// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details #include "IrRegAllocA64.h" #include "Luau/AssemblyBuilderA64.h" #include "BitUtils.h" #include "EmitCommonA64.h" #include namespace Luau { namespace CodeGen { namespace A64 { static int allocSpill(uint32_t& free, KindA64 kind) { LUAU_ASSERT(kStackSize <= 256); // to support larger stack frames, we need to ensure qN is allocated at 16b boundary to fit in ldr/str encoding // qN registers use two consecutive slots int slot = countrz(kind == KindA64::q ? free & (free >> 1) : free); if (slot == 32) return -1; uint32_t mask = (kind == KindA64::q ? 3u : 1u) << slot; LUAU_ASSERT((free & mask) == mask); free &= ~mask; return slot; } static void freeSpill(uint32_t& free, KindA64 kind, uint8_t slot) { // qN registers use two consecutive slots uint32_t mask = (kind == KindA64::q ? 3u : 1u) << slot; LUAU_ASSERT((free & mask) == 0); free |= mask; } IrRegAllocA64::IrRegAllocA64(IrFunction& function, std::initializer_list> regs) : function(function) { for (auto& p : regs) { LUAU_ASSERT(p.first.kind == p.second.kind && p.first.index <= p.second.index); Set& set = getSet(p.first.kind); for (int i = p.first.index; i <= p.second.index; ++i) set.base |= 1u << i; } gpr.free = gpr.base; simd.free = simd.base; memset(gpr.defs, -1, sizeof(gpr.defs)); memset(simd.defs, -1, sizeof(simd.defs)); LUAU_ASSERT(kSpillSlots <= 32); freeSpillSlots = (kSpillSlots == 32) ? ~0u : (1u << kSpillSlots) - 1; } RegisterA64 IrRegAllocA64::allocReg(KindA64 kind, uint32_t index) { Set& set = getSet(kind); if (set.free == 0) { LUAU_ASSERT(!"Out of registers to allocate"); return noreg; } int reg = 31 - countlz(set.free); set.free &= ~(1u << reg); set.defs[reg] = index; return RegisterA64{kind, uint8_t(reg)}; } RegisterA64 IrRegAllocA64::allocTemp(KindA64 kind) { Set& set = getSet(kind); if (set.free == 0) { LUAU_ASSERT(!"Out of registers to allocate"); return noreg; } int reg = 31 - countlz(set.free); set.free &= ~(1u << reg); set.temp |= 1u << reg; LUAU_ASSERT(set.defs[reg] == kInvalidInstIdx); return RegisterA64{kind, uint8_t(reg)}; } RegisterA64 IrRegAllocA64::allocReuse(KindA64 kind, uint32_t index, std::initializer_list oprefs) { for (IrOp op : oprefs) { if (op.kind != IrOpKind::Inst) continue; IrInst& source = function.instructions[op.index]; if (source.lastUse == index && !source.reusedReg && !source.spilled && source.regA64 != noreg) { LUAU_ASSERT(source.regA64.kind == kind); Set& set = getSet(kind); LUAU_ASSERT(set.defs[source.regA64.index] == op.index); set.defs[source.regA64.index] = index; source.reusedReg = true; return source.regA64; } } return allocReg(kind, index); } RegisterA64 IrRegAllocA64::takeReg(RegisterA64 reg, uint32_t index) { Set& set = getSet(reg.kind); LUAU_ASSERT(set.free & (1u << reg.index)); LUAU_ASSERT(set.defs[reg.index] == kInvalidInstIdx); set.free &= ~(1u << reg.index); set.defs[reg.index] = index; return reg; } void IrRegAllocA64::freeReg(RegisterA64 reg) { Set& set = getSet(reg.kind); LUAU_ASSERT((set.base & (1u << reg.index)) != 0); LUAU_ASSERT((set.free & (1u << reg.index)) == 0); LUAU_ASSERT((set.temp & (1u << reg.index)) == 0); set.free |= 1u << reg.index; set.defs[reg.index] = kInvalidInstIdx; } void IrRegAllocA64::freeLastUseReg(IrInst& target, uint32_t index) { if (target.lastUse == index && !target.reusedReg) { LUAU_ASSERT(!target.spilled); // Register might have already been freed if it had multiple uses inside a single instruction if (target.regA64 == noreg) return; freeReg(target.regA64); target.regA64 = noreg; } } void IrRegAllocA64::freeLastUseRegs(const IrInst& inst, uint32_t index) { auto checkOp = [this, index](IrOp op) { if (op.kind == IrOpKind::Inst) freeLastUseReg(function.instructions[op.index], index); }; checkOp(inst.a); checkOp(inst.b); checkOp(inst.c); checkOp(inst.d); checkOp(inst.e); checkOp(inst.f); } void IrRegAllocA64::freeTempRegs() { LUAU_ASSERT((gpr.free & gpr.temp) == 0); gpr.free |= gpr.temp; gpr.temp = 0; LUAU_ASSERT((simd.free & simd.temp) == 0); simd.free |= simd.temp; simd.temp = 0; } size_t IrRegAllocA64::spill(AssemblyBuilderA64& build, uint32_t index, std::initializer_list live) { static const KindA64 sets[] = {KindA64::x, KindA64::q}; size_t start = spills.size(); for (RegisterA64 reg : live) { Set& set = getSet(reg.kind); // make sure registers that we expect to survive past spill barrier are not allocated // TODO: we need to handle this condition somehow in the future; if this fails, this likely means the caller has an aliasing hazard LUAU_ASSERT(set.free & (1u << reg.index)); } for (KindA64 kind : sets) { Set& set = getSet(kind); // early-out if (set.free == set.base) continue; // free all temp registers LUAU_ASSERT((set.free & set.temp) == 0); set.free |= set.temp; set.temp = 0; // spill all allocated registers unless they aren't used anymore uint32_t regs = set.base & ~set.free; while (regs) { int reg = 31 - countlz(regs); uint32_t inst = set.defs[reg]; LUAU_ASSERT(inst != kInvalidInstIdx); IrInst& def = function.instructions[inst]; LUAU_ASSERT(def.regA64.index == reg); LUAU_ASSERT(!def.spilled); LUAU_ASSERT(!def.reusedReg); if (def.lastUse == index) { // instead of spilling the register to never reload it, we assume the register is not needed anymore def.regA64 = noreg; } else { int slot = allocSpill(freeSpillSlots, def.regA64.kind); LUAU_ASSERT(slot >= 0); // TODO: remember the error and fail lowering Spill s = {inst, def.regA64, uint8_t(slot)}; spills.push_back(s); def.spilled = true; def.regA64 = noreg; } regs &= ~(1u << reg); set.free |= 1u << reg; set.defs[reg] = kInvalidInstIdx; } LUAU_ASSERT(set.free == set.base); } if (start < spills.size()) { // TODO: use stp for consecutive slots for (size_t i = start; i < spills.size(); ++i) build.str(spills[i].origin, mem(sp, sSpillArea.data + spills[i].slot * 8)); } return start; } void IrRegAllocA64::restore(AssemblyBuilderA64& build, size_t start) { LUAU_ASSERT(start <= spills.size()); if (start < spills.size()) { // TODO: use ldp for consecutive slots for (size_t i = start; i < spills.size(); ++i) build.ldr(spills[i].origin, mem(sp, sSpillArea.data + spills[i].slot * 8)); for (size_t i = start; i < spills.size(); ++i) { Spill s = spills[i]; // copy in case takeReg reallocates spills IrInst& def = function.instructions[s.inst]; LUAU_ASSERT(def.spilled); LUAU_ASSERT(def.regA64 == noreg); def.spilled = false; def.regA64 = takeReg(s.origin, s.inst); freeSpill(freeSpillSlots, s.origin.kind, s.slot); } spills.resize(start); } } void IrRegAllocA64::restoreReg(AssemblyBuilderA64& build, IrInst& inst) { uint32_t index = function.getInstIndex(inst); LUAU_ASSERT(inst.spilled); LUAU_ASSERT(inst.regA64 == noreg); for (size_t i = 0; i < spills.size(); ++i) { if (spills[i].inst == index) { Spill s = spills[i]; // copy in case allocReg reallocates spills RegisterA64 reg = allocReg(s.origin.kind, index); build.ldr(reg, mem(sp, sSpillArea.data + s.slot * 8)); inst.spilled = false; inst.regA64 = reg; freeSpill(freeSpillSlots, reg.kind, s.slot); spills[i] = spills.back(); spills.pop_back(); return; } } LUAU_ASSERT(!"Expected to find a spill record"); } void IrRegAllocA64::assertNoSpills() const { LUAU_ASSERT(spills.empty()); } IrRegAllocA64::Set& IrRegAllocA64::getSet(KindA64 kind) { switch (kind) { case KindA64::x: case KindA64::w: return gpr; case KindA64::d: case KindA64::q: return simd; default: LUAU_ASSERT(!"Unexpected register kind"); LUAU_UNREACHABLE(); } } } // namespace A64 } // namespace CodeGen } // namespace Luau