luau/CodeGen/src/IrBuilder.cpp
Andy Friesen c5089def6e
Sync to upstream/release/563 (#833)
* Fix a bug where reading a property from an unsealed table caused
inference to improperly infer the existence of that property.
* Fix #827

We have also made a lot of progress on the new solver and the JIT. Both
projects are still in the process of being built out. Neither are ready
for general use yet.

We are mostly working to tighten up how the new solver handles
refinements and updates to unsealed tables to bring it up to the same
level as the old solver.

---------

Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-02-10 11:40:38 -08:00

584 lines
16 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/IrBuilder.h"
#include "Luau/Common.h"
#include "Luau/IrAnalysis.h"
#include "Luau/IrUtils.h"
#include "CustomExecUtils.h"
#include "IrTranslation.h"
#include "lapi.h"
namespace Luau
{
namespace CodeGen
{
constexpr unsigned kNoAssociatedBlockIndex = ~0u;
void IrBuilder::buildFunctionIr(Proto* proto)
{
function.proto = proto;
// Rebuild original control flow blocks
rebuildBytecodeBasicBlocks(proto);
function.bcMapping.resize(proto->sizecode, {~0u, 0});
// Translate all instructions to IR inside blocks
for (int i = 0; i < proto->sizecode;)
{
const Instruction* pc = &proto->code[i];
LuauOpcode op = LuauOpcode(LUAU_INSN_OP(*pc));
int nexti = i + getOpLength(op);
LUAU_ASSERT(nexti <= proto->sizecode);
function.bcMapping[i] = {uint32_t(function.instructions.size()), 0};
// Begin new block at this instruction if it was in the bytecode or requested during translation
if (instIndexToBlock[i] != kNoAssociatedBlockIndex)
beginBlock(blockAtInst(i));
// We skip dead bytecode instructions when they appear after block was already terminated
if (!inTerminatedBlock)
translateInst(op, pc, i);
i = nexti;
LUAU_ASSERT(i <= proto->sizecode);
// If we are going into a new block at the next instruction and it's a fallthrough, jump has to be placed to mark block termination
if (i < int(instIndexToBlock.size()) && instIndexToBlock[i] != kNoAssociatedBlockIndex)
{
if (!isBlockTerminator(function.instructions.back().cmd))
inst(IrCmd::JUMP, blockAtInst(i));
}
}
// Now that all has been generated, compute use counts
updateUseCounts(function);
}
void IrBuilder::rebuildBytecodeBasicBlocks(Proto* proto)
{
instIndexToBlock.resize(proto->sizecode, kNoAssociatedBlockIndex);
// Mark jump targets
std::vector<uint8_t> jumpTargets(proto->sizecode, 0);
for (int i = 0; i < proto->sizecode;)
{
const Instruction* pc = &proto->code[i];
LuauOpcode op = LuauOpcode(LUAU_INSN_OP(*pc));
int target = getJumpTarget(*pc, uint32_t(i));
if (target >= 0 && !isFastCall(op))
jumpTargets[target] = true;
i += getOpLength(op);
LUAU_ASSERT(i <= proto->sizecode);
}
// Bytecode blocks are created at bytecode jump targets and the start of a function
jumpTargets[0] = true;
for (int i = 0; i < proto->sizecode; i++)
{
if (jumpTargets[i])
{
IrOp b = block(IrBlockKind::Bytecode);
instIndexToBlock[i] = b.index;
}
}
}
void IrBuilder::translateInst(LuauOpcode op, const Instruction* pc, int i)
{
switch (op)
{
case LOP_NOP:
break;
case LOP_LOADNIL:
translateInstLoadNil(*this, pc);
break;
case LOP_LOADB:
translateInstLoadB(*this, pc, i);
break;
case LOP_LOADN:
translateInstLoadN(*this, pc);
break;
case LOP_LOADK:
translateInstLoadK(*this, pc);
break;
case LOP_LOADKX:
translateInstLoadKX(*this, pc);
break;
case LOP_MOVE:
translateInstMove(*this, pc);
break;
case LOP_GETGLOBAL:
translateInstGetGlobal(*this, pc, i);
break;
case LOP_SETGLOBAL:
translateInstSetGlobal(*this, pc, i);
break;
case LOP_CALL:
inst(IrCmd::LOP_CALL, constUint(i), vmReg(LUAU_INSN_A(*pc)), constInt(LUAU_INSN_B(*pc) - 1), constInt(LUAU_INSN_C(*pc) - 1));
if (activeFastcallFallback)
{
inst(IrCmd::JUMP, fastcallFallbackReturn);
beginBlock(fastcallFallbackReturn);
activeFastcallFallback = false;
}
break;
case LOP_RETURN:
inst(IrCmd::LOP_RETURN, constUint(i), vmReg(LUAU_INSN_A(*pc)), constInt(LUAU_INSN_B(*pc) - 1));
break;
case LOP_GETTABLE:
translateInstGetTable(*this, pc, i);
break;
case LOP_SETTABLE:
translateInstSetTable(*this, pc, i);
break;
case LOP_GETTABLEKS:
translateInstGetTableKS(*this, pc, i);
break;
case LOP_SETTABLEKS:
translateInstSetTableKS(*this, pc, i);
break;
case LOP_GETTABLEN:
translateInstGetTableN(*this, pc, i);
break;
case LOP_SETTABLEN:
translateInstSetTableN(*this, pc, i);
break;
case LOP_JUMP:
translateInstJump(*this, pc, i);
break;
case LOP_JUMPBACK:
translateInstJumpBack(*this, pc, i);
break;
case LOP_JUMPIF:
translateInstJumpIf(*this, pc, i, /* not_ */ false);
break;
case LOP_JUMPIFNOT:
translateInstJumpIf(*this, pc, i, /* not_ */ true);
break;
case LOP_JUMPIFEQ:
translateInstJumpIfEq(*this, pc, i, /* not_ */ false);
break;
case LOP_JUMPIFLE:
translateInstJumpIfCond(*this, pc, i, IrCondition::LessEqual);
break;
case LOP_JUMPIFLT:
translateInstJumpIfCond(*this, pc, i, IrCondition::Less);
break;
case LOP_JUMPIFNOTEQ:
translateInstJumpIfEq(*this, pc, i, /* not_ */ true);
break;
case LOP_JUMPIFNOTLE:
translateInstJumpIfCond(*this, pc, i, IrCondition::NotLessEqual);
break;
case LOP_JUMPIFNOTLT:
translateInstJumpIfCond(*this, pc, i, IrCondition::NotLess);
break;
case LOP_JUMPX:
translateInstJumpX(*this, pc, i);
break;
case LOP_JUMPXEQKNIL:
translateInstJumpxEqNil(*this, pc, i);
break;
case LOP_JUMPXEQKB:
translateInstJumpxEqB(*this, pc, i);
break;
case LOP_JUMPXEQKN:
translateInstJumpxEqN(*this, pc, i);
break;
case LOP_JUMPXEQKS:
translateInstJumpxEqS(*this, pc, i);
break;
case LOP_ADD:
translateInstBinary(*this, pc, i, TM_ADD);
break;
case LOP_SUB:
translateInstBinary(*this, pc, i, TM_SUB);
break;
case LOP_MUL:
translateInstBinary(*this, pc, i, TM_MUL);
break;
case LOP_DIV:
translateInstBinary(*this, pc, i, TM_DIV);
break;
case LOP_MOD:
translateInstBinary(*this, pc, i, TM_MOD);
break;
case LOP_POW:
translateInstBinary(*this, pc, i, TM_POW);
break;
case LOP_ADDK:
translateInstBinaryK(*this, pc, i, TM_ADD);
break;
case LOP_SUBK:
translateInstBinaryK(*this, pc, i, TM_SUB);
break;
case LOP_MULK:
translateInstBinaryK(*this, pc, i, TM_MUL);
break;
case LOP_DIVK:
translateInstBinaryK(*this, pc, i, TM_DIV);
break;
case LOP_MODK:
translateInstBinaryK(*this, pc, i, TM_MOD);
break;
case LOP_POWK:
translateInstBinaryK(*this, pc, i, TM_POW);
break;
case LOP_NOT:
translateInstNot(*this, pc);
break;
case LOP_MINUS:
translateInstMinus(*this, pc, i);
break;
case LOP_LENGTH:
translateInstLength(*this, pc, i);
break;
case LOP_NEWTABLE:
translateInstNewTable(*this, pc, i);
break;
case LOP_DUPTABLE:
translateInstDupTable(*this, pc, i);
break;
case LOP_SETLIST:
inst(IrCmd::LOP_SETLIST, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmReg(LUAU_INSN_A(*pc)), constInt(LUAU_INSN_C(*pc) - 1), constUint(pc[1]));
break;
case LOP_GETUPVAL:
translateInstGetUpval(*this, pc, i);
break;
case LOP_SETUPVAL:
translateInstSetUpval(*this, pc, i);
break;
case LOP_CLOSEUPVALS:
translateInstCloseUpvals(*this, pc);
break;
case LOP_FASTCALL:
{
int skip = LUAU_INSN_C(*pc);
IrOp fallback = block(IrBlockKind::Fallback);
IrOp next = blockAtInst(i + skip + 2);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
inst(IrCmd::LOP_FASTCALL, constUint(i), vmReg(LUAU_INSN_A(call)), constInt(LUAU_INSN_B(call) - 1), fallback);
inst(IrCmd::JUMP, next);
beginBlock(fallback);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
break;
}
case LOP_FASTCALL1:
{
int skip = LUAU_INSN_C(*pc);
IrOp fallback = block(IrBlockKind::Fallback);
IrOp next = blockAtInst(i + skip + 2);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
inst(IrCmd::LOP_FASTCALL1, constUint(i), vmReg(LUAU_INSN_A(call)), vmReg(LUAU_INSN_B(*pc)), fallback);
inst(IrCmd::JUMP, next);
beginBlock(fallback);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
break;
}
case LOP_FASTCALL2:
{
int skip = LUAU_INSN_C(*pc);
IrOp fallback = block(IrBlockKind::Fallback);
IrOp next = blockAtInst(i + skip + 2);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
inst(IrCmd::LOP_FASTCALL2, constUint(i), vmReg(LUAU_INSN_A(call)), vmReg(LUAU_INSN_B(*pc)), vmReg(pc[1]), fallback);
inst(IrCmd::JUMP, next);
beginBlock(fallback);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
break;
}
case LOP_FASTCALL2K:
{
int skip = LUAU_INSN_C(*pc);
IrOp fallback = block(IrBlockKind::Fallback);
IrOp next = blockAtInst(i + skip + 2);
Instruction call = pc[skip + 1];
LUAU_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
inst(IrCmd::LOP_FASTCALL2K, constUint(i), vmReg(LUAU_INSN_A(call)), vmReg(LUAU_INSN_B(*pc)), vmConst(pc[1]), fallback);
inst(IrCmd::JUMP, next);
beginBlock(fallback);
activeFastcallFallback = true;
fastcallFallbackReturn = next;
break;
}
case LOP_FORNPREP:
translateInstForNPrep(*this, pc, i);
break;
case LOP_FORNLOOP:
translateInstForNLoop(*this, pc, i);
break;
case LOP_FORGLOOP:
{
// We have a translation for ipairs-style traversal, general loop iteration is still too complex
if (int(pc[1]) < 0)
{
translateInstForGLoopIpairs(*this, pc, i);
}
else
{
IrOp loopRepeat = blockAtInst(i + 1 + LUAU_INSN_D(*pc));
IrOp loopExit = blockAtInst(i + getOpLength(LOP_FORGLOOP));
IrOp fallback = block(IrBlockKind::Fallback);
inst(IrCmd::LOP_FORGLOOP, constUint(i), loopRepeat, loopExit, fallback);
beginBlock(fallback);
inst(IrCmd::LOP_FORGLOOP_FALLBACK, constUint(i), loopRepeat, loopExit);
beginBlock(loopExit);
}
break;
}
case LOP_FORGPREP_NEXT:
translateInstForGPrepNext(*this, pc, i);
break;
case LOP_FORGPREP_INEXT:
translateInstForGPrepInext(*this, pc, i);
break;
case LOP_AND:
inst(IrCmd::LOP_AND, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmReg(LUAU_INSN_B(*pc)), vmReg(LUAU_INSN_C(*pc)));
break;
case LOP_ANDK:
inst(IrCmd::LOP_ANDK, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmReg(LUAU_INSN_B(*pc)), vmConst(LUAU_INSN_C(*pc)));
break;
case LOP_OR:
inst(IrCmd::LOP_OR, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmReg(LUAU_INSN_B(*pc)), vmReg(LUAU_INSN_C(*pc)));
break;
case LOP_ORK:
inst(IrCmd::LOP_ORK, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmReg(LUAU_INSN_B(*pc)), vmConst(LUAU_INSN_C(*pc)));
break;
case LOP_COVERAGE:
inst(IrCmd::LOP_COVERAGE, constUint(i));
break;
case LOP_GETIMPORT:
translateInstGetImport(*this, pc, i);
break;
case LOP_CONCAT:
translateInstConcat(*this, pc, i);
break;
case LOP_CAPTURE:
translateInstCapture(*this, pc, i);
break;
case LOP_NAMECALL:
{
IrOp next = blockAtInst(i + getOpLength(LOP_NAMECALL));
IrOp fallback = block(IrBlockKind::Fallback);
inst(IrCmd::LOP_NAMECALL, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmReg(LUAU_INSN_B(*pc)), next, fallback);
beginBlock(fallback);
inst(IrCmd::FALLBACK_NAMECALL, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmReg(LUAU_INSN_B(*pc)), vmConst(pc[1]));
inst(IrCmd::JUMP, next);
beginBlock(next);
break;
}
case LOP_PREPVARARGS:
inst(IrCmd::FALLBACK_PREPVARARGS, constUint(i), constInt(LUAU_INSN_A(*pc)));
break;
case LOP_GETVARARGS:
inst(IrCmd::FALLBACK_GETVARARGS, constUint(i), vmReg(LUAU_INSN_A(*pc)), constInt(LUAU_INSN_B(*pc) - 1));
break;
case LOP_NEWCLOSURE:
inst(IrCmd::FALLBACK_NEWCLOSURE, constUint(i), vmReg(LUAU_INSN_A(*pc)), constUint(LUAU_INSN_D(*pc)));
break;
case LOP_DUPCLOSURE:
inst(IrCmd::FALLBACK_DUPCLOSURE, constUint(i), vmReg(LUAU_INSN_A(*pc)), vmConst(LUAU_INSN_D(*pc)));
break;
case LOP_FORGPREP:
{
IrOp loopStart = blockAtInst(i + 1 + LUAU_INSN_D(*pc));
inst(IrCmd::FALLBACK_FORGPREP, constUint(i), vmReg(LUAU_INSN_A(*pc)), loopStart);
break;
}
default:
LUAU_ASSERT(!"unknown instruction");
break;
}
}
bool IrBuilder::isInternalBlock(IrOp block)
{
IrBlock& target = function.blocks[block.index];
return target.kind == IrBlockKind::Internal;
}
void IrBuilder::beginBlock(IrOp block)
{
IrBlock& target = function.blocks[block.index];
LUAU_ASSERT(target.start == ~0u || target.start == uint32_t(function.instructions.size()));
target.start = uint32_t(function.instructions.size());
inTerminatedBlock = false;
}
IrOp IrBuilder::constBool(bool value)
{
IrConst constant;
constant.kind = IrConstKind::Bool;
constant.valueBool = value;
return constAny(constant);
}
IrOp IrBuilder::constInt(int value)
{
IrConst constant;
constant.kind = IrConstKind::Int;
constant.valueInt = value;
return constAny(constant);
}
IrOp IrBuilder::constUint(unsigned value)
{
IrConst constant;
constant.kind = IrConstKind::Uint;
constant.valueUint = value;
return constAny(constant);
}
IrOp IrBuilder::constDouble(double value)
{
IrConst constant;
constant.kind = IrConstKind::Double;
constant.valueDouble = value;
return constAny(constant);
}
IrOp IrBuilder::constTag(uint8_t value)
{
IrConst constant;
constant.kind = IrConstKind::Tag;
constant.valueTag = value;
return constAny(constant);
}
IrOp IrBuilder::constAny(IrConst constant)
{
uint32_t index = uint32_t(function.constants.size());
function.constants.push_back(constant);
return {IrOpKind::Constant, index};
}
IrOp IrBuilder::cond(IrCondition cond)
{
return {IrOpKind::Condition, uint32_t(cond)};
}
IrOp IrBuilder::inst(IrCmd cmd)
{
return inst(cmd, {}, {}, {}, {}, {});
}
IrOp IrBuilder::inst(IrCmd cmd, IrOp a)
{
return inst(cmd, a, {}, {}, {}, {});
}
IrOp IrBuilder::inst(IrCmd cmd, IrOp a, IrOp b)
{
return inst(cmd, a, b, {}, {}, {});
}
IrOp IrBuilder::inst(IrCmd cmd, IrOp a, IrOp b, IrOp c)
{
return inst(cmd, a, b, c, {}, {});
}
IrOp IrBuilder::inst(IrCmd cmd, IrOp a, IrOp b, IrOp c, IrOp d)
{
return inst(cmd, a, b, c, d, {});
}
IrOp IrBuilder::inst(IrCmd cmd, IrOp a, IrOp b, IrOp c, IrOp d, IrOp e)
{
uint32_t index = uint32_t(function.instructions.size());
function.instructions.push_back({cmd, a, b, c, d, e});
if (isBlockTerminator(cmd))
inTerminatedBlock = true;
return {IrOpKind::Inst, index};
}
IrOp IrBuilder::block(IrBlockKind kind)
{
if (kind == IrBlockKind::Internal && activeFastcallFallback)
kind = IrBlockKind::Fallback;
uint32_t index = uint32_t(function.blocks.size());
function.blocks.push_back(IrBlock{kind});
return IrOp{IrOpKind::Block, index};
}
IrOp IrBuilder::blockAtInst(uint32_t index)
{
uint32_t blockIndex = instIndexToBlock[index];
if (blockIndex != kNoAssociatedBlockIndex)
return IrOp{IrOpKind::Block, blockIndex};
return block(IrBlockKind::Internal);
}
IrOp IrBuilder::vmReg(uint8_t index)
{
return {IrOpKind::VmReg, index};
}
IrOp IrBuilder::vmConst(uint32_t index)
{
return {IrOpKind::VmConst, index};
}
IrOp IrBuilder::vmUpvalue(uint8_t index)
{
return {IrOpKind::VmUpvalue, index};
}
} // namespace CodeGen
} // namespace Luau