luau/tests/TypeFunction.test.cpp
2024-08-30 12:28:44 -07:00

1194 lines
36 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/TypeFunction.h"
#include "Luau/ConstraintSolver.h"
#include "Luau/NotNull.h"
#include "Luau/Type.h"
#include "ClassFixture.h"
#include "Fixture.h"
#include "doctest.h"
using namespace Luau;
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAG(LuauUserDefinedTypeFunctions)
LUAU_DYNAMIC_FASTINT(LuauTypeFamilyApplicationCartesianProductLimit)
struct TypeFunctionFixture : Fixture
{
TypeFunction swapFunction;
TypeFunctionFixture()
: Fixture(true, false)
{
swapFunction = TypeFunction{
/* name */ "Swap",
/* reducer */
[](TypeId instance, const std::vector<TypeId>& tys, const std::vector<TypePackId>& tps, NotNull<TypeFunctionContext> ctx
) -> TypeFunctionReductionResult<TypeId>
{
LUAU_ASSERT(tys.size() == 1);
TypeId param = follow(tys.at(0));
if (isString(param))
{
return TypeFunctionReductionResult<TypeId>{ctx->builtins->numberType, false, {}, {}};
}
else if (isNumber(param))
{
return TypeFunctionReductionResult<TypeId>{ctx->builtins->stringType, false, {}, {}};
}
else if (is<BlockedType>(param) || is<PendingExpansionType>(param) || is<TypeFunctionInstanceType>(param) ||
(ctx->solver && ctx->solver->hasUnresolvedConstraints(param)))
{
return TypeFunctionReductionResult<TypeId>{std::nullopt, false, {param}, {}};
}
else
{
return TypeFunctionReductionResult<TypeId>{std::nullopt, true, {}, {}};
}
}
};
unfreeze(frontend.globals.globalTypes);
TypeId t = frontend.globals.globalTypes.addType(GenericType{"T"});
GenericTypeDefinition genericT{t};
ScopePtr globalScope = frontend.globals.globalScope;
globalScope->exportedTypeBindings["Swap"] =
TypeFun{{genericT}, frontend.globals.globalTypes.addType(TypeFunctionInstanceType{NotNull{&swapFunction}, {t}, {}})};
freeze(frontend.globals.globalTypes);
}
};
TEST_SUITE_BEGIN("TypeFunctionTests");
TEST_CASE_FIXTURE(TypeFunctionFixture, "basic_type_function")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type A = Swap<number>
type B = Swap<string>
type C = Swap<boolean>
local x = 123
local y: Swap<typeof(x)> = "foo"
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("string" == toString(requireTypeAlias("A")));
CHECK("number" == toString(requireTypeAlias("B")));
CHECK("Swap<boolean>" == toString(requireTypeAlias("C")));
CHECK("string" == toString(requireType("y")));
CHECK("Type function instance Swap<boolean> is uninhabited" == toString(result.errors[0]));
};
TEST_CASE_FIXTURE(TypeFunctionFixture, "function_as_fn_ret")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local swapper: <T>(T) -> Swap<T>
local a = swapper(123)
local b = swapper("foo")
local c = swapper(false)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("string" == toString(requireType("a")));
CHECK("number" == toString(requireType("b")));
CHECK("Swap<boolean>" == toString(requireType("c")));
CHECK("Type function instance Swap<boolean> is uninhabited" == toString(result.errors[0]));
}
TEST_CASE_FIXTURE(TypeFunctionFixture, "function_as_fn_arg")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local swapper: <T>(Swap<T>) -> T
local a = swapper(123)
local b = swapper(false)
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK("unknown" == toString(requireType("a")));
CHECK("unknown" == toString(requireType("b")));
CHECK("Type 'number' could not be converted into 'never'" == toString(result.errors[0]));
CHECK("Type 'boolean' could not be converted into 'never'" == toString(result.errors[1]));
}
TEST_CASE_FIXTURE(TypeFunctionFixture, "resolve_deep_functions")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local x: Swap<Swap<Swap<string>>>
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("number" == toString(requireType("x")));
}
TEST_CASE_FIXTURE(TypeFunctionFixture, "unsolvable_function")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local impossible: <T>(Swap<T>) -> Swap<Swap<T>>
local a = impossible(123)
local b = impossible(true)
)");
LUAU_REQUIRE_ERROR_COUNT(6, result);
CHECK(toString(result.errors[0]) == "Type function instance Swap<Swap<T>> is uninhabited");
CHECK(toString(result.errors[1]) == "Type function instance Swap<T> is uninhabited");
CHECK(toString(result.errors[2]) == "Type function instance Swap<Swap<T>> is uninhabited");
CHECK(toString(result.errors[3]) == "Type function instance Swap<T> is uninhabited");
CHECK(toString(result.errors[4]) == "Type function instance Swap<Swap<T>> is uninhabited");
CHECK(toString(result.errors[5]) == "Type function instance Swap<T> is uninhabited");
}
TEST_CASE_FIXTURE(TypeFunctionFixture, "table_internal_functions")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local t: <T>({T}) -> {Swap<T>}
local a = t({1, 2, 3})
local b = t({"a", "b", "c"})
local c = t({true, false, true})
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(requireType("a")) == "{string}");
CHECK(toString(requireType("b")) == "{number}");
// FIXME: table types are constructing a trivial union here.
CHECK(toString(requireType("c")) == "{Swap<boolean | boolean | boolean>}");
CHECK(toString(result.errors[0]) == "Type function instance Swap<boolean | boolean | boolean> is uninhabited");
}
TEST_CASE_FIXTURE(TypeFunctionFixture, "function_internal_functions")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local f0: <T>(T) -> (() -> T)
local f: <T>(T) -> (() -> Swap<T>)
local a = f(1)
local b = f("a")
local c = f(true)
local d = f0(1)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(requireType("a")) == "() -> string");
CHECK(toString(requireType("b")) == "() -> number");
CHECK(toString(requireType("c")) == "() -> Swap<boolean>");
CHECK(toString(result.errors[0]) == "Type function instance Swap<boolean> is uninhabited");
}
TEST_CASE_FIXTURE(Fixture, "add_function_at_work")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local function add(a, b)
return a + b
end
local a = add(1, 2)
local b = add(1, "foo")
local c = add("foo", 1)
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(requireType("a")) == "number");
CHECK(toString(requireType("b")) == "add<number, string>");
CHECK(toString(requireType("c")) == "add<string, number>");
CHECK(
toString(result.errors[0]) ==
"Operator '+' could not be applied to operands of types number and string; there is no corresponding overload for __add"
);
CHECK(
toString(result.errors[1]) ==
"Operator '+' could not be applied to operands of types string and number; there is no corresponding overload for __add"
);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "cyclic_add_function_at_work")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type T = add<number | T, number>
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireTypeAlias("T")) == "number");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "mul_function_with_union_of_multiplicatives")
{
if (!FFlag::LuauSolverV2)
return;
loadDefinition(R"(
declare class Vec2
function __mul(self, rhs: number): Vec2
end
declare class Vec3
function __mul(self, rhs: number): Vec3
end
)");
CheckResult result = check(R"(
type T = mul<Vec2 | Vec3, number>
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireTypeAlias("T")) == "Vec2 | Vec3");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "mul_function_with_union_of_multiplicatives_2")
{
if (!FFlag::LuauSolverV2)
return;
loadDefinition(R"(
declare class Vec3
function __mul(self, rhs: number): Vec3
function __mul(self, rhs: Vec3): Vec3
end
)");
CheckResult result = check(R"(
type T = mul<number | Vec3, Vec3>
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireTypeAlias("T")) == "Vec3");
}
TEST_CASE_FIXTURE(Fixture, "internal_functions_raise_errors")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local function innerSum(a, b)
local _ = a + b
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(
toString(result.errors[0]) ==
"Operator '+' could not be applied to operands of types unknown and unknown; there is no corresponding overload for __add"
);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "type_functions_can_be_shadowed")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type add<T> = string -- shadow add
-- this should be ok
function hi(f: add<unknown>)
return string.format("hi %s", f)
end
-- this should still work totally fine (and use the real type function)
function plus(a, b)
return a + b
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("hi")) == "(string) -> string");
CHECK(toString(requireType("plus")) == "<a, b>(a, b) -> add<a, b>");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "type_functions_inhabited_with_normalization")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local useGridConfig : any
local columns = useGridConfig("columns", {}) or 1
local gutter = useGridConfig('gutter', {}) or 0
local margin = useGridConfig('margin', {}) or 0
return function(frameAbsoluteWidth: number)
local cellAbsoluteWidth = (frameAbsoluteWidth - 2 * margin + gutter) / columns - gutter
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_type_function_works")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = { x: number, y: number, z: number }
type KeysOfMyObject = keyof<MyObject>
local function ok(idx: KeysOfMyObject): "x" | "y" | "z" return idx end
local function err(idx: KeysOfMyObject): "x" | "y" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"x\" | \"y\"", toString(tpm->wantedTp));
CHECK_EQ("\"x\" | \"y\" | \"z\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_type_function_works_with_metatables")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local metatable = { __index = {w = 1} }
local obj = setmetatable({x = 1, y = 2, z = 3}, metatable)
type MyObject = typeof(obj)
type KeysOfMyObject = keyof<MyObject>
local function ok(idx: KeysOfMyObject): "w" | "x" | "y" | "z" return idx end
local function err(idx: KeysOfMyObject): "x" | "y" | "z" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"x\" | \"y\" | \"z\"", toString(tpm->wantedTp));
CHECK_EQ("\"w\" | \"x\" | \"y\" | \"z\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_type_function_errors_if_it_has_nontable_part")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = { x: number, y: number, z: number }
type KeysOfMyObject = keyof<MyObject | boolean>
local function err(idx: KeysOfMyObject): "x" | "y" | "z" return idx end
)");
// FIXME(CLI-95289): we should actually only report the type function being uninhabited error at its first use, I think?
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Type 'MyObject | boolean' does not have keys, so 'keyof<MyObject | boolean>' is invalid");
CHECK(toString(result.errors[1]) == "Type 'MyObject | boolean' does not have keys, so 'keyof<MyObject | boolean>' is invalid");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_type_function_string_indexer")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = { x: number, y: number, z: number }
type MyOtherObject = { [string]: number }
type KeysOfMyOtherObject = keyof<MyOtherObject>
type KeysOfMyObjects = keyof<MyObject | MyOtherObject>
local function ok(idx: KeysOfMyOtherObject): "z" return idx end
local function err(idx: KeysOfMyObjects): "z" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"z\"", toString(tpm->wantedTp));
CHECK_EQ("string", toString(tpm->givenTp));
tpm = get<TypePackMismatch>(result.errors[1]);
REQUIRE(tpm);
CHECK_EQ("\"z\"", toString(tpm->wantedTp));
CHECK_EQ("\"x\" | \"y\" | \"z\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_type_function_common_subset_if_union_of_differing_tables")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = { x: number, y: number, z: number }
type MyOtherObject = { w: number, y: number, z: number }
type KeysOfMyObject = keyof<MyObject | MyOtherObject>
local function err(idx: KeysOfMyObject): "z" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"z\"", toString(tpm->wantedTp));
CHECK_EQ("\"y\" | \"z\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_type_function_never_for_empty_table")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type KeyofEmpty = keyof<{}>
local foo = ((nil :: any) :: KeyofEmpty)
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("foo")) == "never");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawkeyof_type_function_works")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = { x: number, y: number, z: number }
type KeysOfMyObject = rawkeyof<MyObject>
local function ok(idx: KeysOfMyObject): "x" | "y" | "z" return idx end
local function err(idx: KeysOfMyObject): "x" | "y" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"x\" | \"y\"", toString(tpm->wantedTp));
CHECK_EQ("\"x\" | \"y\" | \"z\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawkeyof_type_function_ignores_metatables")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local metatable = { __index = {w = 1} }
local obj = setmetatable({x = 1, y = 2, z = 3}, metatable)
type MyObject = typeof(obj)
type KeysOfMyObject = rawkeyof<MyObject>
local function ok(idx: KeysOfMyObject): "x" | "y" | "z" return idx end
local function err(idx: KeysOfMyObject): "x" | "y" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"x\" | \"y\"", toString(tpm->wantedTp));
CHECK_EQ("\"x\" | \"y\" | \"z\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawkeyof_type_function_errors_if_it_has_nontable_part")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = { x: number, y: number, z: number }
type KeysOfMyObject = rawkeyof<MyObject | boolean>
local function err(idx: KeysOfMyObject): "x" | "y" | "z" return idx end
)");
// FIXME(CLI-95289): we should actually only report the type function being uninhabited error at its first use, I think?
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Type 'MyObject | boolean' does not have keys, so 'rawkeyof<MyObject | boolean>' is invalid");
CHECK(toString(result.errors[1]) == "Type 'MyObject | boolean' does not have keys, so 'rawkeyof<MyObject | boolean>' is invalid");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawkeyof_type_function_common_subset_if_union_of_differing_tables")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = { x: number, y: number, z: number }
type MyOtherObject = { w: number, y: number, z: number }
type KeysOfMyObject = rawkeyof<MyObject | MyOtherObject>
local function err(idx: KeysOfMyObject): "z" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"z\"", toString(tpm->wantedTp));
CHECK_EQ("\"y\" | \"z\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawkeyof_type_function_never_for_empty_table")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type RawkeyofEmpty = rawkeyof<{}>
local foo = ((nil :: any) :: RawkeyofEmpty)
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("foo")) == "never");
}
TEST_CASE_FIXTURE(ClassFixture, "keyof_type_function_works_on_classes")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type KeysOfMyObject = keyof<BaseClass>
local function ok(idx: KeysOfMyObject): "BaseMethod" | "BaseField" | "Touched" return idx end
local function err(idx: KeysOfMyObject): "BaseMethod" return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("\"BaseMethod\"", toString(tpm->wantedTp));
CHECK_EQ("\"BaseField\" | \"BaseMethod\" | \"Touched\"", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(ClassFixture, "keyof_type_function_errors_if_it_has_nonclass_part")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type KeysOfMyObject = keyof<BaseClass | boolean>
local function err(idx: KeysOfMyObject): "BaseMethod" | "BaseField" return idx end
)");
// FIXME(CLI-95289): we should actually only report the type function being uninhabited error at its first use, I think?
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Type 'BaseClass | boolean' does not have keys, so 'keyof<BaseClass | boolean>' is invalid");
CHECK(toString(result.errors[1]) == "Type 'BaseClass | boolean' does not have keys, so 'keyof<BaseClass | boolean>' is invalid");
}
TEST_CASE_FIXTURE(ClassFixture, "keyof_type_function_common_subset_if_union_of_differing_classes")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type KeysOfMyObject = keyof<BaseClass | Vector2>
local function ok(idx: KeysOfMyObject): never return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "binary_type_function_works_with_default_argument")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type result = mul<number>
local function thunk(): result return 5 * 4 end
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("() -> number" == toString(requireType("thunk")));
}
TEST_CASE_FIXTURE(ClassFixture, "vector2_multiply_is_overloaded")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local v = Vector2.New(1, 2)
local v2 = v * 1.5
local v3 = v * v
local v4 = v * "Hello" -- line 5
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(5 == result.errors[0].location.begin.line);
CHECK(5 == result.errors[0].location.end.line);
CHECK("Vector2" == toString(requireType("v2")));
CHECK("Vector2" == toString(requireType("v3")));
CHECK("mul<Vector2, string>" == toString(requireType("v4")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_rfc_example")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local animals = {
cat = { speak = function() print "meow" end },
dog = { speak = function() print "woof woof" end },
monkey = { speak = function() print "oo oo" end },
fox = { speak = function() print "gekk gekk" end }
}
type AnimalType = keyof<typeof(animals)>
function speakByType(animal: AnimalType)
animals[animal].speak()
end
speakByType("dog") -- ok
speakByType("cactus") -- errors
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK_EQ("\"cat\" | \"dog\" | \"fox\" | \"monkey\"", toString(tm->wantedType));
CHECK_EQ("\"cactus\"", toString(tm->givenType));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "keyof_oss_crash_gh1161")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local EnumVariants = {
["a"] = 1, ["b"] = 2, ["c"] = 3
}
type EnumKey = keyof<typeof(EnumVariants)>
function fnA<T>(i: T): keyof<T> end
function fnB(i: EnumKey) end
local result = fnA(EnumVariants)
fnB(result)
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(get<ConstraintSolvingIncompleteError>(result.errors[0]));
CHECK(get<FunctionExitsWithoutReturning>(result.errors[1]));
}
TEST_CASE_FIXTURE(TypeFunctionFixture, "fuzzer_numeric_binop_doesnt_assert_on_generalizeFreeType")
{
CheckResult result = check(R"(
Module 'l0':
local _ = (67108864)(_ >= _).insert
do end
do end
_(...,_(_,_(_()),_()))
(67108864)()()
_(_ ~= _ // _,l0)(_(_({n0,})),_(_),_)
_(setmetatable(_,{[...]=_,}))
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "cyclic_concat_function_at_work")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type T = concat<string | T, string>
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireTypeAlias("T")) == "string");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "exceeded_distributivity_limits")
{
if (!FFlag::LuauSolverV2)
return;
ScopedFastInt sfi{DFInt::LuauTypeFamilyApplicationCartesianProductLimit, 10};
loadDefinition(R"(
declare class A
function __mul(self, rhs: unknown): A
end
declare class B
function __mul(self, rhs: unknown): B
end
declare class C
function __mul(self, rhs: unknown): C
end
declare class D
function __mul(self, rhs: unknown): D
end
)");
CheckResult result = check(R"(
type T = mul<A | B | C | D, A | B | C | D>
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(get<UninhabitedTypeFunction>(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "didnt_quite_exceed_distributivity_limits")
{
if (!FFlag::LuauSolverV2)
return;
// We duplicate the test here because we want to make sure the test failed
// due to exceeding the limits specifically, rather than any possible reasons.
ScopedFastInt sfi{DFInt::LuauTypeFamilyApplicationCartesianProductLimit, 20};
loadDefinition(R"(
declare class A
function __mul(self, rhs: unknown): A
end
declare class B
function __mul(self, rhs: unknown): B
end
declare class C
function __mul(self, rhs: unknown): C
end
declare class D
function __mul(self, rhs: unknown): D
end
)");
CheckResult result = check(R"(
type T = mul<A | B | C | D, A | B | C | D>
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "ensure_equivalence_with_distributivity")
{
if (!FFlag::LuauSolverV2)
return;
loadDefinition(R"(
declare class A
function __mul(self, rhs: unknown): A
end
declare class B
function __mul(self, rhs: unknown): B
end
declare class C
function __mul(self, rhs: unknown): C
end
declare class D
function __mul(self, rhs: unknown): D
end
)");
CheckResult result = check(R"(
type T = mul<A | B, C | D>
type U = mul<A, C> | mul<A, D> | mul<B, C> | mul<B, D>
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireTypeAlias("T")) == "A | B");
CHECK(toString(requireTypeAlias("U")) == "A | A | B | B");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "we_shouldnt_warn_that_a_reducible_type_function_is_uninhabited")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local Debounce = false
local Active = false
local function Use(Mode)
if Mode ~= nil then
if Mode == false and Active == false then
return
else
Active = not Mode
end
Debounce = false
end
Active = not Active
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_works")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
type IdxAType = index<MyObject, "a">
type IdxBType = index<MyObject, keyof<MyObject>>
local function ok(idx: IdxAType): string return idx end
local function ok2(idx: IdxBType): string | number | boolean return idx end
local function err(idx: IdxAType): boolean return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("boolean", toString(tpm->wantedTp));
CHECK_EQ("string", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_works_w_array")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local MyObject = {"hello", 1, true}
type IdxAType = index<typeof(MyObject), number>
local function ok(idx: IdxAType): string | number | boolean return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_works_w_generic_types")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local function access<T, K>(tbl: T & {}, key: K): index<T, K>
return tbl[key]
end
local subjects = {
english = "boring",
math = "fun"
}
local key: "english" = "english"
local a: string = access(subjects, key)
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_errors_w_bad_indexer")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
type errType1 = index<MyObject, "d">
type errType2 = index<MyObject, boolean>
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Property '\"d\"' does not exist on type 'MyObject'");
CHECK(toString(result.errors[1]) == "Property 'boolean' does not exist on type 'MyObject'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_errors_w_var_indexer")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
local key = "a"
type errType1 = index<MyObject, key>
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Second argument to index<MyObject, _> is not a valid index type");
CHECK(toString(result.errors[1]) == "Unknown type 'key'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_works_w_union_type_indexer")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
type idxType = index<MyObject, "a" | "b">
local function ok(idx: idxType): string | number return idx end
type errType = index<MyObject, "a" | "d">
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Property '\"a\" | \"d\"' does not exist on type 'MyObject'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_works_w_union_type_indexee")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
type MyObject2 = {a: number}
type idxTypeA = index<MyObject | MyObject2, "a">
local function ok(idx: idxTypeA): string | number return idx end
type errType = index<MyObject | MyObject2, "b">
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Property '\"b\"' does not exist on type 'MyObject | MyObject2'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_rfc_alternative_section")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string}
type MyObject2 = {a: string, b: number}
local function edgeCase(param: MyObject)
type unknownType = index<typeof(param), "b">
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Property '\"b\"' does not exist on type 'MyObject'");
}
TEST_CASE_FIXTURE(ClassFixture, "index_type_function_works_on_classes")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type KeysOfMyObject = index<BaseClass, "BaseField">
local function ok(idx: KeysOfMyObject): number return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_type_function_works_w_index_metatables")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local exampleClass = { Foo = "text", Bar = true }
local exampleClass2 = setmetatable({ Foo = 8 }, { __index = exampleClass })
type exampleTy2 = index<typeof(exampleClass2), "Foo">
local function ok(idx: exampleTy2): number return idx end
local exampleClass3 = setmetatable({ Bar = 5 }, { __index = exampleClass })
type exampleTy3 = index<typeof(exampleClass3), "Foo">
local function ok2(idx: exampleTy3): string return idx end
type exampleTy4 = index<typeof(exampleClass3), "Foo" | "Bar">
local function ok3(idx: exampleTy4): string | number return idx end
type errTy = index<typeof(exampleClass2), "Car">
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Property '\"Car\"' does not exist on type 'exampleClass2'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawget_type_function_works")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
type RawAType = rawget<MyObject, "a">
type RawBType = rawget<MyObject, keyof<MyObject>>
local function ok(idx: RawAType): string return idx end
local function ok2(idx: RawBType): string | number | boolean return idx end
local function err(idx: RawAType): boolean return idx end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypePackMismatch* tpm = get<TypePackMismatch>(result.errors[0]);
REQUIRE(tpm);
CHECK_EQ("boolean", toString(tpm->wantedTp));
CHECK_EQ("string", toString(tpm->givenTp));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawget_type_function_works_w_array")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local MyObject = {"hello", 1, true}
type RawAType = rawget<typeof(MyObject), number>
local function ok(idx: RawAType): string | number | boolean return idx end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawget_type_function_errors_w_var_indexer")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
local key = "a"
type errType1 = rawget<MyObject, key>
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Second argument to rawget<MyObject, _> is not a valid index type");
CHECK(toString(result.errors[1]) == "Unknown type 'key'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawget_type_function_works_w_union_type_indexer")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
type rawType = rawget<MyObject, "a" | "b">
local function ok(idx: rawType): string | number return idx end
type errType = rawget<MyObject, "a" | "d">
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Property '\"a\" | \"d\"' does not exist on type 'MyObject'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawget_type_function_works_w_union_type_indexee")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type MyObject = {a: string, b: number, c: boolean}
type MyObject2 = {a: number}
type rawTypeA = rawget<MyObject | MyObject2, "a">
local function ok(idx: rawTypeA): string | number return idx end
type errType = rawget<MyObject | MyObject2, "b">
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Property '\"b\"' does not exist on type 'MyObject | MyObject2'");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "rawget_type_function_works_w_index_metatables")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local exampleClass = { Foo = "text", Bar = true }
local exampleClass2 = setmetatable({ Foo = 8 }, { __index = exampleClass })
type exampleTy2 = rawget<typeof(exampleClass2), "Foo">
local function ok(idx: exampleTy2): number return idx end
local exampleClass3 = setmetatable({ Bar = 5 }, { __index = exampleClass })
type errType = rawget<typeof(exampleClass3), "Foo">
type errType2 = rawget<typeof(exampleClass3), "Bar" | "Foo">
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Property '\"Foo\"' does not exist on type 'exampleClass3'");
CHECK(toString(result.errors[1]) == "Property '\"Bar\" | \"Foo\"' does not exist on type 'exampleClass3'");
}
TEST_CASE_FIXTURE(ClassFixture, "rawget_type_function_errors_w_classes")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type PropsOfMyObject = rawget<BaseClass, "BaseField">
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Property '\"BaseField\"' does not exist on type 'BaseClass'");
}
TEST_CASE_FIXTURE(Fixture, "user_defined_type_function_errors")
{
if (!FFlag::LuauUserDefinedTypeFunctions)
return;
CheckResult result = check(R"(
type function foo()
return nil
end
)");
LUAU_CHECK_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "This syntax is not supported");
}
TEST_SUITE_END();