luau/CodeGen/src/IrLoweringA64.cpp
vegorov-rbx ea14e65ea0
Sync to upstream/release/613 (#1167)
# What's changed?

* Compiler now targets bytecode version 5 by default, this includes
support for vector type literals and sub/div opcodes with a constant on
lhs

### New Type Solver

* Normalizer type inhabitance check has been optimized
* Added ability to reduce cyclic `and`/`or` type families 

### Native Code Generation

* `CodeGen::compile` now returns more specific causes of a code
generation failure
* Fixed linking issues on platforms that don't support unwind frame data
registration

---

### Internal Contributors

Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

---------

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Vighnesh <vvijay@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: David Cope <dcope@roblox.com>
Co-authored-by: Lily Brown <lbrown@roblox.com>
2024-02-15 18:04:39 -08:00

2617 lines
88 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "IrLoweringA64.h"
#include "Luau/DenseHash.h"
#include "Luau/IrData.h"
#include "Luau/IrUtils.h"
#include "EmitCommonA64.h"
#include "NativeState.h"
#include "lstate.h"
#include "lgc.h"
LUAU_DYNAMIC_FASTFLAGVARIABLE(LuauCodeGenFixBufferLenCheckA64, false)
namespace Luau
{
namespace CodeGen
{
namespace A64
{
inline ConditionA64 getConditionFP(IrCondition cond)
{
switch (cond)
{
case IrCondition::Equal:
return ConditionA64::Equal;
case IrCondition::NotEqual:
return ConditionA64::NotEqual;
case IrCondition::Less:
return ConditionA64::Minus;
case IrCondition::NotLess:
return ConditionA64::Plus;
case IrCondition::LessEqual:
return ConditionA64::UnsignedLessEqual;
case IrCondition::NotLessEqual:
return ConditionA64::UnsignedGreater;
case IrCondition::Greater:
return ConditionA64::Greater;
case IrCondition::NotGreater:
return ConditionA64::LessEqual;
case IrCondition::GreaterEqual:
return ConditionA64::GreaterEqual;
case IrCondition::NotGreaterEqual:
return ConditionA64::Less;
default:
CODEGEN_ASSERT(!"Unexpected condition code");
return ConditionA64::Always;
}
}
inline ConditionA64 getConditionInt(IrCondition cond)
{
switch (cond)
{
case IrCondition::Equal:
return ConditionA64::Equal;
case IrCondition::NotEqual:
return ConditionA64::NotEqual;
case IrCondition::Less:
return ConditionA64::Minus;
case IrCondition::NotLess:
return ConditionA64::Plus;
case IrCondition::LessEqual:
return ConditionA64::LessEqual;
case IrCondition::NotLessEqual:
return ConditionA64::Greater;
case IrCondition::Greater:
return ConditionA64::Greater;
case IrCondition::NotGreater:
return ConditionA64::LessEqual;
case IrCondition::GreaterEqual:
return ConditionA64::GreaterEqual;
case IrCondition::NotGreaterEqual:
return ConditionA64::Less;
case IrCondition::UnsignedLess:
return ConditionA64::CarryClear;
case IrCondition::UnsignedLessEqual:
return ConditionA64::UnsignedLessEqual;
case IrCondition::UnsignedGreater:
return ConditionA64::UnsignedGreater;
case IrCondition::UnsignedGreaterEqual:
return ConditionA64::CarrySet;
default:
CODEGEN_ASSERT(!"Unexpected condition code");
return ConditionA64::Always;
}
}
static void emitAddOffset(AssemblyBuilderA64& build, RegisterA64 dst, RegisterA64 src, size_t offset)
{
CODEGEN_ASSERT(dst != src);
CODEGEN_ASSERT(offset <= INT_MAX);
if (offset <= AssemblyBuilderA64::kMaxImmediate)
{
build.add(dst, src, uint16_t(offset));
}
else
{
build.mov(dst, int(offset));
build.add(dst, dst, src);
}
}
static void checkObjectBarrierConditions(AssemblyBuilderA64& build, RegisterA64 object, RegisterA64 temp, IrOp ra, int ratag, Label& skip)
{
RegisterA64 tempw = castReg(KindA64::w, temp);
AddressA64 addr = temp;
// iscollectable(ra)
if (ratag == -1 || !isGCO(ratag))
{
if (ra.kind == IrOpKind::VmReg)
addr = mem(rBase, vmRegOp(ra) * sizeof(TValue) + offsetof(TValue, tt));
else if (ra.kind == IrOpKind::VmConst)
emitAddOffset(build, temp, rConstants, vmConstOp(ra) * sizeof(TValue) + offsetof(TValue, tt));
build.ldr(tempw, addr);
build.cmp(tempw, LUA_TSTRING);
build.b(ConditionA64::Less, skip);
}
// isblack(obj2gco(o))
build.ldrb(tempw, mem(object, offsetof(GCheader, marked)));
build.tbz(tempw, BLACKBIT, skip);
// iswhite(gcvalue(ra))
if (ra.kind == IrOpKind::VmReg)
addr = mem(rBase, vmRegOp(ra) * sizeof(TValue) + offsetof(TValue, value));
else if (ra.kind == IrOpKind::VmConst)
emitAddOffset(build, temp, rConstants, vmConstOp(ra) * sizeof(TValue) + offsetof(TValue, value));
build.ldr(temp, addr);
build.ldrb(tempw, mem(temp, offsetof(GCheader, marked)));
build.tst(tempw, bit2mask(WHITE0BIT, WHITE1BIT));
build.b(ConditionA64::Equal, skip); // Equal = Zero after tst
}
static void emitAbort(AssemblyBuilderA64& build, Label& abort)
{
Label skip;
build.b(skip);
build.setLabel(abort);
build.udf();
build.setLabel(skip);
}
static void emitFallback(AssemblyBuilderA64& build, int offset, int pcpos)
{
// fallback(L, instruction, base, k)
build.mov(x0, rState);
emitAddOffset(build, x1, rCode, pcpos * sizeof(Instruction));
build.mov(x2, rBase);
build.mov(x3, rConstants);
build.ldr(x4, mem(rNativeContext, offset));
build.blr(x4);
emitUpdateBase(build);
}
static void emitInvokeLibm1P(AssemblyBuilderA64& build, size_t func, int arg)
{
CODEGEN_ASSERT(kTempSlots >= 1);
build.ldr(d0, mem(rBase, arg * sizeof(TValue) + offsetof(TValue, value.n)));
build.add(x0, sp, sTemporary.data); // sp-relative offset
build.ldr(x1, mem(rNativeContext, uint32_t(func)));
build.blr(x1);
}
static bool emitBuiltin(
AssemblyBuilderA64& build, IrFunction& function, IrRegAllocA64& regs, int bfid, int res, int arg, IrOp args, int nparams, int nresults)
{
switch (bfid)
{
case LBF_MATH_FREXP:
CODEGEN_ASSERT(nparams == 1 && (nresults == 1 || nresults == 2));
emitInvokeLibm1P(build, offsetof(NativeContext, libm_frexp), arg);
build.str(d0, mem(rBase, res * sizeof(TValue) + offsetof(TValue, value.n)));
if (nresults == 2)
{
build.ldr(w0, sTemporary);
build.scvtf(d1, w0);
build.str(d1, mem(rBase, (res + 1) * sizeof(TValue) + offsetof(TValue, value.n)));
}
return true;
case LBF_MATH_MODF:
CODEGEN_ASSERT(nparams == 1 && (nresults == 1 || nresults == 2));
emitInvokeLibm1P(build, offsetof(NativeContext, libm_modf), arg);
build.ldr(d1, sTemporary);
build.str(d1, mem(rBase, res * sizeof(TValue) + offsetof(TValue, value.n)));
if (nresults == 2)
build.str(d0, mem(rBase, (res + 1) * sizeof(TValue) + offsetof(TValue, value.n)));
return true;
case LBF_MATH_SIGN:
CODEGEN_ASSERT(nparams == 1 && nresults == 1);
build.ldr(d0, mem(rBase, arg * sizeof(TValue) + offsetof(TValue, value.n)));
build.fcmpz(d0);
build.fmov(d0, 0.0);
build.fmov(d1, 1.0);
build.fcsel(d0, d1, d0, getConditionFP(IrCondition::Greater));
build.fmov(d1, -1.0);
build.fcsel(d0, d1, d0, getConditionFP(IrCondition::Less));
build.str(d0, mem(rBase, res * sizeof(TValue) + offsetof(TValue, value.n)));
return true;
default:
CODEGEN_ASSERT(!"Missing A64 lowering");
return false;
}
}
static uint64_t getDoubleBits(double value)
{
uint64_t result;
static_assert(sizeof(result) == sizeof(value), "Expecting double to be 64-bit");
memcpy(&result, &value, sizeof(value));
return result;
}
IrLoweringA64::IrLoweringA64(AssemblyBuilderA64& build, ModuleHelpers& helpers, IrFunction& function, LoweringStats* stats)
: build(build)
, helpers(helpers)
, function(function)
, stats(stats)
, regs(function, stats, {{x0, x15}, {x16, x17}, {q0, q7}, {q16, q31}})
, valueTracker(function)
, exitHandlerMap(~0u)
{
valueTracker.setRestoreCallack(this, [](void* context, IrInst& inst) {
IrLoweringA64* self = static_cast<IrLoweringA64*>(context);
self->regs.restoreReg(self->build, inst);
});
}
void IrLoweringA64::lowerInst(IrInst& inst, uint32_t index, const IrBlock& next)
{
valueTracker.beforeInstLowering(inst);
switch (inst.cmd)
{
case IrCmd::LOAD_TAG:
{
inst.regA64 = regs.allocReg(KindA64::w, index);
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, tt));
build.ldr(inst.regA64, addr);
break;
}
case IrCmd::LOAD_POINTER:
{
inst.regA64 = regs.allocReg(KindA64::x, index);
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value.gc));
build.ldr(inst.regA64, addr);
break;
}
case IrCmd::LOAD_DOUBLE:
{
inst.regA64 = regs.allocReg(KindA64::d, index);
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value.n));
build.ldr(inst.regA64, addr);
break;
}
case IrCmd::LOAD_INT:
{
inst.regA64 = regs.allocReg(KindA64::w, index);
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value));
build.ldr(inst.regA64, addr);
break;
}
case IrCmd::LOAD_FLOAT:
{
inst.regA64 = regs.allocReg(KindA64::d, index);
RegisterA64 temp = castReg(KindA64::s, inst.regA64); // safe to alias a fresh register
AddressA64 addr = tempAddr(inst.a, intOp(inst.b));
build.ldr(temp, addr);
build.fcvt(inst.regA64, temp);
break;
}
case IrCmd::LOAD_TVALUE:
{
inst.regA64 = regs.allocReg(KindA64::q, index);
int addrOffset = inst.b.kind != IrOpKind::None ? intOp(inst.b) : 0;
AddressA64 addr = tempAddr(inst.a, addrOffset);
build.ldr(inst.regA64, addr);
break;
}
case IrCmd::LOAD_ENV:
inst.regA64 = regs.allocReg(KindA64::x, index);
build.ldr(inst.regA64, mem(rClosure, offsetof(Closure, env)));
break;
case IrCmd::GET_ARR_ADDR:
{
inst.regA64 = regs.allocReuse(KindA64::x, index, {inst.a});
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(Table, array)));
if (inst.b.kind == IrOpKind::Inst)
{
build.add(inst.regA64, inst.regA64, regOp(inst.b), kTValueSizeLog2); // implicit uxtw
}
else if (inst.b.kind == IrOpKind::Constant)
{
if (intOp(inst.b) == 0)
{
// no offset required
}
else if (intOp(inst.b) * sizeof(TValue) <= AssemblyBuilderA64::kMaxImmediate)
{
build.add(inst.regA64, inst.regA64, uint16_t(intOp(inst.b) * sizeof(TValue)));
}
else
{
RegisterA64 temp = regs.allocTemp(KindA64::x);
build.mov(temp, intOp(inst.b) * sizeof(TValue));
build.add(inst.regA64, inst.regA64, temp);
}
}
else
CODEGEN_ASSERT(!"Unsupported instruction form");
break;
}
case IrCmd::GET_SLOT_NODE_ADDR:
{
inst.regA64 = regs.allocReuse(KindA64::x, index, {inst.a});
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp1w = castReg(KindA64::w, temp1);
RegisterA64 temp2 = regs.allocTemp(KindA64::w);
RegisterA64 temp2x = castReg(KindA64::x, temp2);
// note: since the stride of the load is the same as the destination register size, we can range check the array index, not the byte offset
if (uintOp(inst.b) <= AddressA64::kMaxOffset)
build.ldr(temp1w, mem(rCode, uintOp(inst.b) * sizeof(Instruction)));
else
{
build.mov(temp1, uintOp(inst.b) * sizeof(Instruction));
build.ldr(temp1w, mem(rCode, temp1));
}
// C field can be shifted as long as it's at the most significant byte of the instruction word
CODEGEN_ASSERT(kOffsetOfInstructionC == 3);
build.ldrb(temp2, mem(regOp(inst.a), offsetof(Table, nodemask8)));
build.and_(temp2, temp2, temp1w, -24);
// note: this may clobber inst.a, so it's important that we don't use it after this
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(Table, node)));
build.add(inst.regA64, inst.regA64, temp2x, kLuaNodeSizeLog2); // "zero extend" temp2 to get a larger shift (top 32 bits are zero)
break;
}
case IrCmd::GET_HASH_NODE_ADDR:
{
inst.regA64 = regs.allocReuse(KindA64::x, index, {inst.a});
RegisterA64 temp1 = regs.allocTemp(KindA64::w);
RegisterA64 temp2 = regs.allocTemp(KindA64::w);
RegisterA64 temp2x = castReg(KindA64::x, temp2);
// hash & ((1 << lsizenode) - 1) == hash & ~(-1 << lsizenode)
build.mov(temp1, -1);
build.ldrb(temp2, mem(regOp(inst.a), offsetof(Table, lsizenode)));
build.lsl(temp1, temp1, temp2);
build.mov(temp2, uintOp(inst.b));
build.bic(temp2, temp2, temp1);
// note: this may clobber inst.a, so it's important that we don't use it after this
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(Table, node)));
build.add(inst.regA64, inst.regA64, temp2x, kLuaNodeSizeLog2); // "zero extend" temp2 to get a larger shift (top 32 bits are zero)
break;
}
case IrCmd::GET_CLOSURE_UPVAL_ADDR:
{
inst.regA64 = regs.allocReuse(KindA64::x, index, {inst.a});
RegisterA64 cl = inst.a.kind == IrOpKind::Undef ? rClosure : regOp(inst.a);
build.add(inst.regA64, cl, uint16_t(offsetof(Closure, l.uprefs) + sizeof(TValue) * vmUpvalueOp(inst.b)));
break;
}
case IrCmd::STORE_TAG:
{
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, tt));
if (tagOp(inst.b) == 0)
{
build.str(wzr, addr);
}
else
{
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.mov(temp, tagOp(inst.b));
build.str(temp, addr);
}
break;
}
case IrCmd::STORE_POINTER:
{
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value));
if (inst.b.kind == IrOpKind::Constant)
{
CODEGEN_ASSERT(intOp(inst.b) == 0);
build.str(xzr, addr);
}
else
{
build.str(regOp(inst.b), addr);
}
break;
}
case IrCmd::STORE_EXTRA:
{
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, extra));
if (intOp(inst.b) == 0)
{
build.str(wzr, addr);
}
else
{
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.mov(temp, intOp(inst.b));
build.str(temp, addr);
}
break;
}
case IrCmd::STORE_DOUBLE:
{
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value));
if (inst.b.kind == IrOpKind::Constant && getDoubleBits(doubleOp(inst.b)) == 0)
{
build.str(xzr, addr);
}
else
{
RegisterA64 temp = tempDouble(inst.b);
build.str(temp, addr);
}
break;
}
case IrCmd::STORE_INT:
{
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value));
if (inst.b.kind == IrOpKind::Constant && intOp(inst.b) == 0)
{
build.str(wzr, addr);
}
else
{
RegisterA64 temp = tempInt(inst.b);
build.str(temp, addr);
}
break;
}
case IrCmd::STORE_VECTOR:
{
RegisterA64 temp1 = tempDouble(inst.b);
RegisterA64 temp2 = tempDouble(inst.c);
RegisterA64 temp3 = tempDouble(inst.d);
RegisterA64 temp4 = regs.allocTemp(KindA64::s);
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value));
CODEGEN_ASSERT(addr.kind == AddressKindA64::imm && addr.data % 4 == 0 && unsigned(addr.data + 8) / 4 <= AddressA64::kMaxOffset);
build.fcvt(temp4, temp1);
build.str(temp4, AddressA64(addr.base, addr.data + 0));
build.fcvt(temp4, temp2);
build.str(temp4, AddressA64(addr.base, addr.data + 4));
build.fcvt(temp4, temp3);
build.str(temp4, AddressA64(addr.base, addr.data + 8));
break;
}
case IrCmd::STORE_TVALUE:
{
int addrOffset = inst.c.kind != IrOpKind::None ? intOp(inst.c) : 0;
AddressA64 addr = tempAddr(inst.a, addrOffset);
build.str(regOp(inst.b), addr);
break;
}
case IrCmd::STORE_SPLIT_TVALUE:
{
int addrOffset = inst.d.kind != IrOpKind::None ? intOp(inst.d) : 0;
RegisterA64 tempt = regs.allocTemp(KindA64::w);
AddressA64 addrt = tempAddr(inst.a, offsetof(TValue, tt) + addrOffset);
build.mov(tempt, tagOp(inst.b));
build.str(tempt, addrt);
AddressA64 addr = tempAddr(inst.a, offsetof(TValue, value) + addrOffset);
if (tagOp(inst.b) == LUA_TBOOLEAN)
{
if (inst.c.kind == IrOpKind::Constant)
{
// note: we reuse tag temp register as value for true booleans, and use built-in zero register for false values
CODEGEN_ASSERT(LUA_TBOOLEAN == 1);
build.str(intOp(inst.c) ? tempt : wzr, addr);
}
else
build.str(regOp(inst.c), addr);
}
else if (tagOp(inst.b) == LUA_TNUMBER)
{
RegisterA64 temp = tempDouble(inst.c);
build.str(temp, addr);
}
else if (isGCO(tagOp(inst.b)))
{
build.str(regOp(inst.c), addr);
}
else
{
CODEGEN_ASSERT(!"Unsupported instruction form");
}
break;
}
case IrCmd::ADD_INT:
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant && unsigned(intOp(inst.b)) <= AssemblyBuilderA64::kMaxImmediate)
build.add(inst.regA64, regOp(inst.a), uint16_t(intOp(inst.b)));
else if (inst.a.kind == IrOpKind::Constant && unsigned(intOp(inst.a)) <= AssemblyBuilderA64::kMaxImmediate)
build.add(inst.regA64, regOp(inst.b), uint16_t(intOp(inst.a)));
else
{
RegisterA64 temp1 = tempInt(inst.a);
RegisterA64 temp2 = tempInt(inst.b);
build.add(inst.regA64, temp1, temp2);
}
break;
case IrCmd::SUB_INT:
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.b.kind == IrOpKind::Constant && unsigned(intOp(inst.b)) <= AssemblyBuilderA64::kMaxImmediate)
build.sub(inst.regA64, regOp(inst.a), uint16_t(intOp(inst.b)));
else
{
RegisterA64 temp1 = tempInt(inst.a);
RegisterA64 temp2 = tempInt(inst.b);
build.sub(inst.regA64, temp1, temp2);
}
break;
case IrCmd::ADD_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fadd(inst.regA64, temp1, temp2);
break;
}
case IrCmd::SUB_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fsub(inst.regA64, temp1, temp2);
break;
}
case IrCmd::MUL_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fmul(inst.regA64, temp1, temp2);
break;
}
case IrCmd::DIV_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fdiv(inst.regA64, temp1, temp2);
break;
}
case IrCmd::IDIV_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fdiv(inst.regA64, temp1, temp2);
build.frintm(inst.regA64, inst.regA64);
break;
}
case IrCmd::MOD_NUM:
{
inst.regA64 = regs.allocReg(KindA64::d, index); // can't allocReuse because both A and B are used twice
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fdiv(inst.regA64, temp1, temp2);
build.frintm(inst.regA64, inst.regA64);
build.fmul(inst.regA64, inst.regA64, temp2);
build.fsub(inst.regA64, temp1, inst.regA64);
break;
}
case IrCmd::MIN_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fcmp(temp1, temp2);
build.fcsel(inst.regA64, temp1, temp2, getConditionFP(IrCondition::Less));
break;
}
case IrCmd::MAX_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a, inst.b});
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fcmp(temp1, temp2);
build.fcsel(inst.regA64, temp1, temp2, getConditionFP(IrCondition::Greater));
break;
}
case IrCmd::UNM_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a});
RegisterA64 temp = tempDouble(inst.a);
build.fneg(inst.regA64, temp);
break;
}
case IrCmd::FLOOR_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a});
RegisterA64 temp = tempDouble(inst.a);
build.frintm(inst.regA64, temp);
break;
}
case IrCmd::CEIL_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a});
RegisterA64 temp = tempDouble(inst.a);
build.frintp(inst.regA64, temp);
break;
}
case IrCmd::ROUND_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a});
RegisterA64 temp = tempDouble(inst.a);
build.frinta(inst.regA64, temp);
break;
}
case IrCmd::SQRT_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a});
RegisterA64 temp = tempDouble(inst.a);
build.fsqrt(inst.regA64, temp);
break;
}
case IrCmd::ABS_NUM:
{
inst.regA64 = regs.allocReuse(KindA64::d, index, {inst.a});
RegisterA64 temp = tempDouble(inst.a);
build.fabs(inst.regA64, temp);
break;
}
case IrCmd::ADD_VEC:
{
inst.regA64 = regs.allocReuse(KindA64::q, index, {inst.a, inst.b});
RegisterA64 tempa = regs.allocTemp(KindA64::s);
RegisterA64 tempb = regs.allocTemp(KindA64::s);
for (uint8_t i = 0; i < 3; i++)
{
build.dup_4s(tempa, regOp(inst.a), i);
build.dup_4s(tempb, regOp(inst.b), i);
build.fadd(tempa, tempa, tempb);
build.ins_4s(inst.regA64, i, castReg(KindA64::q, tempa), 0);
}
break;
}
case IrCmd::SUB_VEC:
{
inst.regA64 = regs.allocReuse(KindA64::q, index, {inst.a, inst.b});
RegisterA64 tempa = regs.allocTemp(KindA64::s);
RegisterA64 tempb = regs.allocTemp(KindA64::s);
for (uint8_t i = 0; i < 3; i++)
{
build.dup_4s(tempa, regOp(inst.a), i);
build.dup_4s(tempb, regOp(inst.b), i);
build.fsub(tempa, tempa, tempb);
build.ins_4s(inst.regA64, i, castReg(KindA64::q, tempa), 0);
}
break;
}
case IrCmd::MUL_VEC:
{
inst.regA64 = regs.allocReuse(KindA64::q, index, {inst.a, inst.b});
RegisterA64 tempa = regs.allocTemp(KindA64::s);
RegisterA64 tempb = regs.allocTemp(KindA64::s);
for (uint8_t i = 0; i < 3; i++)
{
build.dup_4s(tempa, regOp(inst.a), i);
build.dup_4s(tempb, regOp(inst.b), i);
build.fmul(tempa, tempa, tempb);
build.ins_4s(inst.regA64, i, castReg(KindA64::q, tempa), 0);
}
break;
}
case IrCmd::DIV_VEC:
{
inst.regA64 = regs.allocReuse(KindA64::q, index, {inst.a, inst.b});
RegisterA64 tempa = regs.allocTemp(KindA64::s);
RegisterA64 tempb = regs.allocTemp(KindA64::s);
for (uint8_t i = 0; i < 3; i++)
{
build.dup_4s(tempa, regOp(inst.a), i);
build.dup_4s(tempb, regOp(inst.b), i);
build.fdiv(tempa, tempa, tempb);
build.ins_4s(inst.regA64, i, castReg(KindA64::q, tempa), 0);
}
break;
}
case IrCmd::UNM_VEC:
{
inst.regA64 = regs.allocReuse(KindA64::q, index, {inst.a});
RegisterA64 tempa = regs.allocTemp(KindA64::s);
for (uint8_t i = 0; i < 3; i++)
{
build.dup_4s(tempa, regOp(inst.a), i);
build.fneg(tempa, tempa);
build.ins_4s(inst.regA64, i, castReg(KindA64::q, tempa), 0);
}
break;
}
case IrCmd::NOT_ANY:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Constant)
{
// other cases should've been constant folded
CODEGEN_ASSERT(tagOp(inst.a) == LUA_TBOOLEAN);
build.eor(inst.regA64, regOp(inst.b), 1);
}
else
{
Label notbool, exit;
// use the fact that NIL is the only value less than BOOLEAN to do two tag comparisons at once
CODEGEN_ASSERT(LUA_TNIL == 0 && LUA_TBOOLEAN == 1);
build.cmp(regOp(inst.a), LUA_TBOOLEAN);
build.b(ConditionA64::NotEqual, notbool);
if (inst.b.kind == IrOpKind::Constant)
build.mov(inst.regA64, intOp(inst.b) == 0 ? 1 : 0);
else
build.eor(inst.regA64, regOp(inst.b), 1); // boolean => invert value
build.b(exit);
// not boolean => result is true iff tag was nil
build.setLabel(notbool);
build.cset(inst.regA64, ConditionA64::Less);
build.setLabel(exit);
}
break;
}
case IrCmd::CMP_ANY:
{
IrCondition cond = conditionOp(inst.c);
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.add(x2, rBase, uint16_t(vmRegOp(inst.b) * sizeof(TValue)));
if (cond == IrCondition::LessEqual)
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaV_lessequal)));
else if (cond == IrCondition::Less)
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaV_lessthan)));
else if (cond == IrCondition::Equal)
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaV_equalval)));
else
CODEGEN_ASSERT(!"Unsupported condition");
build.blr(x3);
emitUpdateBase(build);
inst.regA64 = regs.takeReg(w0, index);
break;
}
case IrCmd::JUMP:
if (inst.a.kind == IrOpKind::Undef || inst.a.kind == IrOpKind::VmExit)
{
Label fresh;
build.b(getTargetLabel(inst.a, fresh));
finalizeTargetLabel(inst.a, fresh);
}
else
{
jumpOrFallthrough(blockOp(inst.a), next);
}
break;
case IrCmd::JUMP_IF_TRUTHY:
{
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldr(temp, mem(rBase, vmRegOp(inst.a) * sizeof(TValue) + offsetof(TValue, tt)));
// nil => falsy
CODEGEN_ASSERT(LUA_TNIL == 0);
build.cbz(temp, labelOp(inst.c));
// not boolean => truthy
build.cmp(temp, LUA_TBOOLEAN);
build.b(ConditionA64::NotEqual, labelOp(inst.b));
// compare boolean value
build.ldr(temp, mem(rBase, vmRegOp(inst.a) * sizeof(TValue) + offsetof(TValue, value)));
build.cbnz(temp, labelOp(inst.b));
jumpOrFallthrough(blockOp(inst.c), next);
break;
}
case IrCmd::JUMP_IF_FALSY:
{
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldr(temp, mem(rBase, vmRegOp(inst.a) * sizeof(TValue) + offsetof(TValue, tt)));
// nil => falsy
CODEGEN_ASSERT(LUA_TNIL == 0);
build.cbz(temp, labelOp(inst.b));
// not boolean => truthy
build.cmp(temp, LUA_TBOOLEAN);
build.b(ConditionA64::NotEqual, labelOp(inst.c));
// compare boolean value
build.ldr(temp, mem(rBase, vmRegOp(inst.a) * sizeof(TValue) + offsetof(TValue, value)));
build.cbz(temp, labelOp(inst.b));
jumpOrFallthrough(blockOp(inst.c), next);
break;
}
case IrCmd::JUMP_EQ_TAG:
{
RegisterA64 zr = noreg;
if (inst.a.kind == IrOpKind::Constant && tagOp(inst.a) == 0)
zr = regOp(inst.b);
else if (inst.b.kind == IrOpKind::Constant && tagOp(inst.b) == 0)
zr = regOp(inst.a);
else if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant)
build.cmp(regOp(inst.a), tagOp(inst.b));
else if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Inst)
build.cmp(regOp(inst.a), regOp(inst.b));
else if (inst.a.kind == IrOpKind::Constant && inst.b.kind == IrOpKind::Inst)
build.cmp(regOp(inst.b), tagOp(inst.a));
else
CODEGEN_ASSERT(!"Unsupported instruction form");
if (isFallthroughBlock(blockOp(inst.d), next))
{
if (zr != noreg)
build.cbz(zr, labelOp(inst.c));
else
build.b(ConditionA64::Equal, labelOp(inst.c));
jumpOrFallthrough(blockOp(inst.d), next);
}
else
{
if (zr != noreg)
build.cbnz(zr, labelOp(inst.d));
else
build.b(ConditionA64::NotEqual, labelOp(inst.d));
jumpOrFallthrough(blockOp(inst.c), next);
}
break;
}
case IrCmd::JUMP_CMP_INT:
{
IrCondition cond = conditionOp(inst.c);
if (cond == IrCondition::Equal && intOp(inst.b) == 0)
{
build.cbz(regOp(inst.a), labelOp(inst.d));
}
else if (cond == IrCondition::NotEqual && intOp(inst.b) == 0)
{
build.cbnz(regOp(inst.a), labelOp(inst.d));
}
else
{
CODEGEN_ASSERT(unsigned(intOp(inst.b)) <= AssemblyBuilderA64::kMaxImmediate);
build.cmp(regOp(inst.a), uint16_t(intOp(inst.b)));
build.b(getConditionInt(cond), labelOp(inst.d));
}
jumpOrFallthrough(blockOp(inst.e), next);
break;
}
case IrCmd::JUMP_EQ_POINTER:
build.cmp(regOp(inst.a), regOp(inst.b));
build.b(ConditionA64::Equal, labelOp(inst.c));
jumpOrFallthrough(blockOp(inst.d), next);
break;
case IrCmd::JUMP_CMP_NUM:
{
IrCondition cond = conditionOp(inst.c);
if (inst.b.kind == IrOpKind::Constant && doubleOp(inst.b) == 0.0)
{
RegisterA64 temp = tempDouble(inst.a);
build.fcmpz(temp);
}
else
{
RegisterA64 temp1 = tempDouble(inst.a);
RegisterA64 temp2 = tempDouble(inst.b);
build.fcmp(temp1, temp2);
}
build.b(getConditionFP(cond), labelOp(inst.d));
jumpOrFallthrough(blockOp(inst.e), next);
break;
}
case IrCmd::JUMP_FORN_LOOP_COND:
{
RegisterA64 index = tempDouble(inst.a);
RegisterA64 limit = tempDouble(inst.b);
RegisterA64 step = tempDouble(inst.c);
Label direct;
// step > 0
build.fcmpz(step);
build.b(getConditionFP(IrCondition::Greater), direct);
// !(limit <= index)
build.fcmp(limit, index);
build.b(getConditionFP(IrCondition::NotLessEqual), labelOp(inst.e));
build.b(labelOp(inst.d));
// !(index <= limit)
build.setLabel(direct);
build.fcmp(index, limit);
build.b(getConditionFP(IrCondition::NotLessEqual), labelOp(inst.e));
jumpOrFallthrough(blockOp(inst.d), next);
break;
}
// IrCmd::JUMP_SLOT_MATCH implemented below
case IrCmd::TABLE_LEN:
{
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
regs.spill(build, index, {reg});
build.mov(x0, reg);
build.ldr(x1, mem(rNativeContext, offsetof(NativeContext, luaH_getn)));
build.blr(x1);
inst.regA64 = regs.takeReg(w0, index);
break;
}
case IrCmd::STRING_LEN:
{
inst.regA64 = regs.allocReg(KindA64::w, index);
build.ldr(inst.regA64, mem(regOp(inst.a), offsetof(TString, len)));
break;
}
case IrCmd::TABLE_SETNUM:
{
// note: we need to call regOp before spill so that we don't do redundant reloads
RegisterA64 table = regOp(inst.a);
RegisterA64 key = regOp(inst.b);
RegisterA64 temp = regs.allocTemp(KindA64::w);
regs.spill(build, index, {table, key});
if (w1 != key)
{
build.mov(x1, table);
build.mov(w2, key);
}
else
{
build.mov(temp, w1);
build.mov(x1, table);
build.mov(w2, temp);
}
build.mov(x0, rState);
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaH_setnum)));
build.blr(x3);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::NEW_TABLE:
{
regs.spill(build, index);
build.mov(x0, rState);
build.mov(x1, uintOp(inst.a));
build.mov(x2, uintOp(inst.b));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaH_new)));
build.blr(x3);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::DUP_TABLE:
{
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.ldr(x2, mem(rNativeContext, offsetof(NativeContext, luaH_clone)));
build.blr(x2);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::TRY_NUM_TO_INDEX:
{
inst.regA64 = regs.allocReg(KindA64::w, index);
RegisterA64 temp1 = tempDouble(inst.a);
if (build.features & Feature_JSCVT)
{
build.fjcvtzs(inst.regA64, temp1); // fjcvtzs sets PSTATE.Z (equal) iff conversion is exact
build.b(ConditionA64::NotEqual, labelOp(inst.b));
}
else
{
RegisterA64 temp2 = regs.allocTemp(KindA64::d);
build.fcvtzs(inst.regA64, temp1);
build.scvtf(temp2, inst.regA64);
build.fcmp(temp1, temp2);
build.b(ConditionA64::NotEqual, labelOp(inst.b));
}
break;
}
case IrCmd::TRY_CALL_FASTGETTM:
{
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::w);
build.ldr(temp1, mem(regOp(inst.a), offsetof(Table, metatable)));
build.cbz(temp1, labelOp(inst.c)); // no metatable
build.ldrb(temp2, mem(temp1, offsetof(Table, tmcache)));
build.tst(temp2, 1 << intOp(inst.b)); // can't use tbz/tbnz because their jump offsets are too short
build.b(ConditionA64::NotEqual, labelOp(inst.c)); // Equal = Zero after tst; tmcache caches *absence* of metamethods
regs.spill(build, index, {temp1});
build.mov(x0, temp1);
build.mov(w1, intOp(inst.b));
build.ldr(x2, mem(rGlobalState, offsetof(global_State, tmname) + intOp(inst.b) * sizeof(TString*)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaT_gettm)));
build.blr(x3);
build.cbz(x0, labelOp(inst.c)); // no tag method
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::INT_TO_NUM:
{
inst.regA64 = regs.allocReg(KindA64::d, index);
RegisterA64 temp = tempInt(inst.a);
build.scvtf(inst.regA64, temp);
break;
}
case IrCmd::UINT_TO_NUM:
{
inst.regA64 = regs.allocReg(KindA64::d, index);
RegisterA64 temp = tempInt(inst.a);
build.ucvtf(inst.regA64, temp);
break;
}
case IrCmd::NUM_TO_INT:
{
inst.regA64 = regs.allocReg(KindA64::w, index);
RegisterA64 temp = tempDouble(inst.a);
build.fcvtzs(inst.regA64, temp);
break;
}
case IrCmd::NUM_TO_UINT:
{
inst.regA64 = regs.allocReg(KindA64::w, index);
RegisterA64 temp = tempDouble(inst.a);
// note: we don't use fcvtzu for consistency with C++ code
build.fcvtzs(castReg(KindA64::x, inst.regA64), temp);
break;
}
case IrCmd::NUM_TO_VECTOR:
{
inst.regA64 = regs.allocReg(KindA64::q, index);
RegisterA64 tempd = tempDouble(inst.a);
RegisterA64 temps = castReg(KindA64::s, tempd);
RegisterA64 tempw = regs.allocTemp(KindA64::w);
build.fcvt(temps, tempd);
build.dup_4s(inst.regA64, castReg(KindA64::q, temps), 0);
build.mov(tempw, LUA_TVECTOR);
build.ins_4s(inst.regA64, tempw, 3);
break;
}
case IrCmd::ADJUST_STACK_TO_REG:
{
RegisterA64 temp = regs.allocTemp(KindA64::x);
if (inst.b.kind == IrOpKind::Constant)
{
build.add(temp, rBase, uint16_t((vmRegOp(inst.a) + intOp(inst.b)) * sizeof(TValue)));
build.str(temp, mem(rState, offsetof(lua_State, top)));
}
else if (inst.b.kind == IrOpKind::Inst)
{
build.add(temp, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.add(temp, temp, regOp(inst.b), kTValueSizeLog2); // implicit uxtw
build.str(temp, mem(rState, offsetof(lua_State, top)));
}
else
CODEGEN_ASSERT(!"Unsupported instruction form");
break;
}
case IrCmd::ADJUST_STACK_TO_TOP:
{
RegisterA64 temp = regs.allocTemp(KindA64::x);
build.ldr(temp, mem(rState, offsetof(lua_State, ci)));
build.ldr(temp, mem(temp, offsetof(CallInfo, top)));
build.str(temp, mem(rState, offsetof(lua_State, top)));
break;
}
case IrCmd::FASTCALL:
regs.spill(build, index);
error |= !emitBuiltin(build, function, regs, uintOp(inst.a), vmRegOp(inst.b), vmRegOp(inst.c), inst.d, intOp(inst.e), intOp(inst.f));
break;
case IrCmd::INVOKE_FASTCALL:
{
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.b) * sizeof(TValue)));
build.add(x2, rBase, uint16_t(vmRegOp(inst.c) * sizeof(TValue)));
build.mov(w3, intOp(inst.f)); // nresults
if (inst.d.kind == IrOpKind::VmReg)
build.add(x4, rBase, uint16_t(vmRegOp(inst.d) * sizeof(TValue)));
else if (inst.d.kind == IrOpKind::VmConst)
emitAddOffset(build, x4, rConstants, vmConstOp(inst.d) * sizeof(TValue));
else
CODEGEN_ASSERT(inst.d.kind == IrOpKind::Undef);
// nparams
if (intOp(inst.e) == LUA_MULTRET)
{
// L->top - (ra + 1)
build.ldr(x5, mem(rState, offsetof(lua_State, top)));
build.sub(x5, x5, rBase);
build.sub(x5, x5, uint16_t((vmRegOp(inst.b) + 1) * sizeof(TValue)));
build.lsr(x5, x5, kTValueSizeLog2);
}
else
build.mov(w5, intOp(inst.e));
build.ldr(x6, mem(rNativeContext, offsetof(NativeContext, luauF_table) + uintOp(inst.a) * sizeof(luau_FastFunction)));
build.blr(x6);
inst.regA64 = regs.takeReg(w0, index);
break;
}
case IrCmd::CHECK_FASTCALL_RES:
build.cmp(regOp(inst.a), 0);
build.b(ConditionA64::Less, labelOp(inst.b));
break;
case IrCmd::DO_ARITH:
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
if (inst.b.kind == IrOpKind::VmConst)
emitAddOffset(build, x2, rConstants, vmConstOp(inst.b) * sizeof(TValue));
else
build.add(x2, rBase, uint16_t(vmRegOp(inst.b) * sizeof(TValue)));
if (inst.c.kind == IrOpKind::VmConst)
emitAddOffset(build, x3, rConstants, vmConstOp(inst.c) * sizeof(TValue));
else
build.add(x3, rBase, uint16_t(vmRegOp(inst.c) * sizeof(TValue)));
build.mov(w4, TMS(intOp(inst.d)));
build.ldr(x5, mem(rNativeContext, offsetof(NativeContext, luaV_doarith)));
build.blr(x5);
emitUpdateBase(build);
break;
case IrCmd::DO_LEN:
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.add(x2, rBase, uint16_t(vmRegOp(inst.b) * sizeof(TValue)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaV_dolen)));
build.blr(x3);
emitUpdateBase(build);
break;
case IrCmd::GET_TABLE:
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.b) * sizeof(TValue)));
if (inst.c.kind == IrOpKind::VmReg)
build.add(x2, rBase, uint16_t(vmRegOp(inst.c) * sizeof(TValue)));
else if (inst.c.kind == IrOpKind::Constant)
{
TValue n = {};
setnvalue(&n, uintOp(inst.c));
build.adr(x2, &n, sizeof(n));
}
else
CODEGEN_ASSERT(!"Unsupported instruction form");
build.add(x3, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.ldr(x4, mem(rNativeContext, offsetof(NativeContext, luaV_gettable)));
build.blr(x4);
emitUpdateBase(build);
break;
case IrCmd::SET_TABLE:
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.b) * sizeof(TValue)));
if (inst.c.kind == IrOpKind::VmReg)
build.add(x2, rBase, uint16_t(vmRegOp(inst.c) * sizeof(TValue)));
else if (inst.c.kind == IrOpKind::Constant)
{
TValue n = {};
setnvalue(&n, uintOp(inst.c));
build.adr(x2, &n, sizeof(n));
}
else
CODEGEN_ASSERT(!"Unsupported instruction form");
build.add(x3, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.ldr(x4, mem(rNativeContext, offsetof(NativeContext, luaV_settable)));
build.blr(x4);
emitUpdateBase(build);
break;
case IrCmd::GET_IMPORT:
regs.spill(build, index);
// luaV_getimport(L, cl->env, k, ra, aux, /* propagatenil= */ false)
build.mov(x0, rState);
build.ldr(x1, mem(rClosure, offsetof(Closure, env)));
build.mov(x2, rConstants);
build.add(x3, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.mov(w4, uintOp(inst.b));
build.mov(w5, 0);
build.ldr(x6, mem(rNativeContext, offsetof(NativeContext, luaV_getimport)));
build.blr(x6);
emitUpdateBase(build);
break;
case IrCmd::CONCAT:
regs.spill(build, index);
build.mov(x0, rState);
build.mov(w1, uintOp(inst.b));
build.mov(w2, vmRegOp(inst.a) + uintOp(inst.b) - 1);
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaV_concat)));
build.blr(x3);
emitUpdateBase(build);
break;
case IrCmd::GET_UPVALUE:
{
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::q);
RegisterA64 temp3 = regs.allocTemp(KindA64::w);
build.add(temp1, rClosure, uint16_t(offsetof(Closure, l.uprefs) + sizeof(TValue) * vmUpvalueOp(inst.b)));
// uprefs[] is either an actual value, or it points to UpVal object which has a pointer to value
Label skip;
build.ldr(temp3, mem(temp1, offsetof(TValue, tt)));
build.cmp(temp3, LUA_TUPVAL);
build.b(ConditionA64::NotEqual, skip);
// UpVal.v points to the value (either on stack, or on heap inside each UpVal, but we can deref it unconditionally)
build.ldr(temp1, mem(temp1, offsetof(TValue, value.gc)));
build.ldr(temp1, mem(temp1, offsetof(UpVal, v)));
build.setLabel(skip);
build.ldr(temp2, temp1);
build.str(temp2, mem(rBase, vmRegOp(inst.a) * sizeof(TValue)));
break;
}
case IrCmd::SET_UPVALUE:
{
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::x);
RegisterA64 temp3 = regs.allocTemp(KindA64::q);
// UpVal*
build.ldr(temp1, mem(rClosure, offsetof(Closure, l.uprefs) + sizeof(TValue) * vmUpvalueOp(inst.a) + offsetof(TValue, value.gc)));
build.ldr(temp2, mem(temp1, offsetof(UpVal, v)));
build.ldr(temp3, mem(rBase, vmRegOp(inst.b) * sizeof(TValue)));
build.str(temp3, temp2);
if (inst.c.kind == IrOpKind::Undef || isGCO(tagOp(inst.c)))
{
Label skip;
checkObjectBarrierConditions(build, temp1, temp2, inst.b, inst.c.kind == IrOpKind::Undef ? -1 : tagOp(inst.c), skip);
size_t spills = regs.spill(build, index, {temp1});
build.mov(x1, temp1);
build.mov(x0, rState);
build.ldr(x2, mem(rBase, vmRegOp(inst.b) * sizeof(TValue) + offsetof(TValue, value)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barrierf)));
build.blr(x3);
regs.restore(build, spills); // need to restore before skip so that registers are in a consistent state
// note: no emitUpdateBase necessary because luaC_ barriers do not reallocate stack
build.setLabel(skip);
}
break;
}
case IrCmd::CHECK_TAG:
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
Label& fail = getTargetLabel(inst.c, fresh);
// To support DebugLuauAbortingChecks, CHECK_TAG with VmReg has to be handled
RegisterA64 tag = inst.a.kind == IrOpKind::VmReg ? regs.allocTemp(KindA64::w) : regOp(inst.a);
if (inst.a.kind == IrOpKind::VmReg)
build.ldr(tag, mem(rBase, vmRegOp(inst.a) * sizeof(TValue) + offsetof(TValue, tt)));
if (tagOp(inst.b) == 0)
{
build.cbnz(tag, fail);
}
else
{
build.cmp(tag, tagOp(inst.b));
build.b(ConditionA64::NotEqual, fail);
}
finalizeTargetLabel(inst.c, fresh);
break;
}
case IrCmd::CHECK_TRUTHY:
{
// Constant tags which don't require boolean value check should've been removed in constant folding
CODEGEN_ASSERT(inst.a.kind != IrOpKind::Constant || tagOp(inst.a) == LUA_TBOOLEAN);
Label fresh; // used when guard aborts execution or jumps to a VM exit
Label& target = getTargetLabel(inst.c, fresh);
Label skip;
if (inst.a.kind != IrOpKind::Constant)
{
// fail to fallback on 'nil' (falsy)
CODEGEN_ASSERT(LUA_TNIL == 0);
build.cbz(regOp(inst.a), target);
// skip value test if it's not a boolean (truthy)
build.cmp(regOp(inst.a), LUA_TBOOLEAN);
build.b(ConditionA64::NotEqual, skip);
}
// fail to fallback on 'false' boolean value (falsy)
build.cbz(regOp(inst.b), target);
if (inst.a.kind != IrOpKind::Constant)
build.setLabel(skip);
finalizeTargetLabel(inst.c, fresh);
break;
}
case IrCmd::CHECK_READONLY:
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldrb(temp, mem(regOp(inst.a), offsetof(Table, readonly)));
build.cbnz(temp, getTargetLabel(inst.b, fresh));
finalizeTargetLabel(inst.b, fresh);
break;
}
case IrCmd::CHECK_NO_METATABLE:
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
RegisterA64 temp = regs.allocTemp(KindA64::x);
build.ldr(temp, mem(regOp(inst.a), offsetof(Table, metatable)));
build.cbnz(temp, getTargetLabel(inst.b, fresh));
finalizeTargetLabel(inst.b, fresh);
break;
}
case IrCmd::CHECK_SAFE_ENV:
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
RegisterA64 temp = regs.allocTemp(KindA64::x);
RegisterA64 tempw = castReg(KindA64::w, temp);
build.ldr(temp, mem(rClosure, offsetof(Closure, env)));
build.ldrb(tempw, mem(temp, offsetof(Table, safeenv)));
build.cbz(tempw, getTargetLabel(inst.a, fresh));
finalizeTargetLabel(inst.a, fresh);
break;
}
case IrCmd::CHECK_ARRAY_SIZE:
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
Label& fail = getTargetLabel(inst.c, fresh);
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldr(temp, mem(regOp(inst.a), offsetof(Table, sizearray)));
if (inst.b.kind == IrOpKind::Inst)
{
build.cmp(temp, regOp(inst.b));
build.b(ConditionA64::UnsignedLessEqual, fail);
}
else if (inst.b.kind == IrOpKind::Constant)
{
if (intOp(inst.b) == 0)
{
build.cbz(temp, fail);
}
else if (size_t(intOp(inst.b)) <= AssemblyBuilderA64::kMaxImmediate)
{
build.cmp(temp, uint16_t(intOp(inst.b)));
build.b(ConditionA64::UnsignedLessEqual, fail);
}
else
{
RegisterA64 temp2 = regs.allocTemp(KindA64::w);
build.mov(temp2, intOp(inst.b));
build.cmp(temp, temp2);
build.b(ConditionA64::UnsignedLessEqual, fail);
}
}
else
CODEGEN_ASSERT(!"Unsupported instruction form");
finalizeTargetLabel(inst.c, fresh);
break;
}
case IrCmd::JUMP_SLOT_MATCH:
case IrCmd::CHECK_SLOT_MATCH:
{
Label abort; // used when guard aborts execution
const IrOp& mismatchOp = inst.cmd == IrCmd::JUMP_SLOT_MATCH ? inst.d : inst.c;
Label& mismatch = mismatchOp.kind == IrOpKind::Undef ? abort : labelOp(mismatchOp);
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp1w = castReg(KindA64::w, temp1);
RegisterA64 temp2 = regs.allocTemp(KindA64::x);
CODEGEN_ASSERT(offsetof(LuaNode, key.value) == offsetof(LuaNode, key) && kOffsetOfTKeyTagNext >= 8 && kOffsetOfTKeyTagNext < 16);
build.ldp(temp1, temp2, mem(regOp(inst.a), offsetof(LuaNode, key))); // load key.value into temp1 and key.tt (alongside other bits) into temp2
build.ubfx(temp2, temp2, (kOffsetOfTKeyTagNext - 8) * 8, kTKeyTagBits); // .tt is right before .next, and 8 bytes are skipped by ldp
build.cmp(temp2, LUA_TSTRING);
build.b(ConditionA64::NotEqual, mismatch);
AddressA64 addr = tempAddr(inst.b, offsetof(TValue, value));
build.ldr(temp2, addr);
build.cmp(temp1, temp2);
build.b(ConditionA64::NotEqual, mismatch);
build.ldr(temp1w, mem(regOp(inst.a), offsetof(LuaNode, val.tt)));
CODEGEN_ASSERT(LUA_TNIL == 0);
build.cbz(temp1w, mismatch);
if (inst.cmd == IrCmd::JUMP_SLOT_MATCH)
jumpOrFallthrough(blockOp(inst.c), next);
else if (abort.id)
emitAbort(build, abort);
break;
}
case IrCmd::CHECK_NODE_NO_NEXT:
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldr(temp, mem(regOp(inst.a), offsetof(LuaNode, key) + kOffsetOfTKeyTagNext));
build.lsr(temp, temp, kTKeyTagBits);
build.cbnz(temp, getTargetLabel(inst.b, fresh));
finalizeTargetLabel(inst.b, fresh);
break;
}
case IrCmd::CHECK_NODE_VALUE:
{
Label fresh; // used when guard aborts execution or jumps to a VM exit
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldr(temp, mem(regOp(inst.a), offsetof(LuaNode, val.tt)));
CODEGEN_ASSERT(LUA_TNIL == 0);
build.cbz(temp, getTargetLabel(inst.b, fresh));
finalizeTargetLabel(inst.b, fresh);
break;
}
case IrCmd::CHECK_BUFFER_LEN:
{
int accessSize = intOp(inst.c);
CODEGEN_ASSERT(accessSize > 0 && accessSize <= int(AssemblyBuilderA64::kMaxImmediate));
Label fresh; // used when guard aborts execution or jumps to a VM exit
Label& target = getTargetLabel(inst.d, fresh);
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.ldr(temp, mem(regOp(inst.a), offsetof(Buffer, len)));
if (inst.b.kind == IrOpKind::Inst)
{
if (accessSize == 1)
{
// fails if offset >= len
build.cmp(temp, regOp(inst.b));
build.b(ConditionA64::UnsignedLessEqual, target);
}
else
{
// fails if offset + size > len; we compute it as len - offset < size
RegisterA64 tempx = castReg(KindA64::x, temp);
build.sub(tempx, tempx, regOp(inst.b)); // implicit uxtw
build.cmp(tempx, uint16_t(accessSize));
if (DFFlag::LuauCodeGenFixBufferLenCheckA64)
build.b(ConditionA64::Less, target); // note: this is a signed 64-bit comparison so that out of bounds offset fails
else
build.b(ConditionA64::LessEqual, target); // note: this is a signed 64-bit comparison so that out of bounds offset fails
}
}
else if (inst.b.kind == IrOpKind::Constant)
{
int offset = intOp(inst.b);
// Constant folding can take care of it, but for safety we avoid overflow/underflow cases here
if (offset < 0 || unsigned(offset) + unsigned(accessSize) >= unsigned(INT_MAX))
{
build.b(target);
}
else if (offset + accessSize <= int(AssemblyBuilderA64::kMaxImmediate))
{
build.cmp(temp, uint16_t(offset + accessSize));
build.b(ConditionA64::UnsignedLessEqual, target);
}
else
{
RegisterA64 temp2 = regs.allocTemp(KindA64::w);
build.mov(temp2, offset + accessSize);
build.cmp(temp, temp2);
build.b(ConditionA64::UnsignedLessEqual, target);
}
}
else
{
CODEGEN_ASSERT(!"Unsupported instruction form");
}
finalizeTargetLabel(inst.d, fresh);
break;
}
case IrCmd::INTERRUPT:
{
regs.spill(build, index);
Label self;
build.ldr(x0, mem(rGlobalState, offsetof(global_State, cb.interrupt)));
build.cbnz(x0, self);
Label next = build.setLabel();
interruptHandlers.push_back({self, uintOp(inst.a), next});
break;
}
case IrCmd::CHECK_GC:
{
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::x);
CODEGEN_ASSERT(offsetof(global_State, totalbytes) == offsetof(global_State, GCthreshold) + 8);
Label skip;
build.ldp(temp1, temp2, mem(rGlobalState, offsetof(global_State, GCthreshold)));
build.cmp(temp1, temp2);
build.b(ConditionA64::UnsignedGreater, skip);
size_t spills = regs.spill(build, index);
build.mov(x0, rState);
build.mov(w1, 1);
build.ldr(x2, mem(rNativeContext, offsetof(NativeContext, luaC_step)));
build.blr(x2);
emitUpdateBase(build);
regs.restore(build, spills); // need to restore before skip so that registers are in a consistent state
build.setLabel(skip);
break;
}
case IrCmd::BARRIER_OBJ:
{
RegisterA64 temp = regs.allocTemp(KindA64::x);
Label skip;
checkObjectBarrierConditions(build, regOp(inst.a), temp, inst.b, inst.c.kind == IrOpKind::Undef ? -1 : tagOp(inst.c), skip);
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
size_t spills = regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.ldr(x2, mem(rBase, vmRegOp(inst.b) * sizeof(TValue) + offsetof(TValue, value)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barrierf)));
build.blr(x3);
regs.restore(build, spills); // need to restore before skip so that registers are in a consistent state
// note: no emitUpdateBase necessary because luaC_ barriers do not reallocate stack
build.setLabel(skip);
break;
}
case IrCmd::BARRIER_TABLE_BACK:
{
Label skip;
RegisterA64 temp = regs.allocTemp(KindA64::w);
// isblack(obj2gco(t))
build.ldrb(temp, mem(regOp(inst.a), offsetof(GCheader, marked)));
build.tbz(temp, BLACKBIT, skip);
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
size_t spills = regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.add(x2, x1, uint16_t(offsetof(Table, gclist)));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barrierback)));
build.blr(x3);
regs.restore(build, spills); // need to restore before skip so that registers are in a consistent state
// note: no emitUpdateBase necessary because luaC_ barriers do not reallocate stack
build.setLabel(skip);
break;
}
case IrCmd::BARRIER_TABLE_FORWARD:
{
RegisterA64 temp = regs.allocTemp(KindA64::x);
Label skip;
checkObjectBarrierConditions(build, regOp(inst.a), temp, inst.b, inst.c.kind == IrOpKind::Undef ? -1 : tagOp(inst.c), skip);
RegisterA64 reg = regOp(inst.a); // note: we need to call regOp before spill so that we don't do redundant reloads
AddressA64 addr = tempAddr(inst.b, offsetof(TValue, value));
size_t spills = regs.spill(build, index, {reg});
build.mov(x1, reg);
build.mov(x0, rState);
build.ldr(x2, addr);
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, luaC_barriertable)));
build.blr(x3);
regs.restore(build, spills); // need to restore before skip so that registers are in a consistent state
// note: no emitUpdateBase necessary because luaC_ barriers do not reallocate stack
build.setLabel(skip);
break;
}
case IrCmd::SET_SAVEDPC:
{
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::x);
emitAddOffset(build, temp1, rCode, uintOp(inst.a) * sizeof(Instruction));
build.ldr(temp2, mem(rState, offsetof(lua_State, ci)));
build.str(temp1, mem(temp2, offsetof(CallInfo, savedpc)));
break;
}
case IrCmd::CLOSE_UPVALS:
{
Label skip;
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::x);
// L->openupval != 0
build.ldr(temp1, mem(rState, offsetof(lua_State, openupval)));
build.cbz(temp1, skip);
// ra <= L->openuval->v
build.ldr(temp1, mem(temp1, offsetof(UpVal, v)));
build.add(temp2, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.cmp(temp2, temp1);
build.b(ConditionA64::UnsignedGreater, skip);
size_t spills = regs.spill(build, index, {temp2});
build.mov(x1, temp2);
build.mov(x0, rState);
build.ldr(x2, mem(rNativeContext, offsetof(NativeContext, luaF_close)));
build.blr(x2);
regs.restore(build, spills); // need to restore before skip so that registers are in a consistent state
build.setLabel(skip);
break;
}
case IrCmd::CAPTURE:
// no-op
break;
case IrCmd::SETLIST:
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeSETLIST), uintOp(inst.a));
break;
case IrCmd::CALL:
regs.spill(build, index);
// argtop = (nparams == LUA_MULTRET) ? L->top : ra + 1 + nparams;
if (intOp(inst.b) == LUA_MULTRET)
build.ldr(x2, mem(rState, offsetof(lua_State, top)));
else
build.add(x2, rBase, uint16_t((vmRegOp(inst.a) + 1 + intOp(inst.b)) * sizeof(TValue)));
// callFallback(L, ra, argtop, nresults)
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.mov(w3, intOp(inst.c));
build.ldr(x4, mem(rNativeContext, offsetof(NativeContext, callFallback)));
build.blr(x4);
emitUpdateBase(build);
// reentry with x0=closure (NULL implies C function; CALL_FALLBACK_YIELD will trigger exit)
build.cbnz(x0, helpers.continueCall);
break;
case IrCmd::RETURN:
regs.spill(build, index);
if (function.variadic)
{
build.ldr(x1, mem(rState, offsetof(lua_State, ci)));
build.ldr(x1, mem(x1, offsetof(CallInfo, func)));
}
else if (intOp(inst.b) != 1)
build.sub(x1, rBase, sizeof(TValue)); // invariant: ci->func + 1 == ci->base for non-variadic frames
if (intOp(inst.b) == 0)
{
build.mov(w2, 0);
build.b(helpers.return_);
}
else if (intOp(inst.b) == 1 && !function.variadic)
{
// fast path: minimizes x1 adjustments
// note that we skipped x1 computation for this specific case above
build.ldr(q0, mem(rBase, vmRegOp(inst.a) * sizeof(TValue)));
build.str(q0, mem(rBase, -int(sizeof(TValue))));
build.mov(x1, rBase);
build.mov(w2, 1);
build.b(helpers.return_);
}
else if (intOp(inst.b) >= 1 && intOp(inst.b) <= 3)
{
for (int r = 0; r < intOp(inst.b); ++r)
{
build.ldr(q0, mem(rBase, (vmRegOp(inst.a) + r) * sizeof(TValue)));
build.str(q0, mem(x1, sizeof(TValue), AddressKindA64::post));
}
build.mov(w2, intOp(inst.b));
build.b(helpers.return_);
}
else
{
build.mov(w2, 0);
// vali = ra
build.add(x3, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
// valend = (n == LUA_MULTRET) ? L->top : ra + n
if (intOp(inst.b) == LUA_MULTRET)
build.ldr(x4, mem(rState, offsetof(lua_State, top)));
else
build.add(x4, rBase, uint16_t((vmRegOp(inst.a) + intOp(inst.b)) * sizeof(TValue)));
Label repeatValueLoop, exitValueLoop;
if (intOp(inst.b) == LUA_MULTRET)
{
build.cmp(x3, x4);
build.b(ConditionA64::CarrySet, exitValueLoop); // CarrySet == UnsignedGreaterEqual
}
build.setLabel(repeatValueLoop);
build.ldr(q0, mem(x3, sizeof(TValue), AddressKindA64::post));
build.str(q0, mem(x1, sizeof(TValue), AddressKindA64::post));
build.add(w2, w2, 1);
build.cmp(x3, x4);
build.b(ConditionA64::CarryClear, repeatValueLoop); // CarryClear == UnsignedLess
build.setLabel(exitValueLoop);
build.b(helpers.return_);
}
break;
case IrCmd::FORGLOOP:
// register layout: ra + 1 = table, ra + 2 = internal index, ra + 3 .. ra + aux = iteration variables
regs.spill(build, index);
// clear extra variables since we might have more than two
if (intOp(inst.b) > 2)
{
CODEGEN_ASSERT(LUA_TNIL == 0);
for (int i = 2; i < intOp(inst.b); ++i)
build.str(wzr, mem(rBase, (vmRegOp(inst.a) + 3 + i) * sizeof(TValue) + offsetof(TValue, tt)));
}
// we use full iter fallback for now; in the future it could be worthwhile to accelerate array iteration here
build.mov(x0, rState);
build.ldr(x1, mem(rBase, (vmRegOp(inst.a) + 1) * sizeof(TValue) + offsetof(TValue, value.gc)));
build.ldr(w2, mem(rBase, (vmRegOp(inst.a) + 2) * sizeof(TValue) + offsetof(TValue, value.p)));
build.add(x3, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.ldr(x4, mem(rNativeContext, offsetof(NativeContext, forgLoopTableIter)));
build.blr(x4);
// note: no emitUpdateBase necessary because forgLoopTableIter does not reallocate stack
build.cbnz(w0, labelOp(inst.c));
jumpOrFallthrough(blockOp(inst.d), next);
break;
case IrCmd::FORGLOOP_FALLBACK:
regs.spill(build, index);
build.mov(x0, rState);
build.mov(w1, vmRegOp(inst.a));
build.mov(w2, intOp(inst.b));
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, forgLoopNonTableFallback)));
build.blr(x3);
emitUpdateBase(build);
build.cbnz(w0, labelOp(inst.c));
jumpOrFallthrough(blockOp(inst.d), next);
break;
case IrCmd::FORGPREP_XNEXT_FALLBACK:
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.b) * sizeof(TValue)));
build.mov(w2, uintOp(inst.a) + 1);
build.ldr(x3, mem(rNativeContext, offsetof(NativeContext, forgPrepXnextFallback)));
build.blr(x3);
// note: no emitUpdateBase necessary because forgLoopNonTableFallback does not reallocate stack
jumpOrFallthrough(blockOp(inst.c), next);
break;
case IrCmd::COVERAGE:
{
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::w);
RegisterA64 temp3 = regs.allocTemp(KindA64::w);
build.mov(temp1, uintOp(inst.a) * sizeof(Instruction));
build.ldr(temp2, mem(rCode, temp1));
// increments E (high 24 bits); if the result overflows a 23-bit counter, high bit becomes 1
// note: cmp can be eliminated with adds but we aren't concerned with code size for coverage
build.add(temp3, temp2, 256);
build.cmp(temp3, 0);
build.csel(temp2, temp2, temp3, ConditionA64::Less);
build.str(temp2, mem(rCode, temp1));
break;
}
// Full instruction fallbacks
case IrCmd::FALLBACK_GETGLOBAL:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.c.kind == IrOpKind::VmConst);
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeGETGLOBAL), uintOp(inst.a));
break;
case IrCmd::FALLBACK_SETGLOBAL:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.c.kind == IrOpKind::VmConst);
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeSETGLOBAL), uintOp(inst.a));
break;
case IrCmd::FALLBACK_GETTABLEKS:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.c.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.d.kind == IrOpKind::VmConst);
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeGETTABLEKS), uintOp(inst.a));
break;
case IrCmd::FALLBACK_SETTABLEKS:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.c.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.d.kind == IrOpKind::VmConst);
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeSETTABLEKS), uintOp(inst.a));
break;
case IrCmd::FALLBACK_NAMECALL:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.c.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.d.kind == IrOpKind::VmConst);
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeNAMECALL), uintOp(inst.a));
break;
case IrCmd::FALLBACK_PREPVARARGS:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::Constant);
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executePREPVARARGS), uintOp(inst.a));
break;
case IrCmd::FALLBACK_GETVARARGS:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.c.kind == IrOpKind::Constant);
regs.spill(build, index);
build.mov(x0, rState);
if (intOp(inst.c) == LUA_MULTRET)
{
emitAddOffset(build, x1, rCode, uintOp(inst.a) * sizeof(Instruction));
build.mov(x2, rBase);
build.mov(w3, vmRegOp(inst.b));
build.ldr(x4, mem(rNativeContext, offsetof(NativeContext, executeGETVARARGSMultRet)));
build.blr(x4);
emitUpdateBase(build);
}
else
{
build.mov(x1, rBase);
build.mov(w2, vmRegOp(inst.b));
build.mov(w3, intOp(inst.c));
build.ldr(x4, mem(rNativeContext, offsetof(NativeContext, executeGETVARARGSConst)));
build.blr(x4);
// note: no emitUpdateBase necessary because executeGETVARARGSConst does not reallocate stack
}
break;
case IrCmd::NEWCLOSURE:
{
RegisterA64 reg = regOp(inst.b); // note: we need to call regOp before spill so that we don't do redundant reloads
regs.spill(build, index, {reg});
build.mov(x2, reg);
build.mov(x0, rState);
build.mov(w1, uintOp(inst.a));
build.ldr(x3, mem(rClosure, offsetof(Closure, l.p)));
build.ldr(x3, mem(x3, offsetof(Proto, p)));
build.ldr(x3, mem(x3, sizeof(Proto*) * uintOp(inst.c)));
build.ldr(x4, mem(rNativeContext, offsetof(NativeContext, luaF_newLclosure)));
build.blr(x4);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::FALLBACK_DUPCLOSURE:
CODEGEN_ASSERT(inst.b.kind == IrOpKind::VmReg);
CODEGEN_ASSERT(inst.c.kind == IrOpKind::VmConst);
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeDUPCLOSURE), uintOp(inst.a));
break;
case IrCmd::FALLBACK_FORGPREP:
regs.spill(build, index);
emitFallback(build, offsetof(NativeContext, executeFORGPREP), uintOp(inst.a));
jumpOrFallthrough(blockOp(inst.c), next);
break;
// Pseudo instructions
case IrCmd::NOP:
case IrCmd::SUBSTITUTE:
CODEGEN_ASSERT(!"Pseudo instructions should not be lowered");
break;
case IrCmd::BITAND_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(unsigned(intOp(inst.b))))
build.and_(inst.regA64, regOp(inst.a), unsigned(intOp(inst.b)));
else
{
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.and_(inst.regA64, temp1, temp2);
}
break;
}
case IrCmd::BITXOR_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(unsigned(intOp(inst.b))))
build.eor(inst.regA64, regOp(inst.a), unsigned(intOp(inst.b)));
else
{
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.eor(inst.regA64, temp1, temp2);
}
break;
}
case IrCmd::BITOR_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant && AssemblyBuilderA64::isMaskSupported(unsigned(intOp(inst.b))))
build.orr(inst.regA64, regOp(inst.a), unsigned(intOp(inst.b)));
else
{
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.orr(inst.regA64, temp1, temp2);
}
break;
}
case IrCmd::BITNOT_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a});
RegisterA64 temp = tempUint(inst.a);
build.mvn_(inst.regA64, temp);
break;
}
case IrCmd::BITLSHIFT_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant)
build.lsl(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.lsl(inst.regA64, temp1, temp2);
}
break;
}
case IrCmd::BITRSHIFT_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant)
build.lsr(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.lsr(inst.regA64, temp1, temp2);
}
break;
}
case IrCmd::BITARSHIFT_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant)
build.asr(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.asr(inst.regA64, temp1, temp2);
}
break;
}
case IrCmd::BITLROTATE_UINT:
{
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant)
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a});
build.ror(inst.regA64, regOp(inst.a), uint8_t((32 - unsigned(intOp(inst.b))) & 31));
}
else
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.b}); // can't reuse a because it would be clobbered by neg
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.neg(inst.regA64, temp2);
build.ror(inst.regA64, temp1, inst.regA64);
}
break;
}
case IrCmd::BITRROTATE_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a, inst.b});
if (inst.a.kind == IrOpKind::Inst && inst.b.kind == IrOpKind::Constant)
build.ror(inst.regA64, regOp(inst.a), uint8_t(unsigned(intOp(inst.b)) & 31));
else
{
RegisterA64 temp1 = tempUint(inst.a);
RegisterA64 temp2 = tempUint(inst.b);
build.ror(inst.regA64, temp1, temp2);
}
break;
}
case IrCmd::BITCOUNTLZ_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a});
RegisterA64 temp = tempUint(inst.a);
build.clz(inst.regA64, temp);
break;
}
case IrCmd::BITCOUNTRZ_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a});
RegisterA64 temp = tempUint(inst.a);
build.rbit(inst.regA64, temp);
build.clz(inst.regA64, inst.regA64);
break;
}
case IrCmd::BYTESWAP_UINT:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.a});
RegisterA64 temp = tempUint(inst.a);
build.rev(inst.regA64, temp);
break;
}
case IrCmd::INVOKE_LIBM:
{
if (inst.c.kind != IrOpKind::None)
{
bool isInt = (inst.c.kind == IrOpKind::Constant) ? constOp(inst.c).kind == IrConstKind::Int
: getCmdValueKind(function.instOp(inst.c).cmd) == IrValueKind::Int;
RegisterA64 temp1 = tempDouble(inst.b);
RegisterA64 temp2 = isInt ? tempInt(inst.c) : tempDouble(inst.c);
RegisterA64 temp3 = isInt ? noreg : regs.allocTemp(KindA64::d); // note: spill() frees all registers so we need to avoid alloc after spill
regs.spill(build, index, {temp1, temp2});
if (isInt)
{
build.fmov(d0, temp1);
build.mov(w0, temp2);
}
else if (d0 != temp2)
{
build.fmov(d0, temp1);
build.fmov(d1, temp2);
}
else
{
build.fmov(temp3, d0);
build.fmov(d0, temp1);
build.fmov(d1, temp3);
}
}
else
{
RegisterA64 temp1 = tempDouble(inst.b);
regs.spill(build, index, {temp1});
build.fmov(d0, temp1);
}
build.ldr(x1, mem(rNativeContext, getNativeContextOffset(uintOp(inst.a))));
build.blr(x1);
inst.regA64 = regs.takeReg(d0, index);
break;
}
case IrCmd::GET_TYPE:
{
inst.regA64 = regs.allocReg(KindA64::x, index);
CODEGEN_ASSERT(sizeof(TString*) == 8);
if (inst.a.kind == IrOpKind::Inst)
build.add(inst.regA64, rGlobalState, regOp(inst.a), 3); // implicit uxtw
else if (inst.a.kind == IrOpKind::Constant)
build.add(inst.regA64, rGlobalState, uint16_t(tagOp(inst.a)) * 8);
else
CODEGEN_ASSERT(!"Unsupported instruction form");
build.ldr(inst.regA64, mem(inst.regA64, offsetof(global_State, ttname)));
break;
}
case IrCmd::GET_TYPEOF:
{
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.ldr(x2, mem(rNativeContext, offsetof(NativeContext, luaT_objtypenamestr)));
build.blr(x2);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::FINDUPVAL:
{
regs.spill(build, index);
build.mov(x0, rState);
build.add(x1, rBase, uint16_t(vmRegOp(inst.a) * sizeof(TValue)));
build.ldr(x2, mem(rNativeContext, offsetof(NativeContext, luaF_findupval)));
build.blr(x2);
inst.regA64 = regs.takeReg(x0, index);
break;
}
case IrCmd::BUFFER_READI8:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.b});
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.ldrsb(inst.regA64, addr);
break;
}
case IrCmd::BUFFER_READU8:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.b});
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.ldrb(inst.regA64, addr);
break;
}
case IrCmd::BUFFER_WRITEI8:
{
RegisterA64 temp = tempInt(inst.c);
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.strb(temp, addr);
break;
}
case IrCmd::BUFFER_READI16:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.b});
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.ldrsh(inst.regA64, addr);
break;
}
case IrCmd::BUFFER_READU16:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.b});
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.ldrh(inst.regA64, addr);
break;
}
case IrCmd::BUFFER_WRITEI16:
{
RegisterA64 temp = tempInt(inst.c);
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.strh(temp, addr);
break;
}
case IrCmd::BUFFER_READI32:
{
inst.regA64 = regs.allocReuse(KindA64::w, index, {inst.b});
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.ldr(inst.regA64, addr);
break;
}
case IrCmd::BUFFER_WRITEI32:
{
RegisterA64 temp = tempInt(inst.c);
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.str(temp, addr);
break;
}
case IrCmd::BUFFER_READF32:
{
inst.regA64 = regs.allocReg(KindA64::d, index);
RegisterA64 temp = castReg(KindA64::s, inst.regA64); // safe to alias a fresh register
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.ldr(temp, addr);
build.fcvt(inst.regA64, temp);
break;
}
case IrCmd::BUFFER_WRITEF32:
{
RegisterA64 temp1 = tempDouble(inst.c);
RegisterA64 temp2 = regs.allocTemp(KindA64::s);
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.fcvt(temp2, temp1);
build.str(temp2, addr);
break;
}
case IrCmd::BUFFER_READF64:
{
inst.regA64 = regs.allocReg(KindA64::d, index);
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.ldr(inst.regA64, addr);
break;
}
case IrCmd::BUFFER_WRITEF64:
{
RegisterA64 temp = tempDouble(inst.c);
AddressA64 addr = tempAddrBuffer(inst.a, inst.b);
build.str(temp, addr);
break;
}
// To handle unsupported instructions, add "case IrCmd::OP" and make sure to set error = true!
}
valueTracker.afterInstLowering(inst, index);
regs.freeLastUseRegs(inst, index);
regs.freeTempRegs();
}
void IrLoweringA64::finishBlock(const IrBlock& curr, const IrBlock& next)
{
if (!regs.spills.empty())
{
// If we have spills remaining, we have to immediately lower the successor block
for (uint32_t predIdx : predecessors(function.cfg, function.getBlockIndex(next)))
CODEGEN_ASSERT(predIdx == function.getBlockIndex(curr));
// And the next block cannot be a join block in cfg
CODEGEN_ASSERT(next.useCount == 1);
}
}
void IrLoweringA64::finishFunction()
{
if (build.logText)
build.logAppend("; interrupt handlers\n");
for (InterruptHandler& handler : interruptHandlers)
{
build.setLabel(handler.self);
build.mov(x0, (handler.pcpos + 1) * sizeof(Instruction));
build.adr(x1, handler.next);
build.b(helpers.interrupt);
}
if (build.logText)
build.logAppend("; exit handlers\n");
for (ExitHandler& handler : exitHandlers)
{
CODEGEN_ASSERT(handler.pcpos != kVmExitEntryGuardPc);
build.setLabel(handler.self);
build.mov(x0, handler.pcpos * sizeof(Instruction));
build.b(helpers.updatePcAndContinueInVm);
}
if (stats)
{
if (error)
stats->loweringErrors++;
if (regs.error)
stats->regAllocErrors++;
}
}
bool IrLoweringA64::hasError() const
{
return error || regs.error;
}
bool IrLoweringA64::isFallthroughBlock(const IrBlock& target, const IrBlock& next)
{
return target.start == next.start;
}
void IrLoweringA64::jumpOrFallthrough(IrBlock& target, const IrBlock& next)
{
if (!isFallthroughBlock(target, next))
build.b(target.label);
}
Label& IrLoweringA64::getTargetLabel(IrOp op, Label& fresh)
{
if (op.kind == IrOpKind::Undef)
return fresh;
if (op.kind == IrOpKind::VmExit)
{
// Special exit case that doesn't have to update pcpos
if (vmExitOp(op) == kVmExitEntryGuardPc)
return helpers.exitContinueVmClearNativeFlag;
if (uint32_t* index = exitHandlerMap.find(vmExitOp(op)))
return exitHandlers[*index].self;
return fresh;
}
return labelOp(op);
}
void IrLoweringA64::finalizeTargetLabel(IrOp op, Label& fresh)
{
if (op.kind == IrOpKind::Undef)
{
emitAbort(build, fresh);
}
else if (op.kind == IrOpKind::VmExit && fresh.id != 0 && fresh.id != helpers.exitContinueVmClearNativeFlag.id)
{
exitHandlerMap[vmExitOp(op)] = uint32_t(exitHandlers.size());
exitHandlers.push_back({fresh, vmExitOp(op)});
}
}
RegisterA64 IrLoweringA64::tempDouble(IrOp op)
{
if (op.kind == IrOpKind::Inst)
return regOp(op);
else if (op.kind == IrOpKind::Constant)
{
double val = doubleOp(op);
if (AssemblyBuilderA64::isFmovSupported(val))
{
RegisterA64 temp = regs.allocTemp(KindA64::d);
build.fmov(temp, val);
return temp;
}
else
{
RegisterA64 temp1 = regs.allocTemp(KindA64::x);
RegisterA64 temp2 = regs.allocTemp(KindA64::d);
uint64_t vali = getDoubleBits(val);
if ((vali << 16) == 0)
{
build.movz(temp1, uint16_t(vali >> 48), 48);
build.fmov(temp2, temp1);
}
else if ((vali << 32) == 0)
{
build.movz(temp1, uint16_t(vali >> 48), 48);
build.movk(temp1, uint16_t(vali >> 32), 32);
build.fmov(temp2, temp1);
}
else
{
build.adr(temp1, val);
build.ldr(temp2, temp1);
}
return temp2;
}
}
else
{
CODEGEN_ASSERT(!"Unsupported instruction form");
return noreg;
}
}
RegisterA64 IrLoweringA64::tempInt(IrOp op)
{
if (op.kind == IrOpKind::Inst)
return regOp(op);
else if (op.kind == IrOpKind::Constant)
{
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.mov(temp, intOp(op));
return temp;
}
else
{
CODEGEN_ASSERT(!"Unsupported instruction form");
return noreg;
}
}
RegisterA64 IrLoweringA64::tempUint(IrOp op)
{
if (op.kind == IrOpKind::Inst)
return regOp(op);
else if (op.kind == IrOpKind::Constant)
{
RegisterA64 temp = regs.allocTemp(KindA64::w);
build.mov(temp, unsigned(intOp(op)));
return temp;
}
else
{
CODEGEN_ASSERT(!"Unsupported instruction form");
return noreg;
}
}
AddressA64 IrLoweringA64::tempAddr(IrOp op, int offset)
{
// This is needed to tighten the bounds checks in the VmConst case below
CODEGEN_ASSERT(offset % 4 == 0);
// Full encoded range is wider depending on the load size, but this assertion helps establish a smaller guaranteed working range [0..4096)
CODEGEN_ASSERT(offset >= 0 && unsigned(offset / 4) <= AssemblyBuilderA64::kMaxImmediate);
if (op.kind == IrOpKind::VmReg)
return mem(rBase, vmRegOp(op) * sizeof(TValue) + offset);
else if (op.kind == IrOpKind::VmConst)
{
size_t constantOffset = vmConstOp(op) * sizeof(TValue) + offset;
// Note: cumulative offset is guaranteed to be divisible by 4; we can use that to expand the useful range that doesn't require temporaries
if (constantOffset / 4 <= AddressA64::kMaxOffset)
return mem(rConstants, int(constantOffset));
RegisterA64 temp = regs.allocTemp(KindA64::x);
emitAddOffset(build, temp, rConstants, constantOffset);
return temp;
}
// If we have a register, we assume it's a pointer to TValue
// We might introduce explicit operand types in the future to make this more robust
else if (op.kind == IrOpKind::Inst)
return mem(regOp(op), offset);
else
{
CODEGEN_ASSERT(!"Unsupported instruction form");
return noreg;
}
}
AddressA64 IrLoweringA64::tempAddrBuffer(IrOp bufferOp, IrOp indexOp)
{
if (indexOp.kind == IrOpKind::Inst)
{
RegisterA64 temp = regs.allocTemp(KindA64::x);
build.add(temp, regOp(bufferOp), regOp(indexOp)); // implicit uxtw
return mem(temp, offsetof(Buffer, data));
}
else if (indexOp.kind == IrOpKind::Constant)
{
// Since the resulting address may be used to load any size, including 1 byte, from an unaligned offset, we are limited by unscaled encoding
if (unsigned(intOp(indexOp)) + offsetof(Buffer, data) <= 255)
return mem(regOp(bufferOp), int(intOp(indexOp) + offsetof(Buffer, data)));
// indexOp can only be negative in dead code (since offsets are checked); this avoids assertion in emitAddOffset
if (intOp(indexOp) < 0)
return mem(regOp(bufferOp), offsetof(Buffer, data));
RegisterA64 temp = regs.allocTemp(KindA64::x);
emitAddOffset(build, temp, regOp(bufferOp), size_t(intOp(indexOp)));
return mem(temp, offsetof(Buffer, data));
}
else
{
CODEGEN_ASSERT(!"Unsupported instruction form");
return noreg;
}
}
RegisterA64 IrLoweringA64::regOp(IrOp op)
{
IrInst& inst = function.instOp(op);
if (inst.spilled || inst.needsReload)
regs.restoreReg(build, inst);
CODEGEN_ASSERT(inst.regA64 != noreg);
return inst.regA64;
}
IrConst IrLoweringA64::constOp(IrOp op) const
{
return function.constOp(op);
}
uint8_t IrLoweringA64::tagOp(IrOp op) const
{
return function.tagOp(op);
}
int IrLoweringA64::intOp(IrOp op) const
{
return function.intOp(op);
}
unsigned IrLoweringA64::uintOp(IrOp op) const
{
return function.uintOp(op);
}
double IrLoweringA64::doubleOp(IrOp op) const
{
return function.doubleOp(op);
}
IrBlock& IrLoweringA64::blockOp(IrOp op) const
{
return function.blockOp(op);
}
Label& IrLoweringA64::labelOp(IrOp op) const
{
return blockOp(op).label;
}
} // namespace A64
} // namespace CodeGen
} // namespace Luau