra) - 1) ^ aux) < 0 ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPXEQKB)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
pc += int(ttisboolean(ra) && bvalue(ra) == int(aux & 1)) != (aux >> 31) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPXEQKN)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(aux & 0xffffff);
LUAU_ASSERT(ttisnumber(kv));
#if defined(__aarch64__)
// On several ARM chips (Apple M1/M2, Neoverse N1), comparing the result of a floating-point comparison is expensive, and a branch
// is much cheaper; on some 32-bit ARM chips (Cortex A53) the performance is about the same so we prefer less branchy variant there
if (aux >> 31)
pc += !(ttisnumber(ra) && nvalue(ra) == nvalue(kv)) ? LUAU_INSN_D(insn) : 1;
else
pc += (ttisnumber(ra) && nvalue(ra) == nvalue(kv)) ? LUAU_INSN_D(insn) : 1;
#else
2022-08-04 23:35:33 +01:00
pc += int(ttisnumber(ra) && nvalue(ra) == nvalue(kv)) != (aux >> 31) ? LUAU_INSN_D(insn) : 1;
#endif
2022-08-04 23:35:33 +01:00
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
VM_CASE(LOP_JUMPXEQKS)
{
Instruction insn = *pc++;
uint32_t aux = *pc;
StkId ra = VM_REG(LUAU_INSN_A(insn));
TValue* kv = VM_KV(aux & 0xffffff);
LUAU_ASSERT(ttisstring(kv));
pc += int(ttisstring(ra) && gcvalue(ra) == gcvalue(kv)) != (aux >> 31) ? LUAU_INSN_D(insn) : 1;
LUAU_ASSERT(unsigned(pc - cl->l.p->code) < unsigned(cl->l.p->sizecode));
VM_NEXT();
}
#if !VM_USE_CGOTO
default:
LUAU_ASSERT(!"Unknown opcode");
LUAU_UNREACHABLE(); // improves switch() codegen by eliding opcode bounds checks
#endif
}
}
exit:;
}
void luau_execute(lua_State* L)
{
if (L->singlestep)
luau_execute<true>(L);
else
luau_execute<false>(L);
}
int luau_precall(lua_State* L, StkId func, int nresults)
{
if (!ttisfunction(func))
{
luau_tryfuncTM(L, func);
// L->top is incremented by tryfuncTM
}
Closure* ccl = clvalue(func);
CallInfo* ci = incr_ci(L);
ci->func = func;
ci->base = func + 1;
ci->top = L->top + ccl->stacksize;
ci->savedpc = NULL;
ci->flags = 0;
ci->nresults = nresults;
L->base = ci->base;
// Note: L->top is assigned externally
luaD_checkstack(L, ccl->stacksize);
LUAU_ASSERT(ci->top <= L->stack_last);
if (!ccl->isC)
{
// fill unused parameters with nil
StkId argi = L->top;
StkId argend = L->base + ccl->l.p->numparams;
while (argi < argend)
2022-08-04 23:35:33 +01:00
setnilvalue(argi++); // complete missing arguments
L->top = ccl->l.p->is_vararg ? argi : ci->top;
L->ci->savedpc = ccl->l.p->code;
return PCRLUA;
}
else
{
lua_CFunction func = ccl->c.f;
int n = func(L);
// yield
if (n < 0)
return PCRYIELD;
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// TODO: it might be worthwhile to handle the case when nresults==b explicitly?
StkId res = ci->func;
StkId vali = L->top - n;
StkId valend = L->top;
int i;
for (i = nresults; i != 0 && vali < valend; i--)
setobjs2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = res;
return PCRC;
}
}
void luau_poscall(lua_State* L, StkId first)
{
// finish interrupted execution of `OP_CALL'
// ci is our callinfo, cip is our parent
CallInfo* ci = L->ci;
CallInfo* cip = ci - 1;
// copy return values into parent stack (but only up to nresults!), fill the rest with nil
// TODO: it might be worthwhile to handle the case when nresults==b explicitly?
StkId res = ci->func;
StkId vali = first;
StkId valend = L->top;
int i;
for (i = ci->nresults; i != 0 && vali < valend; i--)
setobjs2s(L, res++, vali++);
while (i-- > 0)
setnilvalue(res++);
// pop the stack frame
L->ci = cip;
L->base = cip->base;
L->top = (ci->nresults == LUA_MULTRET) ? res : cip->top;
}