2022-11-04 17:33:22 +00:00
|
|
|
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "Luau/RegisterA64.h"
|
|
|
|
#include "Luau/AddressA64.h"
|
|
|
|
#include "Luau/ConditionA64.h"
|
|
|
|
#include "Luau/Label.h"
|
|
|
|
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
namespace Luau
|
|
|
|
{
|
|
|
|
namespace CodeGen
|
|
|
|
{
|
2023-03-03 20:21:14 +00:00
|
|
|
namespace A64
|
|
|
|
{
|
2022-11-04 17:33:22 +00:00
|
|
|
|
2023-03-31 19:42:49 +01:00
|
|
|
enum FeaturesA64
|
|
|
|
{
|
|
|
|
Feature_JSCVT = 1 << 0,
|
|
|
|
};
|
|
|
|
|
2022-11-04 17:33:22 +00:00
|
|
|
class AssemblyBuilderA64
|
|
|
|
{
|
|
|
|
public:
|
2023-03-31 19:42:49 +01:00
|
|
|
explicit AssemblyBuilderA64(bool logText, unsigned int features = 0);
|
2022-11-04 17:33:22 +00:00
|
|
|
~AssemblyBuilderA64();
|
|
|
|
|
|
|
|
// Moves
|
|
|
|
void mov(RegisterA64 dst, RegisterA64 src);
|
2023-03-24 18:03:04 +00:00
|
|
|
void mov(RegisterA64 dst, int src); // macro
|
|
|
|
|
|
|
|
// Moves of 32-bit immediates get decomposed into one or more of these
|
|
|
|
void movz(RegisterA64 dst, uint16_t src, int shift = 0);
|
|
|
|
void movn(RegisterA64 dst, uint16_t src, int shift = 0);
|
2022-11-04 17:33:22 +00:00
|
|
|
void movk(RegisterA64 dst, uint16_t src, int shift = 0);
|
|
|
|
|
|
|
|
// Arithmetics
|
|
|
|
void add(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
2023-03-24 18:03:04 +00:00
|
|
|
void add(RegisterA64 dst, RegisterA64 src1, uint16_t src2);
|
2022-11-04 17:33:22 +00:00
|
|
|
void sub(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
2023-03-24 18:03:04 +00:00
|
|
|
void sub(RegisterA64 dst, RegisterA64 src1, uint16_t src2);
|
2022-11-04 17:33:22 +00:00
|
|
|
void neg(RegisterA64 dst, RegisterA64 src);
|
|
|
|
|
|
|
|
// Comparisons
|
|
|
|
// Note: some arithmetic instructions also have versions that update flags (ADDS etc) but we aren't using them atm
|
2022-11-10 22:53:13 +00:00
|
|
|
void cmp(RegisterA64 src1, RegisterA64 src2);
|
2023-03-24 18:03:04 +00:00
|
|
|
void cmp(RegisterA64 src1, uint16_t src2);
|
2023-03-31 19:42:49 +01:00
|
|
|
void csel(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond);
|
2023-04-14 19:06:22 +01:00
|
|
|
void cset(RegisterA64 dst, ConditionA64 cond);
|
2022-11-04 17:33:22 +00:00
|
|
|
|
2022-11-10 22:53:13 +00:00
|
|
|
// Bitwise
|
2023-04-21 23:14:26 +01:00
|
|
|
void and_(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
|
|
|
void orr(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
|
|
|
void eor(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
|
|
|
void bic(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
|
|
|
void tst(RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
2023-05-12 18:50:47 +01:00
|
|
|
void mvn_(RegisterA64 dst, RegisterA64 src);
|
2022-11-10 22:53:13 +00:00
|
|
|
|
2023-04-14 19:06:22 +01:00
|
|
|
// Bitwise with immediate
|
|
|
|
// Note: immediate must have a single contiguous sequence of 1 bits set of length 1..31
|
|
|
|
void and_(RegisterA64 dst, RegisterA64 src1, uint32_t src2);
|
|
|
|
void orr(RegisterA64 dst, RegisterA64 src1, uint32_t src2);
|
|
|
|
void eor(RegisterA64 dst, RegisterA64 src1, uint32_t src2);
|
|
|
|
void tst(RegisterA64 src1, uint32_t src2);
|
|
|
|
|
2022-11-10 22:53:13 +00:00
|
|
|
// Shifts
|
2022-11-04 17:33:22 +00:00
|
|
|
void lsl(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void lsr(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void asr(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void ror(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void clz(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void rbit(RegisterA64 dst, RegisterA64 src);
|
2023-10-21 02:10:30 +01:00
|
|
|
void rev(RegisterA64 dst, RegisterA64 src);
|
2022-11-04 17:33:22 +00:00
|
|
|
|
2023-04-21 23:14:26 +01:00
|
|
|
// Shifts with immediates
|
|
|
|
// Note: immediate value must be in [0, 31] or [0, 63] range based on register type
|
|
|
|
void lsl(RegisterA64 dst, RegisterA64 src1, uint8_t src2);
|
|
|
|
void lsr(RegisterA64 dst, RegisterA64 src1, uint8_t src2);
|
|
|
|
void asr(RegisterA64 dst, RegisterA64 src1, uint8_t src2);
|
|
|
|
void ror(RegisterA64 dst, RegisterA64 src1, uint8_t src2);
|
|
|
|
|
2023-05-19 20:37:30 +01:00
|
|
|
// Bitfields
|
|
|
|
void ubfiz(RegisterA64 dst, RegisterA64 src, uint8_t f, uint8_t w);
|
|
|
|
void ubfx(RegisterA64 dst, RegisterA64 src, uint8_t f, uint8_t w);
|
|
|
|
void sbfiz(RegisterA64 dst, RegisterA64 src, uint8_t f, uint8_t w);
|
|
|
|
void sbfx(RegisterA64 dst, RegisterA64 src, uint8_t f, uint8_t w);
|
|
|
|
|
2022-11-04 17:33:22 +00:00
|
|
|
// Load
|
|
|
|
// Note: paired loads are currently omitted for simplicity
|
|
|
|
void ldr(RegisterA64 dst, AddressA64 src);
|
|
|
|
void ldrb(RegisterA64 dst, AddressA64 src);
|
|
|
|
void ldrh(RegisterA64 dst, AddressA64 src);
|
|
|
|
void ldrsb(RegisterA64 dst, AddressA64 src);
|
|
|
|
void ldrsh(RegisterA64 dst, AddressA64 src);
|
|
|
|
void ldrsw(RegisterA64 dst, AddressA64 src);
|
2023-03-24 18:03:04 +00:00
|
|
|
void ldp(RegisterA64 dst1, RegisterA64 dst2, AddressA64 src);
|
2022-11-04 17:33:22 +00:00
|
|
|
|
|
|
|
// Store
|
|
|
|
void str(RegisterA64 src, AddressA64 dst);
|
|
|
|
void strb(RegisterA64 src, AddressA64 dst);
|
|
|
|
void strh(RegisterA64 src, AddressA64 dst);
|
2023-03-24 18:03:04 +00:00
|
|
|
void stp(RegisterA64 src1, RegisterA64 src2, AddressA64 dst);
|
2022-11-04 17:33:22 +00:00
|
|
|
|
|
|
|
// Control flow
|
2022-11-10 22:53:13 +00:00
|
|
|
void b(Label& label);
|
2023-04-21 23:14:26 +01:00
|
|
|
void bl(Label& label);
|
2022-11-10 22:53:13 +00:00
|
|
|
void br(RegisterA64 src);
|
|
|
|
void blr(RegisterA64 src);
|
2022-11-04 17:33:22 +00:00
|
|
|
void ret();
|
|
|
|
|
2023-04-21 23:14:26 +01:00
|
|
|
// Conditional control flow
|
|
|
|
void b(ConditionA64 cond, Label& label);
|
|
|
|
void cbz(RegisterA64 src, Label& label);
|
|
|
|
void cbnz(RegisterA64 src, Label& label);
|
|
|
|
void tbz(RegisterA64 src, uint8_t bit, Label& label);
|
|
|
|
void tbnz(RegisterA64 src, uint8_t bit, Label& label);
|
|
|
|
|
2022-11-10 22:53:13 +00:00
|
|
|
// Address of embedded data
|
|
|
|
void adr(RegisterA64 dst, const void* ptr, size_t size);
|
|
|
|
void adr(RegisterA64 dst, uint64_t value);
|
|
|
|
void adr(RegisterA64 dst, double value);
|
|
|
|
|
2023-03-24 18:03:04 +00:00
|
|
|
// Address of code (label)
|
|
|
|
void adr(RegisterA64 dst, Label& label);
|
|
|
|
|
CodeGen: Improve lowering of NUM_TO_VEC on A64 for constants (#1194)
When the input is a constant, we use a fairly inefficient sequence of
fmov+fcvt+dup or, when the double isn't encodable in fmov,
adr+ldr+fcvt+dup.
Instead, we can use the same lowering as X64 when the input is a
constant, and load the vector from memory. However, if the constant is
encodable via fmov, we can use a vector fmov instead (which is just one
instruction and doesn't need constant space).
Fortunately the bit encoding of fmov for 32-bit floating point numbers
matches that of 64-bit: the decoding algorithm is a little different
because it expands into a larger exponent, but the values are
compatible, so if a double can be encoded into a scalar fmov with a
given abcdefgh pattern, the same pattern should encode the same float;
due to the very limited number of mantissa and exponent bits, all values
that are encodable are also exact in both 32-bit and 64-bit floats.
This strategy is ~same as what gcc uses. For complex vectors, we
previously used 4 instructions and 8 bytes of constant storage, and now
we use 2 instructions and 16 bytes of constant storage, so the memory
footprint is the same; for simple vectors we just need 1 instruction (4
bytes).
clang lowers vector constants a little differently, opting to synthesize
a 64-bit integer using 4 instructions (mov/movk) and then move it to the
vector register - this requires 5 instructions and 20 bytes, vs ours/gcc
2 instructions and 8+16=24 bytes. I tried a simpler version of this that
would be more compact - synthesize a 32-bit integer constant with
mov+movk, and move it to vector register via dup.4s - but this was a
little slower on M2, so for now we prefer the slightly larger version as
it's not a regression vs current implementation.
On the vector approximation benchmark we get:
- Before this PR (flag=false): ~7.85 ns/op
- After this PR (flag=true): ~7.74 ns/op
- After this PR, with 0.125 instead of 0.123 in the benchmark code (to
use fmov): ~7.52 ns/op
- Not part of this PR, but the mov/dup strategy described above: ~8.00
ns/op
2024-03-13 19:56:11 +00:00
|
|
|
// Floating-point scalar/vector moves
|
2023-04-21 23:14:26 +01:00
|
|
|
// Note: constant must be compatible with immediate floating point moves (see isFmovSupported)
|
2023-03-31 19:42:49 +01:00
|
|
|
void fmov(RegisterA64 dst, RegisterA64 src);
|
2023-04-21 23:14:26 +01:00
|
|
|
void fmov(RegisterA64 dst, double src);
|
2023-03-31 19:42:49 +01:00
|
|
|
|
CodeGen: Improve lowering of NUM_TO_VEC on A64 for constants (#1194)
When the input is a constant, we use a fairly inefficient sequence of
fmov+fcvt+dup or, when the double isn't encodable in fmov,
adr+ldr+fcvt+dup.
Instead, we can use the same lowering as X64 when the input is a
constant, and load the vector from memory. However, if the constant is
encodable via fmov, we can use a vector fmov instead (which is just one
instruction and doesn't need constant space).
Fortunately the bit encoding of fmov for 32-bit floating point numbers
matches that of 64-bit: the decoding algorithm is a little different
because it expands into a larger exponent, but the values are
compatible, so if a double can be encoded into a scalar fmov with a
given abcdefgh pattern, the same pattern should encode the same float;
due to the very limited number of mantissa and exponent bits, all values
that are encodable are also exact in both 32-bit and 64-bit floats.
This strategy is ~same as what gcc uses. For complex vectors, we
previously used 4 instructions and 8 bytes of constant storage, and now
we use 2 instructions and 16 bytes of constant storage, so the memory
footprint is the same; for simple vectors we just need 1 instruction (4
bytes).
clang lowers vector constants a little differently, opting to synthesize
a 64-bit integer using 4 instructions (mov/movk) and then move it to the
vector register - this requires 5 instructions and 20 bytes, vs ours/gcc
2 instructions and 8+16=24 bytes. I tried a simpler version of this that
would be more compact - synthesize a 32-bit integer constant with
mov+movk, and move it to vector register via dup.4s - but this was a
little slower on M2, so for now we prefer the slightly larger version as
it's not a regression vs current implementation.
On the vector approximation benchmark we get:
- Before this PR (flag=false): ~7.85 ns/op
- After this PR (flag=true): ~7.74 ns/op
- After this PR, with 0.125 instead of 0.123 in the benchmark code (to
use fmov): ~7.52 ns/op
- Not part of this PR, but the mov/dup strategy described above: ~8.00
ns/op
2024-03-13 19:56:11 +00:00
|
|
|
// Floating-point scalar/vector math
|
2023-03-31 19:42:49 +01:00
|
|
|
void fabs(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void fadd(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void fdiv(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void fmul(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void fneg(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void fsqrt(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void fsub(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2);
|
CodeGen: Rewrite dot product lowering using a dedicated IR instruction (#1512)
Instead of doing the dot product related math in scalar IR, we lift the
computation into a dedicated IR instruction.
On x64, we can use VDPPS which was more or less tailor made for this
purpose. This is better than manual scalar lowering that requires
reloading components from memory; it's not always a strict improvement
over the shuffle+add version (which we never had), but this can now be
adjusted in the IR lowering in an optimal fashion (maybe even based on
CPU vendor, although that'd create issues for offline compilation).
On A64, we can either use naive adds or paired adds, as there is no
dedicated vector-wide horizontal instruction until SVE. Both run at
about the same performance on M2, but paired adds require fewer
instructions and temporaries.
I've measured this using mesh-normal-vector benchmark, changing the
benchmark to just report the time of the second loop inside
`calculate_normals`, testing master vs #1504 vs this PR, also increasing
the grid size to 400 for more stable timings.
On Zen 4 (7950X), this PR is comfortably ~8% faster vs master, while I
see neutral to negative results in #1504.
On M2 (base), this PR is ~28% faster vs master, while #1504 is only
about ~10% faster.
If I measure the second loop in `calculate_tangent_space` instead, I
get:
On Zen 4 (7950X), this PR is ~12% faster vs master, while #1504 is ~3%
faster
On M2 (base), this PR is ~24% faster vs master, while #1504 is only
about ~13% faster.
Note that the loops in question are not quite optimal, as they store and
reload various vectors to dictionary values due to inappropriate use of
locals. The underlying gains in individual functions are thus larger
than the numbers above; for example, changing the `calculate_normals`
loop to use a local variable to store the normalized vector (but still
saving the result to dictionary value), I get a ~24% performance
increase from this PR on Zen4 vs master instead of just 8% (#1504 is
~15% slower in this setup).
2024-11-09 00:23:09 +00:00
|
|
|
void faddp(RegisterA64 dst, RegisterA64 src);
|
2023-03-31 19:42:49 +01:00
|
|
|
|
CodeGen: Improve lowering of NUM_TO_VEC on A64 for constants (#1194)
When the input is a constant, we use a fairly inefficient sequence of
fmov+fcvt+dup or, when the double isn't encodable in fmov,
adr+ldr+fcvt+dup.
Instead, we can use the same lowering as X64 when the input is a
constant, and load the vector from memory. However, if the constant is
encodable via fmov, we can use a vector fmov instead (which is just one
instruction and doesn't need constant space).
Fortunately the bit encoding of fmov for 32-bit floating point numbers
matches that of 64-bit: the decoding algorithm is a little different
because it expands into a larger exponent, but the values are
compatible, so if a double can be encoded into a scalar fmov with a
given abcdefgh pattern, the same pattern should encode the same float;
due to the very limited number of mantissa and exponent bits, all values
that are encodable are also exact in both 32-bit and 64-bit floats.
This strategy is ~same as what gcc uses. For complex vectors, we
previously used 4 instructions and 8 bytes of constant storage, and now
we use 2 instructions and 16 bytes of constant storage, so the memory
footprint is the same; for simple vectors we just need 1 instruction (4
bytes).
clang lowers vector constants a little differently, opting to synthesize
a 64-bit integer using 4 instructions (mov/movk) and then move it to the
vector register - this requires 5 instructions and 20 bytes, vs ours/gcc
2 instructions and 8+16=24 bytes. I tried a simpler version of this that
would be more compact - synthesize a 32-bit integer constant with
mov+movk, and move it to vector register via dup.4s - but this was a
little slower on M2, so for now we prefer the slightly larger version as
it's not a regression vs current implementation.
On the vector approximation benchmark we get:
- Before this PR (flag=false): ~7.85 ns/op
- After this PR (flag=true): ~7.74 ns/op
- After this PR, with 0.125 instead of 0.123 in the benchmark code (to
use fmov): ~7.52 ns/op
- Not part of this PR, but the mov/dup strategy described above: ~8.00
ns/op
2024-03-13 19:56:11 +00:00
|
|
|
// Vector component manipulation
|
2024-01-27 03:20:56 +00:00
|
|
|
void ins_4s(RegisterA64 dst, RegisterA64 src, uint8_t index);
|
|
|
|
void ins_4s(RegisterA64 dst, uint8_t dstIndex, RegisterA64 src, uint8_t srcIndex);
|
|
|
|
void dup_4s(RegisterA64 dst, RegisterA64 src, uint8_t index);
|
|
|
|
|
2023-03-31 19:42:49 +01:00
|
|
|
// Floating-point rounding and conversions
|
|
|
|
void frinta(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void frintm(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void frintp(RegisterA64 dst, RegisterA64 src);
|
2023-04-28 20:55:13 +01:00
|
|
|
void fcvt(RegisterA64 dst, RegisterA64 src);
|
2023-03-31 19:42:49 +01:00
|
|
|
void fcvtzs(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void fcvtzu(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void scvtf(RegisterA64 dst, RegisterA64 src);
|
|
|
|
void ucvtf(RegisterA64 dst, RegisterA64 src);
|
|
|
|
|
|
|
|
// Floating-point conversion to integer using JS rules (wrap around 2^32) and set Z flag
|
|
|
|
// note: this is part of ARM8.3 (JSCVT feature); support of this instruction needs to be checked at runtime
|
|
|
|
void fjcvtzs(RegisterA64 dst, RegisterA64 src);
|
|
|
|
|
|
|
|
// Floating-point comparisons
|
|
|
|
void fcmp(RegisterA64 src1, RegisterA64 src2);
|
|
|
|
void fcmpz(RegisterA64 src);
|
|
|
|
void fcsel(RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond);
|
|
|
|
|
2023-05-25 22:36:34 +01:00
|
|
|
void udf();
|
|
|
|
|
2022-11-04 17:33:22 +00:00
|
|
|
// Run final checks
|
|
|
|
bool finalize();
|
|
|
|
|
|
|
|
// Places a label at current location and returns it
|
|
|
|
Label setLabel();
|
|
|
|
|
|
|
|
// Assigns label position to the current location
|
|
|
|
void setLabel(Label& label);
|
|
|
|
|
2023-03-17 19:20:37 +00:00
|
|
|
// Extracts code offset (in bytes) from label
|
|
|
|
uint32_t getLabelOffset(const Label& label)
|
|
|
|
{
|
2024-02-16 02:04:39 +00:00
|
|
|
CODEGEN_ASSERT(label.location != ~0u);
|
2023-03-17 19:20:37 +00:00
|
|
|
return label.location * 4;
|
|
|
|
}
|
|
|
|
|
2022-11-04 17:33:22 +00:00
|
|
|
void logAppend(const char* fmt, ...) LUAU_PRINTF_ATTR(2, 3);
|
|
|
|
|
|
|
|
uint32_t getCodeSize() const;
|
|
|
|
|
2024-01-12 22:25:27 +00:00
|
|
|
unsigned getInstructionCount() const;
|
|
|
|
|
2022-11-04 17:33:22 +00:00
|
|
|
// Resulting data and code that need to be copied over one after the other
|
|
|
|
// The *end* of 'data' has to be aligned to 16 bytes, this will also align 'code'
|
|
|
|
std::vector<uint8_t> data;
|
|
|
|
std::vector<uint32_t> code;
|
|
|
|
|
|
|
|
std::string text;
|
|
|
|
|
|
|
|
const bool logText = false;
|
2023-03-31 19:42:49 +01:00
|
|
|
const unsigned int features = 0;
|
2022-11-04 17:33:22 +00:00
|
|
|
|
2023-03-24 18:03:04 +00:00
|
|
|
// Maximum immediate argument to functions like add/sub/cmp
|
|
|
|
static constexpr size_t kMaxImmediate = (1 << 12) - 1;
|
|
|
|
|
2023-04-21 23:14:26 +01:00
|
|
|
// Check if immediate mode mask is supported for bitwise operations (and/or/xor)
|
|
|
|
static bool isMaskSupported(uint32_t mask);
|
|
|
|
|
|
|
|
// Check if fmov can be used to synthesize a constant
|
|
|
|
static bool isFmovSupported(double value);
|
|
|
|
|
2022-11-04 17:33:22 +00:00
|
|
|
private:
|
|
|
|
// Instruction archetypes
|
|
|
|
void place0(const char* name, uint32_t word);
|
2023-04-14 19:06:22 +01:00
|
|
|
void placeSR3(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, uint8_t op, int shift = 0, int N = 0);
|
2022-11-10 22:53:13 +00:00
|
|
|
void placeSR2(const char* name, RegisterA64 dst, RegisterA64 src, uint8_t op, uint8_t op2 = 0);
|
2022-11-04 17:33:22 +00:00
|
|
|
void placeR3(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, uint8_t op, uint8_t op2);
|
|
|
|
void placeR1(const char* name, RegisterA64 dst, RegisterA64 src, uint32_t op);
|
|
|
|
void placeI12(const char* name, RegisterA64 dst, RegisterA64 src1, int src2, uint8_t op);
|
|
|
|
void placeI16(const char* name, RegisterA64 dst, int src, uint8_t op, int shift = 0);
|
2023-05-12 18:50:47 +01:00
|
|
|
void placeA(const char* name, RegisterA64 dst, AddressA64 src, uint16_t opsize, int sizelog);
|
2023-04-21 23:14:26 +01:00
|
|
|
void placeB(const char* name, Label& label, uint8_t op);
|
2022-11-04 17:33:22 +00:00
|
|
|
void placeBC(const char* name, Label& label, uint8_t op, uint8_t cond);
|
2022-11-10 22:53:13 +00:00
|
|
|
void placeBCR(const char* name, Label& label, uint8_t op, RegisterA64 cond);
|
|
|
|
void placeBR(const char* name, RegisterA64 src, uint32_t op);
|
2023-04-21 23:14:26 +01:00
|
|
|
void placeBTR(const char* name, Label& label, uint8_t op, RegisterA64 cond, uint8_t bit);
|
2022-11-10 22:53:13 +00:00
|
|
|
void placeADR(const char* name, RegisterA64 src, uint8_t op);
|
2023-03-24 18:03:04 +00:00
|
|
|
void placeADR(const char* name, RegisterA64 src, uint8_t op, Label& label);
|
2023-03-31 19:42:49 +01:00
|
|
|
void placeP(const char* name, RegisterA64 dst1, RegisterA64 dst2, AddressA64 src, uint8_t op, uint8_t opc, int sizelog);
|
2023-04-14 19:06:22 +01:00
|
|
|
void placeCS(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond, uint8_t op, uint8_t opc, int invert = 0);
|
2023-03-31 19:42:49 +01:00
|
|
|
void placeFCMP(const char* name, RegisterA64 src1, RegisterA64 src2, uint8_t op, uint8_t opc);
|
2023-04-21 23:14:26 +01:00
|
|
|
void placeFMOV(const char* name, RegisterA64 dst, double src, uint32_t op);
|
2023-04-14 19:06:22 +01:00
|
|
|
void placeBM(const char* name, RegisterA64 dst, RegisterA64 src1, uint32_t src2, uint8_t op);
|
2023-05-19 20:37:30 +01:00
|
|
|
void placeBFM(const char* name, RegisterA64 dst, RegisterA64 src1, int src2, uint8_t op, int immr, int imms);
|
2023-09-01 18:58:27 +01:00
|
|
|
void placeER(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, uint8_t op, int shift);
|
Improve A64 lowering for vector operations by using vector instructions (#1164)
This change replaces scalar versions of vector opcodes for A64 with
actual vector instructions.
We take the approach similar to X64: patch last component with zero,
perform the math, patch last component with type tag. I'm hoping that in
the future the type tag will be placed separately (separate IR opcode?)
because right now chains of math operations result in excessive type tag
operations.
To patch the type tag without always keeping a mask in a register,
ins.4s instructions can be used; unfortunately it's only capable of
patching a register in-place, so we need an extra register copy in case
it's not last-use. Usually it's last-use so the patch is free; probably
with IR rework mentioned above all of this can be improved (e.g.
load-with-patch will never need to copy).
~It's not 100% clear if we *have* to patch type tag: Apple does preserve
denormals but we'd need to benchmark this to see if there's an actual
performance impact. But for now we're playing it safe.~
This was tested by running the conformance tests, and new opcode
implementations were checked by comparing the result with
https://armconverter.com/.
Performance testing is complicated by the fact that OSS Luau doesn't
support vector constructor out of the box, and other limitations of
codegen. I've hacked vector constructor/type into REPL and confirmed
that on a test that calls this function in a loop (not inlined):
```
function fma(a: vector, b: vector, c: vector)
return a * b + c
end
```
... this PR improves performance by ~6% (note that probably most of the
overhead here is the call dispatch; I didn't want to brave testing a
more complex expression). The assembly for an individual operation
changes as follows:
Before:
```
# %14 = MUL_VEC %12, %13 ; useCount: 2, lastUse: %22
dup s29,v31.s[0]
dup s28,v30.s[0]
fmul s29,s29,s28
ins v31.s[0],v29.s[0]
dup s29,v31.s[1]
dup s28,v30.s[1]
fmul s29,s29,s28
ins v31.s[1],v29.s[0]
dup s29,v31.s[2]
dup s28,v30.s[2]
fmul s29,s29,s28
ins v31.s[2],v29.s[0]
```
After:
```
# %14 = MUL_VEC %12, %13 ; useCount: 2, lastUse: %22
ins v31.s[3],w31
ins v30.s[3],w31
fmul v31.4s,v31.4s,v30.4s
movz w17,#4
ins v31.s[3],w17
```
**edit** final form (see comments):
```
# %14 = MUL_VEC %12, %13 ; useCount: 2, lastUse: %22
fmul v31.4s,v31.4s,v30.4s
movz w17,#4
ins v31.s[3],w17
```
2024-02-16 16:30:35 +00:00
|
|
|
void placeVR(const char* name, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, uint16_t op, uint8_t op2);
|
2022-11-04 17:33:22 +00:00
|
|
|
|
|
|
|
void place(uint32_t word);
|
2022-11-10 22:53:13 +00:00
|
|
|
|
2023-04-21 23:14:26 +01:00
|
|
|
struct Patch
|
|
|
|
{
|
|
|
|
enum Kind
|
|
|
|
{
|
|
|
|
Imm26,
|
|
|
|
Imm19,
|
|
|
|
Imm14,
|
|
|
|
};
|
|
|
|
|
|
|
|
Kind kind : 2;
|
|
|
|
uint32_t label : 30;
|
|
|
|
uint32_t location;
|
|
|
|
};
|
|
|
|
|
|
|
|
void patchLabel(Label& label, Patch::Kind kind);
|
|
|
|
void patchOffset(uint32_t location, int value, Patch::Kind kind);
|
2022-11-04 17:33:22 +00:00
|
|
|
|
|
|
|
void commit();
|
|
|
|
LUAU_NOINLINE void extend();
|
|
|
|
|
|
|
|
// Data
|
|
|
|
size_t allocateData(size_t size, size_t align);
|
|
|
|
|
|
|
|
// Logging of assembly in text form
|
|
|
|
LUAU_NOINLINE void log(const char* opcode);
|
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, int shift = 0);
|
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst, RegisterA64 src1, int src2);
|
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst, RegisterA64 src);
|
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst, int src, int shift = 0);
|
2023-04-21 23:14:26 +01:00
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst, double src);
|
2022-11-04 17:33:22 +00:00
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst, AddressA64 src);
|
2023-03-24 18:03:04 +00:00
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst1, RegisterA64 dst2, AddressA64 src);
|
2023-04-21 23:14:26 +01:00
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 src, Label label, int imm = -1);
|
2022-11-10 22:53:13 +00:00
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 src);
|
2022-11-04 17:33:22 +00:00
|
|
|
LUAU_NOINLINE void log(const char* opcode, Label label);
|
2023-03-31 19:42:49 +01:00
|
|
|
LUAU_NOINLINE void log(const char* opcode, RegisterA64 dst, RegisterA64 src1, RegisterA64 src2, ConditionA64 cond);
|
2022-11-04 17:33:22 +00:00
|
|
|
LUAU_NOINLINE void log(Label label);
|
|
|
|
LUAU_NOINLINE void log(RegisterA64 reg);
|
|
|
|
LUAU_NOINLINE void log(AddressA64 addr);
|
|
|
|
|
|
|
|
uint32_t nextLabel = 1;
|
2023-04-21 23:14:26 +01:00
|
|
|
std::vector<Patch> pendingLabels;
|
2022-11-04 17:33:22 +00:00
|
|
|
std::vector<uint32_t> labelLocations;
|
|
|
|
|
|
|
|
bool finalized = false;
|
2022-11-10 22:53:13 +00:00
|
|
|
bool overflowed = false;
|
2022-11-04 17:33:22 +00:00
|
|
|
|
|
|
|
size_t dataPos = 0;
|
|
|
|
|
|
|
|
uint32_t* codePos = nullptr;
|
|
|
|
uint32_t* codeEnd = nullptr;
|
|
|
|
};
|
|
|
|
|
2023-03-03 20:21:14 +00:00
|
|
|
} // namespace A64
|
2022-11-04 17:33:22 +00:00
|
|
|
} // namespace CodeGen
|
|
|
|
} // namespace Luau
|