luau/Compiler/src/BuiltinFolding.cpp
ariel 640ebbc0a5
Sync to upstream/release/663 (#1699)
Hey folks, another week means another Luau release! This one features a
number of bug fixes in the New Type Solver including improvements to
user-defined type functions and a bunch of work to untangle some of the
outstanding issues we've been seeing with constraint solving not
completing in real world use. We're also continuing to make progress on
crashes and other problems that affect the stability of fragment
autocomplete, as we work towards delivering consistent, low-latency
autocomplete for any editor environment.

## New Type Solver

- Fix a bug in user-defined type functions where `print` would
incorrectly insert `\1` a number of times.
- Fix a bug where attempting to refine an optional generic with a type
test will cause a false positive type error (fixes #1666)
- Fix a bug where the `refine` type family would not skip over
`*no-refine*` discriminants (partial resolution for #1424)
- Fix a constraint solving bug where recursive function calls would
consistently produce cyclic constraints leading to incomplete or
inaccurate type inference.
- Implement `readparent` and `writeparent` for class types in
user-defined type functions, replacing the incorrectly included `parent`
method.
- Add initial groundwork (under a debug flag) for eager free type
generalization, moving us towards further improvements to constraint
solving incomplete errors.

## Fragment Autocomplete

- Ease up some assertions to improve stability of mixed-mode use of the
two type solvers (i.e. using Fragment Autocomplete on a type graph
originally produced by the old type solver)
- Resolve a bug with type compatibility checks causing internal compiler
errors in autocomplete.

## Lexer and Parser

- Improve the accuracy of the roundtrippable AST parsing mode by
correctly placing closing parentheses on type groupings.
- Add a getter for `offset` in the Lexer by @aduermael in #1688
- Add a second entry point to the parser to parse an expression,
`parseExpr`

## Internal Contributors

Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: James McNellis <jmcnellis@roblox.com>
Co-authored-by: Talha Pathan <tpathan@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

---------

Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <61795485+vrn-sn@users.noreply.github.com>
Co-authored-by: Alexander Youngblood <ayoungblood@roblox.com>
Co-authored-by: Menarul Alam <malam@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Vighnesh <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2025-02-28 14:42:30 -08:00

513 lines
15 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "BuiltinFolding.h"
#include "Luau/Bytecode.h"
#include <math.h>
namespace Luau
{
namespace Compile
{
const double kPi = 3.14159265358979323846;
const double kRadDeg = kPi / 180.0;
static Constant cvar()
{
return Constant();
}
static Constant cbool(bool v)
{
Constant res = {Constant::Type_Boolean};
res.valueBoolean = v;
return res;
}
static Constant cnum(double v)
{
Constant res = {Constant::Type_Number};
res.valueNumber = v;
return res;
}
static Constant cvector(double x, double y, double z, double w)
{
Constant res = {Constant::Type_Vector};
res.valueVector[0] = (float)x;
res.valueVector[1] = (float)y;
res.valueVector[2] = (float)z;
res.valueVector[3] = (float)w;
return res;
}
static Constant cstring(const char* v)
{
Constant res = {Constant::Type_String};
res.stringLength = unsigned(strlen(v));
res.valueString = v;
return res;
}
static Constant ctype(const Constant& c)
{
LUAU_ASSERT(c.type != Constant::Type_Unknown);
switch (c.type)
{
case Constant::Type_Nil:
return cstring("nil");
case Constant::Type_Boolean:
return cstring("boolean");
case Constant::Type_Number:
return cstring("number");
case Constant::Type_Vector:
return cstring("vector");
case Constant::Type_String:
return cstring("string");
default:
LUAU_ASSERT(!"Unsupported constant type");
return cvar();
}
}
static uint32_t bit32(double v)
{
// convert through signed 64-bit integer to match runtime behavior and gracefully truncate negative integers
return uint32_t(int64_t(v));
}
Constant foldBuiltin(int bfid, const Constant* args, size_t count)
{
switch (bfid)
{
case LBF_MATH_ABS:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(fabs(args[0].valueNumber));
break;
case LBF_MATH_ACOS:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(acos(args[0].valueNumber));
break;
case LBF_MATH_ASIN:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(asin(args[0].valueNumber));
break;
case LBF_MATH_ATAN2:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
return cnum(atan2(args[0].valueNumber, args[1].valueNumber));
break;
case LBF_MATH_ATAN:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(atan(args[0].valueNumber));
break;
case LBF_MATH_CEIL:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(ceil(args[0].valueNumber));
break;
case LBF_MATH_COSH:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(cosh(args[0].valueNumber));
break;
case LBF_MATH_COS:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(cos(args[0].valueNumber));
break;
case LBF_MATH_DEG:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(args[0].valueNumber / kRadDeg);
break;
case LBF_MATH_EXP:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(exp(args[0].valueNumber));
break;
case LBF_MATH_FLOOR:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(floor(args[0].valueNumber));
break;
case LBF_MATH_FMOD:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
return cnum(fmod(args[0].valueNumber, args[1].valueNumber));
break;
// Note: FREXP isn't folded since it returns multiple values
case LBF_MATH_LDEXP:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
return cnum(ldexp(args[0].valueNumber, int(args[1].valueNumber)));
break;
case LBF_MATH_LOG10:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(log10(args[0].valueNumber));
break;
case LBF_MATH_LOG:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(log(args[0].valueNumber));
else if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
{
if (args[1].valueNumber == 2.0)
return cnum(log2(args[0].valueNumber));
else if (args[1].valueNumber == 10.0)
return cnum(log10(args[0].valueNumber));
else
return cnum(log(args[0].valueNumber) / log(args[1].valueNumber));
}
break;
case LBF_MATH_MAX:
if (count >= 1 && args[0].type == Constant::Type_Number)
{
double r = args[0].valueNumber;
for (size_t i = 1; i < count; ++i)
{
if (args[i].type != Constant::Type_Number)
return cvar();
double a = args[i].valueNumber;
r = (a > r) ? a : r;
}
return cnum(r);
}
break;
case LBF_MATH_MIN:
if (count >= 1 && args[0].type == Constant::Type_Number)
{
double r = args[0].valueNumber;
for (size_t i = 1; i < count; ++i)
{
if (args[i].type != Constant::Type_Number)
return cvar();
double a = args[i].valueNumber;
r = (a < r) ? a : r;
}
return cnum(r);
}
break;
// Note: MODF isn't folded since it returns multiple values
case LBF_MATH_POW:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
return cnum(pow(args[0].valueNumber, args[1].valueNumber));
break;
case LBF_MATH_RAD:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(args[0].valueNumber * kRadDeg);
break;
case LBF_MATH_SINH:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(sinh(args[0].valueNumber));
break;
case LBF_MATH_SIN:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(sin(args[0].valueNumber));
break;
case LBF_MATH_SQRT:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(sqrt(args[0].valueNumber));
break;
case LBF_MATH_TANH:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(tanh(args[0].valueNumber));
break;
case LBF_MATH_TAN:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(tan(args[0].valueNumber));
break;
case LBF_BIT32_ARSHIFT:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
{
uint32_t u = bit32(args[0].valueNumber);
int s = int(args[1].valueNumber);
if (unsigned(s) < 32)
return cnum(double(uint32_t(int32_t(u) >> s)));
}
break;
case LBF_BIT32_BAND:
if (count >= 1 && args[0].type == Constant::Type_Number)
{
uint32_t r = bit32(args[0].valueNumber);
for (size_t i = 1; i < count; ++i)
{
if (args[i].type != Constant::Type_Number)
return cvar();
r &= bit32(args[i].valueNumber);
}
return cnum(double(r));
}
break;
case LBF_BIT32_BNOT:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(double(uint32_t(~bit32(args[0].valueNumber))));
break;
case LBF_BIT32_BOR:
if (count >= 1 && args[0].type == Constant::Type_Number)
{
uint32_t r = bit32(args[0].valueNumber);
for (size_t i = 1; i < count; ++i)
{
if (args[i].type != Constant::Type_Number)
return cvar();
r |= bit32(args[i].valueNumber);
}
return cnum(double(r));
}
break;
case LBF_BIT32_BXOR:
if (count >= 1 && args[0].type == Constant::Type_Number)
{
uint32_t r = bit32(args[0].valueNumber);
for (size_t i = 1; i < count; ++i)
{
if (args[i].type != Constant::Type_Number)
return cvar();
r ^= bit32(args[i].valueNumber);
}
return cnum(double(r));
}
break;
case LBF_BIT32_BTEST:
if (count >= 1 && args[0].type == Constant::Type_Number)
{
uint32_t r = bit32(args[0].valueNumber);
for (size_t i = 1; i < count; ++i)
{
if (args[i].type != Constant::Type_Number)
return cvar();
r &= bit32(args[i].valueNumber);
}
return cbool(r != 0);
}
break;
case LBF_BIT32_EXTRACT:
if (count >= 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number &&
(count == 2 || args[2].type == Constant::Type_Number))
{
uint32_t u = bit32(args[0].valueNumber);
int f = int(args[1].valueNumber);
int w = count == 2 ? 1 : int(args[2].valueNumber);
if (f >= 0 && w > 0 && f + w <= 32)
{
uint32_t m = ~(0xfffffffeu << (w - 1));
return cnum(double((u >> f) & m));
}
}
break;
case LBF_BIT32_LROTATE:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
{
uint32_t u = bit32(args[0].valueNumber);
int s = int(args[1].valueNumber);
return cnum(double((u << (s & 31)) | (u >> ((32 - s) & 31))));
}
break;
case LBF_BIT32_LSHIFT:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
{
uint32_t u = bit32(args[0].valueNumber);
int s = int(args[1].valueNumber);
if (unsigned(s) < 32)
return cnum(double(u << s));
}
break;
case LBF_BIT32_REPLACE:
if (count >= 3 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number && args[2].type == Constant::Type_Number &&
(count == 3 || args[3].type == Constant::Type_Number))
{
uint32_t n = bit32(args[0].valueNumber);
uint32_t v = bit32(args[1].valueNumber);
int f = int(args[2].valueNumber);
int w = count == 3 ? 1 : int(args[3].valueNumber);
if (f >= 0 && w > 0 && f + w <= 32)
{
uint32_t m = ~(0xfffffffeu << (w - 1));
return cnum(double((n & ~(m << f)) | ((v & m) << f)));
}
}
break;
case LBF_BIT32_RROTATE:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
{
uint32_t u = bit32(args[0].valueNumber);
int s = int(args[1].valueNumber);
return cnum(double((u >> (s & 31)) | (u << ((32 - s) & 31))));
}
break;
case LBF_BIT32_RSHIFT:
if (count == 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
{
uint32_t u = bit32(args[0].valueNumber);
int s = int(args[1].valueNumber);
if (unsigned(s) < 32)
return cnum(double(u >> s));
}
break;
case LBF_TYPE:
if (count == 1 && args[0].type != Constant::Type_Unknown)
return ctype(args[0]);
break;
case LBF_STRING_BYTE:
if (count == 1 && args[0].type == Constant::Type_String)
{
if (args[0].stringLength > 0)
return cnum(double(uint8_t(args[0].valueString[0])));
}
else if (count == 2 && args[0].type == Constant::Type_String && args[1].type == Constant::Type_Number)
{
int i = int(args[1].valueNumber);
if (i > 0 && unsigned(i) <= args[0].stringLength)
return cnum(double(uint8_t(args[0].valueString[i - 1])));
}
break;
case LBF_STRING_LEN:
if (count == 1 && args[0].type == Constant::Type_String)
return cnum(double(args[0].stringLength));
break;
case LBF_TYPEOF:
if (count == 1 && args[0].type != Constant::Type_Unknown)
return ctype(args[0]);
break;
case LBF_MATH_CLAMP:
if (count == 3 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number && args[2].type == Constant::Type_Number)
{
double min = args[1].valueNumber;
double max = args[2].valueNumber;
if (min <= max)
{
double v = args[0].valueNumber;
v = v < min ? min : v;
v = v > max ? max : v;
return cnum(v);
}
}
break;
case LBF_MATH_SIGN:
if (count == 1 && args[0].type == Constant::Type_Number)
{
double v = args[0].valueNumber;
return cnum(v > 0.0 ? 1.0 : v < 0.0 ? -1.0 : 0.0);
}
break;
case LBF_MATH_ROUND:
if (count == 1 && args[0].type == Constant::Type_Number)
return cnum(round(args[0].valueNumber));
break;
case LBF_VECTOR:
if (count >= 2 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number)
{
if (count == 2)
return cvector(args[0].valueNumber, args[1].valueNumber, 0.0, 0.0);
else if (count == 3 && args[2].type == Constant::Type_Number)
return cvector(args[0].valueNumber, args[1].valueNumber, args[2].valueNumber, 0.0);
else if (count == 4 && args[2].type == Constant::Type_Number && args[3].type == Constant::Type_Number)
return cvector(args[0].valueNumber, args[1].valueNumber, args[2].valueNumber, args[3].valueNumber);
}
break;
case LBF_MATH_LERP:
if (count == 3 && args[0].type == Constant::Type_Number && args[1].type == Constant::Type_Number && args[2].type == Constant::Type_Number)
{
double a = args[0].valueNumber;
double b = args[1].valueNumber;
double t = args[2].valueNumber;
double v = (t == 1.0) ? b : a + (b - a) * t;
return cnum(v);
}
break;
}
return cvar();
}
Constant foldBuiltinMath(AstName index)
{
if (index == "pi")
return cnum(kPi);
if (index == "huge")
return cnum(HUGE_VAL);
return cvar();
}
} // namespace Compile
} // namespace Luau