luau/tests/ToString.test.cpp
Vighnesh-V 8863bfc950
Sync to upstream/release/686 (#1948)
## General
This week has been spent mostly on fixing bugs in incremental
autocomplete as well as making the new Type Solver more stable.

- Fixes a bug where registered "require" aliases were case-sensitive
instead of case-insensitive.
### New Type Solver
- Adjust literal sub typing logic to account for unreduced type
functions
- Implement a number of subtyping stack utilization improvements
- Emit a single error if an internal type escapes a module's interface
- Checked function errors in the New Non Strict warn about incorrect
argument use with one-indexed positions, e.g. `argument #1 was used
incorrectly` instead of `argument #0 was used incorrectly`.
- Improvements to type function reduction that let us progress further
while reducing
- Augment the generalization system to not emit duplicate constraints.
- Fix a bug where we didn't seal tables in modules that failed to
complete typechecking.

### Fragment Autocomplete
- Provide richer autocomplete suggestions inside of for loops
- Provide richer autocomplete suggestions inside of interpolated string
expressions
- Improve the quality of error messages when typing out interpolated
strings.

### Compiler
- Fixes REX encoding of extended byte registers for the x86 assembly
code generation.
- Fixes for table shape constant data encoding

---
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Sora Kanosue <skanosue@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2025-08-08 10:18:16 -07:00

998 lines
30 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Scope.h"
#include "Luau/ToString.h"
#include "Fixture.h"
#include "Luau/TypeChecker2.h"
#include "Luau/TypePack.h"
#include "ScopedFlags.h"
#include "doctest.h"
using namespace Luau;
LUAU_FASTFLAG(LuauRecursiveTypeParameterRestriction)
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAG(LuauSolverAgnosticStringification)
TEST_SUITE_BEGIN("ToString");
TEST_CASE_FIXTURE(Fixture, "primitive")
{
CheckResult result = check("local a = nil local b = 44 local c = 'lalala' local d = true");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
CHECK("nil" == toString(requireType("a")));
else
{
// A variable without an annotation and with a nil literal should infer as 'free', not 'nil'
CHECK_NE("nil", toString(requireType("a")));
}
CHECK_EQ("number", toString(requireType("b")));
CHECK_EQ("string", toString(requireType("c")));
CHECK_EQ("boolean", toString(requireType("d")));
}
TEST_CASE_FIXTURE(Fixture, "bound_types")
{
CheckResult result = check("local a = 444 local b = a");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number", toString(requireType("b")));
}
TEST_CASE_FIXTURE(Fixture, "free_types")
{
ScopedFastFlag sff{FFlag::LuauSolverAgnosticStringification, true};
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check("local a");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("'a", toString(requireType("a")));
}
TEST_CASE_FIXTURE(Fixture, "free_types_stringify_the_same_regardless_of_solver")
{
ScopedFastFlag sff{FFlag::LuauSolverAgnosticStringification, true};
TypeArena a;
TypeId t =
a.addType(FreeType{getFrontend().globals.globalScope.get(), getFrontend().builtinTypes->neverType, getFrontend().builtinTypes->unknownType});
CHECK_EQ("'a", toString(t));
}
TEST_CASE_FIXTURE(Fixture, "cyclic_table")
{
Type cyclicTable{TypeVariant(TableType())};
TableType* tableOne = getMutable<TableType>(&cyclicTable);
tableOne->props["self"] = {&cyclicTable};
if (FFlag::LuauSolverV2)
CHECK_EQ("t1 where t1 = {| self: t1 |}", toString(&cyclicTable));
else
CHECK_EQ("t1 where t1 = { self: t1 }", toString(&cyclicTable));
}
TEST_CASE_FIXTURE(Fixture, "named_table")
{
Type table{TypeVariant(TableType())};
TableType* t = getMutable<TableType>(&table);
t->name = "TheTable";
CHECK_EQ("TheTable", toString(&table));
}
TEST_CASE_FIXTURE(Fixture, "empty_table")
{
CheckResult result = check(R"(
local a: {}
)");
if (FFlag::LuauSolverV2)
CHECK_EQ("{ }", toString(requireType("a")));
else
CHECK_EQ("{| |}", toString(requireType("a")));
// Should stay the same with useLineBreaks enabled
ToStringOptions opts;
opts.useLineBreaks = true;
if (FFlag::LuauSolverV2)
CHECK_EQ("{ }", toString(requireType("a"), opts));
else
CHECK_EQ("{| |}", toString(requireType("a"), opts));
}
TEST_CASE_FIXTURE(Fixture, "table_respects_use_line_break")
{
CheckResult result = check(R"(
local a: { prop: string, anotherProp: number, thirdProp: boolean }
)");
ToStringOptions opts;
opts.useLineBreaks = true;
if (FFlag::LuauSolverV2)
CHECK_EQ(
"{\n"
" anotherProp: number,\n"
" prop: string,\n"
" thirdProp: boolean\n"
"}",
toString(requireType("a"), opts)
);
else
CHECK_EQ(
"{|\n"
" anotherProp: number,\n"
" prop: string,\n"
" thirdProp: boolean\n"
"|}",
toString(requireType("a"), opts)
);
}
TEST_CASE_FIXTURE(Fixture, "nil_or_nil_is_nil_not_question_mark")
{
CheckResult result = check(R"(
type nil_ty = nil | nil
local a : nil_ty = nil
)");
ToStringOptions opts;
opts.useLineBreaks = false;
CHECK_EQ("nil", toString(requireType("a"), opts));
}
TEST_CASE_FIXTURE(Fixture, "long_disjunct_of_nil_is_nil_not_question_mark")
{
CheckResult result = check(R"(
type nil_ty = nil | nil | nil | nil | nil
local a : nil_ty = nil
)");
ToStringOptions opts;
opts.useLineBreaks = false;
CHECK_EQ("nil", toString(requireType("a"), opts));
}
TEST_CASE_FIXTURE(Fixture, "metatable")
{
Type table{TypeVariant(TableType())};
Type metatable{TypeVariant(TableType())};
Type mtv{TypeVariant(MetatableType{&table, &metatable})};
if (FFlag::LuauSolverV2)
CHECK_EQ("{ @metatable {| |}, {| |} }", toString(&mtv));
else
CHECK_EQ("{ @metatable { }, { } }", toString(&mtv));
}
TEST_CASE_FIXTURE(Fixture, "named_metatable")
{
Type table{TypeVariant(TableType())};
Type metatable{TypeVariant(TableType())};
Type mtv{TypeVariant(MetatableType{&table, &metatable, "NamedMetatable"})};
CHECK_EQ("NamedMetatable", toString(&mtv));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "named_metatable_toStringNamedFunction")
{
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
local function createTbl(): NamedMetatable
return setmetatable({}, {})
end
type NamedMetatable = typeof(createTbl())
)");
TypeId ty = requireType("createTbl");
const FunctionType* ftv = get<FunctionType>(follow(ty));
REQUIRE(ftv);
CHECK_EQ("createTbl(): NamedMetatable", toStringNamedFunction("createTbl", *ftv));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "exhaustive_toString_of_cyclic_table")
{
CheckResult result = check(R"(
--!strict
local Vec3 = {}
Vec3.__index = Vec3
function Vec3.new()
return setmetatable({x=0, y=0, z=0}, Vec3)
end
export type Vec3 = typeof(Vec3.new())
local thefun: any = function(self, o) return self end
local multiply: ((Vec3, Vec3) -> Vec3) & ((Vec3, number) -> Vec3) = thefun
Vec3.__mul = multiply
local a = Vec3.new()
)");
std::string a = toString(requireType("a"), {true});
CHECK_EQ(std::string::npos, a.find("CYCLE"));
CHECK_EQ(std::string::npos, a.find("TRUNCATED"));
if (FFlag::LuauSolverV2)
{
CHECK(
"t2 where "
"t1 = { __index: t1, __mul: ((t2, number) -> t2) & ((t2, t2) -> t2), new: () -> t2 } ; "
"t2 = { @metatable t1, { x: number, y: number, z: number } }" == a
);
}
else
{
CHECK_EQ(
"t2 where "
"t1 = { __index: t1, __mul: ((t2, number) -> t2) & ((t2, t2) -> t2), new: () -> t2 } ; "
"t2 = { @metatable t1, {| x: number, y: number, z: number |} }",
a
);
}
}
TEST_CASE_FIXTURE(Fixture, "intersection_parenthesized_only_if_needed")
{
auto utv = Type{UnionType{{getBuiltins()->numberType, getBuiltins()->stringType}}};
auto itv = Type{IntersectionType{{&utv, getBuiltins()->booleanType}}};
CHECK_EQ(toString(&itv), "(number | string) & boolean");
}
TEST_CASE_FIXTURE(Fixture, "union_parenthesized_only_if_needed")
{
auto itv = Type{IntersectionType{{getBuiltins()->numberType, getBuiltins()->stringType}}};
auto utv = Type{UnionType{{&itv, getBuiltins()->booleanType}}};
CHECK_EQ(toString(&utv), "(number & string) | boolean");
}
TEST_CASE_FIXTURE(Fixture, "functions_are_always_parenthesized_in_unions_or_intersections")
{
auto stringAndNumberPack = TypePackVar{TypePack{{getBuiltins()->stringType, getBuiltins()->numberType}}};
auto numberAndStringPack = TypePackVar{TypePack{{getBuiltins()->numberType, getBuiltins()->stringType}}};
auto sn2ns = Type{FunctionType{&stringAndNumberPack, &numberAndStringPack}};
auto ns2sn = Type{FunctionType(getFrontend().globals.globalScope->level, &numberAndStringPack, &stringAndNumberPack)};
auto utv = Type{UnionType{{&ns2sn, &sn2ns}}};
auto itv = Type{IntersectionType{{&ns2sn, &sn2ns}}};
CHECK_EQ(toString(&utv), "((number, string) -> (string, number)) | ((string, number) -> (number, string))");
CHECK_EQ(toString(&itv), "((number, string) -> (string, number)) & ((string, number) -> (number, string))");
}
TEST_CASE_FIXTURE(Fixture, "simple_intersections_printed_on_one_line")
{
CheckResult result = check(R"(
local a: string & number
)");
ToStringOptions opts;
opts.useLineBreaks = true;
CHECK_EQ("number & string", toString(requireType("a"), opts));
}
TEST_CASE_FIXTURE(Fixture, "complex_intersections_printed_on_multiple_lines")
{
CheckResult result = check(R"(
local a: string & number & boolean
)");
ToStringOptions opts;
opts.useLineBreaks = true;
opts.compositeTypesSingleLineLimit = 2;
CHECK_EQ(
"boolean\n"
"& number\n"
"& string",
toString(requireType("a"), opts)
);
}
TEST_CASE_FIXTURE(Fixture, "overloaded_functions_always_printed_on_multiple_lines")
{
CheckResult result = check(R"(
local a: ((string) -> string) & ((number) -> number)
)");
ToStringOptions opts;
opts.useLineBreaks = true;
CHECK_EQ(
"((number) -> number)\n"
"& ((string) -> string)",
toString(requireType("a"), opts)
);
}
TEST_CASE_FIXTURE(Fixture, "simple_unions_printed_on_one_line")
{
CheckResult result = check(R"(
local a: number | boolean
)");
ToStringOptions opts;
opts.useLineBreaks = true;
CHECK_EQ("boolean | number", toString(requireType("a"), opts));
}
TEST_CASE_FIXTURE(Fixture, "complex_unions_printed_on_multiple_lines")
{
CheckResult result = check(R"(
local a: string | number | boolean
)");
ToStringOptions opts;
opts.compositeTypesSingleLineLimit = 2;
opts.useLineBreaks = true;
CHECK_EQ(
"boolean\n"
"| number\n"
"| string",
toString(requireType("a"), opts)
);
}
TEST_CASE_FIXTURE(Fixture, "quit_stringifying_table_type_when_length_is_exceeded")
{
TableType ttv{};
for (char c : std::string("abcdefghijklmno"))
ttv.props[std::string(1, c)] = {getBuiltins()->numberType};
Type tv{ttv};
ToStringOptions o;
o.exhaustive = false;
o.maxTableLength = 40;
if (FFlag::LuauSolverV2)
CHECK_EQ(toString(&tv, o), "{| a: number, b: number, c: number, d: number, e: number, ... 10 more ... |}");
else
CHECK_EQ(toString(&tv, o), "{ a: number, b: number, c: number, d: number, e: number, ... 10 more ... }");
}
TEST_CASE_FIXTURE(Fixture, "stringifying_table_type_is_still_capped_when_exhaustive")
{
TableType ttv{};
for (char c : std::string("abcdefg"))
ttv.props[std::string(1, c)] = {getBuiltins()->numberType};
Type tv{ttv};
ToStringOptions o;
o.exhaustive = true;
o.maxTableLength = 40;
if (FFlag::LuauSolverV2)
CHECK_EQ(toString(&tv, o), "{| a: number, b: number, c: number, d: number, e: number, ... 2 more ... |}");
else
CHECK_EQ(toString(&tv, o), "{ a: number, b: number, c: number, d: number, e: number, ... 2 more ... }");
}
TEST_CASE_FIXTURE(Fixture, "quit_stringifying_type_when_length_is_exceeded")
{
CheckResult result = check(R"(
function f0() end
function f1(f) return f or f0 end
function f2(f) return f or f1 end
function f3(f) return f or f2 end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions o;
o.exhaustive = false;
o.maxTypeLength = 20;
CHECK_EQ(toString(requireType("f0"), o), "() -> ()");
CHECK_EQ(toString(requireType("f1"), o), "<a>(a) -> (() -> ()) ... *TRUNCATED*");
CHECK_EQ(toString(requireType("f2"), o), "<b>(b) -> (<a>(a) -> (() -> ())... *TRUNCATED*");
CHECK_EQ(toString(requireType("f3"), o), "<c>(c) -> (<b>(b) -> (<a>(a) -> (() -> ())... *TRUNCATED*");
}
else
{
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions o;
o.exhaustive = false;
o.maxTypeLength = 40;
CHECK_EQ(toString(requireType("f0"), o), "() -> ()");
CHECK_EQ(toString(requireType("f1"), o), "(() -> ()) -> () -> ()");
CHECK_EQ(toString(requireType("f2"), o), "((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*");
CHECK_EQ(toString(requireType("f3"), o), "(((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*");
}
}
TEST_CASE_FIXTURE(Fixture, "stringifying_type_is_still_capped_when_exhaustive")
{
CheckResult result = check(R"(
function f0() end
function f1(f) return f or f0 end
function f2(f) return f or f1 end
function f3(f) return f or f2 end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions o;
o.exhaustive = true;
o.maxTypeLength = 20;
CHECK_EQ(toString(requireType("f0"), o), "() -> ()");
CHECK_EQ(toString(requireType("f1"), o), "<a>(a) -> (() -> ()) ... *TRUNCATED*");
CHECK_EQ(toString(requireType("f2"), o), "<b>(b) -> (<a>(a) -> (() -> ())... *TRUNCATED*");
CHECK_EQ(toString(requireType("f3"), o), "<c>(c) -> (<b>(b) -> (<a>(a) -> (() -> ())... *TRUNCATED*");
}
else
{
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions o;
o.exhaustive = true;
o.maxTypeLength = 40;
CHECK_EQ(toString(requireType("f0"), o), "() -> ()");
CHECK_EQ(toString(requireType("f1"), o), "(() -> ()) -> () -> ()");
CHECK_EQ(toString(requireType("f2"), o), "((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*");
CHECK_EQ(toString(requireType("f3"), o), "(((() -> ()) -> () -> ()) -> (() -> ()) -> ... *TRUNCATED*");
}
}
TEST_CASE_FIXTURE(Fixture, "stringifying_table_type_correctly_use_matching_table_state_braces")
{
TableType ttv{TableState::Sealed, TypeLevel{}};
for (char c : std::string("abcdefghij"))
ttv.props[std::string(1, c)] = {getBuiltins()->numberType};
Type tv{ttv};
ToStringOptions o;
o.maxTableLength = 40;
if (FFlag::LuauSolverV2)
CHECK_EQ(toString(&tv, o), "{ a: number, b: number, c: number, d: number, e: number, ... 5 more ... }");
else
CHECK_EQ(toString(&tv, o), "{| a: number, b: number, c: number, d: number, e: number, ... 5 more ... |}");
}
TEST_CASE_FIXTURE(Fixture, "stringifying_cyclic_union_type_bails_early")
{
Type tv{UnionType{{getBuiltins()->stringType, getBuiltins()->numberType}}};
UnionType* utv = getMutable<UnionType>(&tv);
utv->options.push_back(&tv);
utv->options.push_back(&tv);
CHECK_EQ("t1 where t1 = number | string", toString(&tv));
}
TEST_CASE_FIXTURE(Fixture, "stringifying_cyclic_intersection_type_bails_early")
{
Type tv{IntersectionType{}};
IntersectionType* itv = getMutable<IntersectionType>(&tv);
itv->parts.push_back(&tv);
itv->parts.push_back(&tv);
CHECK_EQ("t1 where t1 = t1 & t1", toString(&tv));
}
TEST_CASE_FIXTURE(Fixture, "stringifying_array_uses_array_syntax")
{
TableType ttv{TableState::Sealed, TypeLevel{}};
ttv.indexer = TableIndexer{getBuiltins()->numberType, getBuiltins()->stringType};
CHECK_EQ("{string}", toString(Type{ttv}));
ttv.props["A"] = {getBuiltins()->numberType};
if (FFlag::LuauSolverV2)
CHECK_EQ("{ [number]: string, A: number }", toString(Type{ttv}));
else
CHECK_EQ("{| [number]: string, A: number |}", toString(Type{ttv}));
ttv.props.clear();
ttv.state = TableState::Unsealed;
CHECK_EQ("{string}", toString(Type{ttv}));
}
TEST_CASE_FIXTURE(Fixture, "the_empty_type_pack_should_be_parenthesized")
{
TypePackVar emptyTypePack{TypePack{}};
CHECK_EQ(toString(&emptyTypePack), "()");
auto unitToUnit = Type{FunctionType{&emptyTypePack, &emptyTypePack}};
CHECK_EQ(toString(&unitToUnit), "() -> ()");
}
TEST_CASE_FIXTURE(Fixture, "generic_packs_are_stringified_differently_from_generic_types")
{
TypePackVar tpv{GenericTypePack{"a"}};
CHECK_EQ(toString(&tpv), "a...");
Type tv{GenericType{"a"}};
CHECK_EQ(toString(&tv), "a");
}
TEST_CASE_FIXTURE(Fixture, "function_type_with_argument_names")
{
CheckResult result = check("type MyFunc = (a: number, string, c: number) -> string; local a : MyFunc");
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions opts;
opts.functionTypeArguments = true;
CHECK_EQ("(a: number, string, c: number) -> string", toString(requireType("a"), opts));
}
TEST_CASE_FIXTURE(Fixture, "function_type_with_argument_names_generic")
{
CheckResult result = check("local function f<a...>(n: number, ...: a...): (a...) return ... end");
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions opts;
opts.functionTypeArguments = true;
CHECK_EQ("<a...>(n: number, a...) -> (a...)", toString(requireType("f"), opts));
}
TEST_CASE_FIXTURE(Fixture, "function_type_with_argument_names_and_self")
{
CheckResult result = check(R"(
local tbl = {}
tbl.a = 2
function tbl:foo(b: number, c: number) return (self.a :: number) + b + c end
type Table = typeof(tbl)
type Foo = typeof(tbl.foo)
local u: Foo
)");
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions opts;
opts.functionTypeArguments = true;
// Can't guess the name of 'self' to compare name, but at least there should be no assertion
toString(requireType("u"), opts);
}
TEST_CASE_FIXTURE(Fixture, "generate_friendly_names_for_inferred_generics")
{
CheckResult result = check(R"(
function id(x) return x end
function id2(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30)
return a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("<a>(a) -> a", toString(requireType("id")));
CHECK_EQ(
"<a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1, c1, d1>(a, b, c, d, e, f, g, h, i, j, k, l, "
"m, n, o, p, q, r, s, t, u, v, w, x, y, z, a1, b1, c1, d1) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, "
"x, y, z, a1, b1, c1, d1)",
toString(requireType("id2"))
);
}
TEST_CASE_FIXTURE(Fixture, "toStringDetailed")
{
CheckResult result = check(R"(
function id3(a, b, c)
return a, b, c
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
ToStringOptions opts;
TypeId id3Type = requireType("id3");
ToStringResult nameData = toStringDetailed(id3Type, opts);
REQUIRE(3 == opts.nameMap.types.size());
REQUIRE_EQ("<a, b, c>(a, b, c) -> (a, b, c)", nameData.name);
const FunctionType* ftv = get<FunctionType>(follow(id3Type));
REQUIRE(ftv != nullptr);
auto params = flatten(ftv->argTypes).first;
REQUIRE(3 == params.size());
CHECK("a" == toString(params[0], opts));
CHECK("b" == toString(params[1], opts));
CHECK("c" == toString(params[2], opts));
}
TEST_CASE_FIXTURE(Fixture, "toStringErrorPack")
{
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
local function target(callback: nil) return callback(4, "hello") end
)");
LUAU_REQUIRE_ERRORS(result);
CHECK_EQ("(nil) -> (*error-type*)", toString(requireType("target")));
}
TEST_CASE_FIXTURE(Fixture, "toStringGenericPack")
{
CheckResult result = check(R"(
function foo(a, b) return a(b) end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(toString(requireType("foo")), "<a, b...>((a) -> (b...), a) -> (b...)");
}
TEST_CASE_FIXTURE(Fixture, "toString_the_boundTo_table_type_contained_within_a_TypePack")
{
Type tv1{TableType{}};
TableType* ttv = getMutable<TableType>(&tv1);
ttv->state = TableState::Sealed;
ttv->props["hello"] = {getBuiltins()->numberType};
ttv->props["world"] = {getBuiltins()->numberType};
TypePackVar tpv1{TypePack{{&tv1}}};
Type tv2{TableType{}};
TableType* bttv = getMutable<TableType>(&tv2);
bttv->state = TableState::Free;
bttv->props["hello"] = {getBuiltins()->numberType};
bttv->boundTo = &tv1;
TypePackVar tpv2{TypePack{{&tv2}}};
if (FFlag::LuauSolverV2)
{
CHECK_EQ("{ hello: number, world: number }", toString(&tpv1));
CHECK_EQ("{ hello: number, world: number }", toString(&tpv2));
}
else
{
CHECK_EQ("{| hello: number, world: number |}", toString(&tpv1));
CHECK_EQ("{| hello: number, world: number |}", toString(&tpv2));
}
}
TEST_CASE_FIXTURE(Fixture, "no_parentheses_around_return_type_if_pack_has_an_empty_head_link")
{
TypeArena arena;
TypePackId realTail = arena.addTypePack({getBuiltins()->stringType});
TypePackId emptyTail = arena.addTypePack({}, realTail);
TypePackId argList = arena.addTypePack({getBuiltins()->stringType});
TypeId functionType = arena.addType(FunctionType{argList, emptyTail});
CHECK("(string) -> string" == toString(functionType));
}
TEST_CASE_FIXTURE(Fixture, "no_parentheses_around_cyclic_function_type_in_union")
{
CheckResult result = check(R"(
type F = ((() -> number)?) -> F?
local function f(p) return f end
local g: F = f
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("t1 where t1 = ((() -> number)?) -> t1?", toString(requireType("g")));
}
TEST_CASE_FIXTURE(Fixture, "no_parentheses_around_cyclic_function_type_in_intersection")
{
CheckResult result = check(R"(
function f() return f end
local a: ((number) -> ()) & typeof(f)
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
CHECK("(() -> t1) & ((number) -> ()) where t1 = () -> t1" == toString(requireType("a")));
else
CHECK_EQ("((number) -> ()) & t1 where t1 = () -> t1", toString(requireType("a")));
}
TEST_CASE_FIXTURE(Fixture, "self_recursive_instantiated_param")
{
Type tableTy{TableType{}};
TableType* ttv = getMutable<TableType>(&tableTy);
ttv->name = "Table";
ttv->instantiatedTypeParams.push_back(&tableTy);
CHECK_EQ(toString(tableTy), "Table<Table>");
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_id")
{
CheckResult result = check(R"(
local function id(x) return x end
)");
TypeId ty = requireType("id");
const FunctionType* ftv = get<FunctionType>(follow(ty));
CHECK_EQ("id<a>(x: a): a", toStringNamedFunction("id", *ftv));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_map")
{
CheckResult result = check(R"(
local function map(arr, fn)
local t = {}
for i = 0, #arr do
t[i] = fn(arr[i])
end
return t
end
)");
TypeId ty = requireType("map");
const FunctionType* ftv = get<FunctionType>(follow(ty));
if (FFlag::LuauSolverV2)
CHECK_EQ("map<a, b>(arr: {a}, fn: (a) -> (b, ...unknown)): {b}", toStringNamedFunction("map", *ftv));
else
CHECK_EQ("map<a, b>(arr: {a}, fn: (a) -> b): {b}", toStringNamedFunction("map", *ftv));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_generic_pack")
{
CheckResult result = check(R"(
local function f(a: number, b: string) end
local function test<T..., U...>(...: T...): U...
f(...)
return 1, 2, 3
end
)");
TypeId ty = requireType("test");
const FunctionType* ftv = get<FunctionType>(follow(ty));
CHECK_EQ("test<T..., U...>(...: T...): U...", toStringNamedFunction("test", *ftv));
}
TEST_CASE("toStringNamedFunction_unit_f")
{
TypePackVar empty{TypePack{}};
FunctionType ftv{&empty, &empty, {}, false};
CHECK_EQ("f(): ()", toStringNamedFunction("f", ftv));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_variadics")
{
CheckResult result = check(R"(
local function f<a, b...>(x: a, ...): (a, a, b...)
return x, x, ...
end
)");
TypeId ty = requireType("f");
auto ftv = get<FunctionType>(follow(ty));
CHECK_EQ("f<a, b...>(x: a, ...: any): (a, a, b...)", toStringNamedFunction("f", *ftv));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_variadics2")
{
CheckResult result = check(R"(
local function f(): ...number
return 1, 2, 3
end
)");
TypeId ty = requireType("f");
auto ftv = get<FunctionType>(follow(ty));
CHECK_EQ("f(): ...number", toStringNamedFunction("f", *ftv));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_variadics3")
{
CheckResult result = check(R"(
local function f(): (string, ...number)
return 'a', 1, 2, 3
end
)");
TypeId ty = requireType("f");
auto ftv = get<FunctionType>(follow(ty));
CHECK_EQ("f(): (string, ...number)", toStringNamedFunction("f", *ftv));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_type_annotation_has_partial_argnames")
{
CheckResult result = check(R"(
local f: (number, y: number) -> number
)");
TypeId ty = requireType("f");
auto ftv = get<FunctionType>(follow(ty));
CHECK_EQ("f(_: number, y: number): number", toStringNamedFunction("f", *ftv));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_hide_type_params")
{
CheckResult result = check(R"(
local function f<T>(x: T, g: <U>(T) -> U)): ()
end
)");
TypeId ty = requireType("f");
auto ftv = get<FunctionType>(follow(ty));
ToStringOptions opts;
opts.hideNamedFunctionTypeParameters = true;
CHECK_EQ("f(x: T, g: <U>(T) -> U): ()", toStringNamedFunction("f", *ftv, opts));
}
TEST_CASE_FIXTURE(Fixture, "toStringNamedFunction_overrides_param_names")
{
CheckResult result = check(R"(
local function test(a, b : string, ... : number) return a end
)");
TypeId ty = requireType("test");
const FunctionType* ftv = get<FunctionType>(follow(ty));
ToStringOptions opts;
opts.namedFunctionOverrideArgNames = {"first", "second", "third"};
CHECK_EQ("test<a>(first: a, second: string, ...: number): a", toStringNamedFunction("test", *ftv, opts));
}
TEST_CASE_FIXTURE(Fixture, "pick_distinct_names_for_mixed_explicit_and_implicit_generics")
{
CheckResult result = check(R"(
function foo<a>(x: a, y) end
)");
if (FFlag::LuauSolverV2)
{
CHECK("<a>(a, unknown) -> ()" == toString(requireType("foo")));
}
else
CHECK("<a, b>(a, b) -> ()" == toString(requireType("foo")));
}
TEST_CASE_FIXTURE(Fixture, "tostring_unsee_ttv_if_array")
{
CheckResult result = check(R"(
local x: {string}
-- This code is constructed very specifically to use the same (by pointer
-- identity) type in the function twice.
local y: (typeof(x), typeof(x)) -> ()
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("y")) == "({string}, {string}) -> ()");
}
TEST_CASE_FIXTURE(Fixture, "tostring_error_mismatch")
{
CheckResult result = check(R"(
--!strict
function f1(t: {a : number, b: string, c: {d: string}}) : {a : number, b : string, c : { d : number}}
return t
end
)");
std::string expected;
if (FFlag::LuauSolverV2)
expected = "Type\n\t"
"'{ a: number, b: string, c: { d: string } }'\n"
"could not be converted into\n\t"
"'{ a: number, b: string, c: { d: number } }'; \n"
"this is because accessing `c.d` results in `string` in the former type and `number` in the latter "
"type, and `string` is not exactly `number`";
else
expected = "Type\n\t"
"'{| a: number, b: string, c: {| d: string |} |}'\n"
"could not be converted into\n\t"
"'{| a: number, b: string, c: {| d: number |} |}'\n"
"caused by:\n "
"Property 'c' is not compatible.\n"
"Type\n\t"
"'{| d: string |}'\n"
"could not be converted into\n\t"
"'{| d: number |}'\n"
"caused by:\n "
"Property 'd' is not compatible.\n"
"Type 'string' could not be converted into 'number' in an invariant context";
LUAU_REQUIRE_ERROR_COUNT(1, result);
std::string actual = toString(result.errors[0]);
CHECK(expected == actual);
}
TEST_CASE_FIXTURE(Fixture, "checked_fn_toString")
{
ScopedFastFlag flags[] = {
{FFlag::LuauSolverV2, true},
};
auto _result = loadDefinition(R"(
@checked declare function abs(n: number) : number
)");
auto result = check(Mode::Nonstrict, R"(
local f = abs
)");
LUAU_REQUIRE_NO_ERRORS(result);
TypeId fn = requireType("f");
CHECK("@checked (number) -> number" == toString(fn));
}
TEST_CASE_FIXTURE(Fixture, "read_only_properties")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
type A = {x: string}
type B = {read x: string}
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("{ x: string }" == toString(requireTypeAlias("A"), {true}));
CHECK("{ read x: string }" == toString(requireTypeAlias("B"), {true}));
}
TEST_CASE_FIXTURE(Fixture, "cycle_rooted_in_a_pack")
{
TypeArena arena;
TypePackId thePack = arena.addTypePack({getBuiltins()->numberType, getBuiltins()->numberType});
TypePack* packPtr = getMutable<TypePack>(thePack);
REQUIRE(packPtr);
const TableType::Props theProps = {
{"BaseField", Property::readonly(getBuiltins()->unknownType)},
{"BaseMethod", Property::readonly(arena.addType(FunctionType{thePack, arena.addTypePack({})}))}
};
TypeId theTable = arena.addType(TableType{theProps, {}, TypeLevel{}, TableState::Sealed});
packPtr->head[0] = theTable;
if (FFlag::LuauSolverV2)
CHECK("tp1 where tp1 = { read BaseField: unknown, read BaseMethod: (tp1) -> () }, number" == toString(thePack));
else
CHECK("tp1 where tp1 = {| BaseField: unknown, BaseMethod: (tp1) -> () |}, number" == toString(thePack));
}
TEST_CASE_FIXTURE(Fixture, "correct_stringification_user_defined_type_functions")
{
TypeFunction user{"user", nullptr};
TypeFunctionInstanceType tftt{
NotNull{&user},
std::vector<TypeId>{getBuiltins()->numberType}, // Type Function Arguments
{},
{AstName{"woohoo"}}, // Type Function Name
{},
};
Type tv{tftt};
if (FFlag::LuauSolverV2)
CHECK_EQ(toString(&tv, {}), "woohoo<number>");
}
TEST_SUITE_END();