luau/CodeGen/src/IrRegAllocA64.cpp

356 lines
9 KiB
C++
Raw Normal View History

2023-03-31 13:21:14 +01:00
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "IrRegAllocA64.h"
2023-04-21 22:41:03 +01:00
#include "Luau/AssemblyBuilderA64.h"
2023-04-14 13:05:27 +01:00
#include "BitUtils.h"
2023-04-21 22:41:03 +01:00
#include "EmitCommonA64.h"
2023-03-31 13:21:14 +01:00
2023-04-21 22:45:20 +01:00
#include <string.h>
2023-03-31 13:21:14 +01:00
namespace Luau
{
namespace CodeGen
{
namespace A64
{
2023-04-21 22:41:03 +01:00
static int allocSpill(uint32_t& free, KindA64 kind)
{
LUAU_ASSERT(kStackSize <= 256); // to support larger stack frames, we need to ensure qN is allocated at 16b boundary to fit in ldr/str encoding
// qN registers use two consecutive slots
int slot = countrz(kind == KindA64::q ? free & (free >> 1) : free);
if (slot == 32)
return -1;
uint32_t mask = (kind == KindA64::q ? 3u : 1u) << slot;
LUAU_ASSERT((free & mask) == mask);
free &= ~mask;
return slot;
}
static void freeSpill(uint32_t& free, KindA64 kind, uint8_t slot)
{
// qN registers use two consecutive slots
uint32_t mask = (kind == KindA64::q ? 3u : 1u) << slot;
LUAU_ASSERT((free & mask) == 0);
free |= mask;
}
2023-03-31 13:21:14 +01:00
IrRegAllocA64::IrRegAllocA64(IrFunction& function, std::initializer_list<std::pair<RegisterA64, RegisterA64>> regs)
: function(function)
{
for (auto& p : regs)
{
LUAU_ASSERT(p.first.kind == p.second.kind && p.first.index <= p.second.index);
Set& set = getSet(p.first.kind);
for (int i = p.first.index; i <= p.second.index; ++i)
set.base |= 1u << i;
}
gpr.free = gpr.base;
simd.free = simd.base;
2023-04-21 22:41:03 +01:00
memset(gpr.defs, -1, sizeof(gpr.defs));
memset(simd.defs, -1, sizeof(simd.defs));
LUAU_ASSERT(kSpillSlots <= 32);
freeSpillSlots = (kSpillSlots == 32) ? ~0u : (1u << kSpillSlots) - 1;
2023-03-31 13:21:14 +01:00
}
2023-04-21 22:41:03 +01:00
RegisterA64 IrRegAllocA64::allocReg(KindA64 kind, uint32_t index)
2023-03-31 13:21:14 +01:00
{
Set& set = getSet(kind);
if (set.free == 0)
{
LUAU_ASSERT(!"Out of registers to allocate");
return noreg;
}
2023-04-21 22:41:03 +01:00
int reg = 31 - countlz(set.free);
set.free &= ~(1u << reg);
set.defs[reg] = index;
2023-03-31 13:21:14 +01:00
2023-04-21 22:41:03 +01:00
return RegisterA64{kind, uint8_t(reg)};
2023-03-31 13:21:14 +01:00
}
RegisterA64 IrRegAllocA64::allocTemp(KindA64 kind)
{
Set& set = getSet(kind);
if (set.free == 0)
{
LUAU_ASSERT(!"Out of registers to allocate");
return noreg;
}
2023-04-21 22:41:03 +01:00
int reg = 31 - countlz(set.free);
2023-03-31 13:21:14 +01:00
2023-04-21 22:41:03 +01:00
set.free &= ~(1u << reg);
set.temp |= 1u << reg;
LUAU_ASSERT(set.defs[reg] == kInvalidInstIdx);
2023-03-31 13:21:14 +01:00
2023-04-21 22:41:03 +01:00
return RegisterA64{kind, uint8_t(reg)};
2023-03-31 13:21:14 +01:00
}
RegisterA64 IrRegAllocA64::allocReuse(KindA64 kind, uint32_t index, std::initializer_list<IrOp> oprefs)
{
for (IrOp op : oprefs)
{
if (op.kind != IrOpKind::Inst)
continue;
IrInst& source = function.instructions[op.index];
2023-04-21 22:41:03 +01:00
if (source.lastUse == index && !source.reusedReg && !source.spilled && source.regA64 != noreg)
2023-03-31 13:21:14 +01:00
{
LUAU_ASSERT(source.regA64.kind == kind);
2023-04-21 22:41:03 +01:00
Set& set = getSet(kind);
LUAU_ASSERT(set.defs[source.regA64.index] == op.index);
set.defs[source.regA64.index] = index;
2023-03-31 13:21:14 +01:00
source.reusedReg = true;
return source.regA64;
}
}
2023-04-21 22:41:03 +01:00
return allocReg(kind, index);
}
RegisterA64 IrRegAllocA64::takeReg(RegisterA64 reg, uint32_t index)
{
Set& set = getSet(reg.kind);
LUAU_ASSERT(set.free & (1u << reg.index));
LUAU_ASSERT(set.defs[reg.index] == kInvalidInstIdx);
set.free &= ~(1u << reg.index);
set.defs[reg.index] = index;
return reg;
2023-03-31 13:21:14 +01:00
}
void IrRegAllocA64::freeReg(RegisterA64 reg)
{
Set& set = getSet(reg.kind);
LUAU_ASSERT((set.base & (1u << reg.index)) != 0);
LUAU_ASSERT((set.free & (1u << reg.index)) == 0);
2023-04-21 22:41:03 +01:00
LUAU_ASSERT((set.temp & (1u << reg.index)) == 0);
2023-03-31 13:21:14 +01:00
set.free |= 1u << reg.index;
2023-04-21 22:41:03 +01:00
set.defs[reg.index] = kInvalidInstIdx;
2023-03-31 13:21:14 +01:00
}
void IrRegAllocA64::freeLastUseReg(IrInst& target, uint32_t index)
{
if (target.lastUse == index && !target.reusedReg)
{
2023-04-21 22:41:03 +01:00
LUAU_ASSERT(!target.spilled);
2023-03-31 13:21:14 +01:00
// Register might have already been freed if it had multiple uses inside a single instruction
if (target.regA64 == noreg)
return;
freeReg(target.regA64);
target.regA64 = noreg;
}
}
void IrRegAllocA64::freeLastUseRegs(const IrInst& inst, uint32_t index)
{
auto checkOp = [this, index](IrOp op) {
if (op.kind == IrOpKind::Inst)
freeLastUseReg(function.instructions[op.index], index);
};
checkOp(inst.a);
checkOp(inst.b);
checkOp(inst.c);
checkOp(inst.d);
checkOp(inst.e);
checkOp(inst.f);
}
void IrRegAllocA64::freeTempRegs()
{
LUAU_ASSERT((gpr.free & gpr.temp) == 0);
gpr.free |= gpr.temp;
gpr.temp = 0;
LUAU_ASSERT((simd.free & simd.temp) == 0);
simd.free |= simd.temp;
simd.temp = 0;
}
2023-04-21 22:41:03 +01:00
size_t IrRegAllocA64::spill(AssemblyBuilderA64& build, uint32_t index, std::initializer_list<RegisterA64> live)
2023-03-31 13:21:14 +01:00
{
2023-04-21 22:41:03 +01:00
static const KindA64 sets[] = {KindA64::x, KindA64::q};
size_t start = spills.size();
for (RegisterA64 reg : live)
{
Set& set = getSet(reg.kind);
// make sure registers that we expect to survive past spill barrier are not allocated
// TODO: we need to handle this condition somehow in the future; if this fails, this likely means the caller has an aliasing hazard
LUAU_ASSERT(set.free & (1u << reg.index));
}
for (KindA64 kind : sets)
{
Set& set = getSet(kind);
// early-out
if (set.free == set.base)
continue;
// free all temp registers
LUAU_ASSERT((set.free & set.temp) == 0);
set.free |= set.temp;
set.temp = 0;
// spill all allocated registers unless they aren't used anymore
uint32_t regs = set.base & ~set.free;
while (regs)
{
int reg = 31 - countlz(regs);
uint32_t inst = set.defs[reg];
LUAU_ASSERT(inst != kInvalidInstIdx);
IrInst& def = function.instructions[inst];
LUAU_ASSERT(def.regA64.index == reg);
LUAU_ASSERT(!def.spilled);
LUAU_ASSERT(!def.reusedReg);
if (def.lastUse == index)
{
// instead of spilling the register to never reload it, we assume the register is not needed anymore
def.regA64 = noreg;
}
else
{
int slot = allocSpill(freeSpillSlots, def.regA64.kind);
LUAU_ASSERT(slot >= 0); // TODO: remember the error and fail lowering
Spill s = {inst, def.regA64, uint8_t(slot)};
spills.push_back(s);
def.spilled = true;
def.regA64 = noreg;
}
regs &= ~(1u << reg);
set.free |= 1u << reg;
set.defs[reg] = kInvalidInstIdx;
}
LUAU_ASSERT(set.free == set.base);
}
if (start < spills.size())
{
// TODO: use stp for consecutive slots
for (size_t i = start; i < spills.size(); ++i)
build.str(spills[i].origin, mem(sp, sSpillArea.data + spills[i].slot * 8));
}
return start;
2023-03-31 13:21:14 +01:00
}
2023-04-21 22:41:03 +01:00
void IrRegAllocA64::restore(AssemblyBuilderA64& build, size_t start)
2023-03-31 13:21:14 +01:00
{
2023-04-21 22:41:03 +01:00
LUAU_ASSERT(start <= spills.size());
if (start < spills.size())
{
// TODO: use ldp for consecutive slots
for (size_t i = start; i < spills.size(); ++i)
build.ldr(spills[i].origin, mem(sp, sSpillArea.data + spills[i].slot * 8));
for (size_t i = start; i < spills.size(); ++i)
{
Spill s = spills[i]; // copy in case takeReg reallocates spills
IrInst& def = function.instructions[s.inst];
LUAU_ASSERT(def.spilled);
LUAU_ASSERT(def.regA64 == noreg);
def.spilled = false;
def.regA64 = takeReg(s.origin, s.inst);
2023-04-07 20:56:27 +01:00
2023-04-21 22:41:03 +01:00
freeSpill(freeSpillSlots, s.origin.kind, s.slot);
}
spills.resize(start);
}
2023-03-31 13:21:14 +01:00
}
2023-04-21 22:41:03 +01:00
void IrRegAllocA64::restoreReg(AssemblyBuilderA64& build, IrInst& inst)
2023-04-07 20:56:27 +01:00
{
2023-04-21 22:41:03 +01:00
uint32_t index = function.getInstIndex(inst);
LUAU_ASSERT(inst.spilled);
LUAU_ASSERT(inst.regA64 == noreg);
for (size_t i = 0; i < spills.size(); ++i)
{
if (spills[i].inst == index)
{
Spill s = spills[i]; // copy in case allocReg reallocates spills
RegisterA64 reg = allocReg(s.origin.kind, index);
build.ldr(reg, mem(sp, sSpillArea.data + s.slot * 8));
2023-04-07 20:56:27 +01:00
2023-04-21 22:41:03 +01:00
inst.spilled = false;
inst.regA64 = reg;
freeSpill(freeSpillSlots, reg.kind, s.slot);
spills[i] = spills.back();
spills.pop_back();
return;
}
}
LUAU_ASSERT(!"Expected to find a spill record");
}
void IrRegAllocA64::assertNoSpills() const
{
LUAU_ASSERT(spills.empty());
2023-04-07 20:56:27 +01:00
}
2023-03-31 13:21:14 +01:00
IrRegAllocA64::Set& IrRegAllocA64::getSet(KindA64 kind)
{
switch (kind)
{
case KindA64::x:
case KindA64::w:
return gpr;
case KindA64::d:
case KindA64::q:
return simd;
default:
LUAU_ASSERT(!"Unexpected register kind");
LUAU_UNREACHABLE();
}
}
} // namespace A64
} // namespace CodeGen
} // namespace Luau