mirror of
https://github.com/luau-lang/luau.git
synced 2025-01-07 11:59:11 +00:00
74c84815a0
* Added type normalization
420 lines
21 KiB
Agda
420 lines
21 KiB
Agda
{-# OPTIONS --rewriting #-}
|
||
|
||
module Properties.Subtyping where
|
||
|
||
open import Agda.Builtin.Equality using (_≡_; refl)
|
||
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
|
||
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
||
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
|
||
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; skalar)
|
||
open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥)
|
||
open import Properties.Equality using (_≢_)
|
||
open import Properties.Functions using (_∘_)
|
||
open import Properties.Product using (_×_; _,_)
|
||
|
||
-- Language membership is decidable
|
||
dec-language : ∀ T t → Either (¬Language T t) (Language T t)
|
||
dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ()))
|
||
dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ()))
|
||
dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ()))
|
||
dec-language nil (scalar nil) = Right (scalar nil)
|
||
dec-language nil function = Left (scalar-function nil)
|
||
dec-language nil (function-ok t) = Left (scalar-function-ok nil)
|
||
dec-language nil (function-err t) = Left (scalar-function-err nil)
|
||
dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ()))
|
||
dec-language boolean (scalar boolean) = Right (scalar boolean)
|
||
dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ()))
|
||
dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ()))
|
||
dec-language boolean function = Left (scalar-function boolean)
|
||
dec-language boolean (function-ok t) = Left (scalar-function-ok boolean)
|
||
dec-language boolean (function-err t) = Left (scalar-function-err boolean)
|
||
dec-language number (scalar number) = Right (scalar number)
|
||
dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ()))
|
||
dec-language number (scalar string) = Left (scalar-scalar string number (λ ()))
|
||
dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ()))
|
||
dec-language number function = Left (scalar-function number)
|
||
dec-language number (function-ok t) = Left (scalar-function-ok number)
|
||
dec-language number (function-err t) = Left (scalar-function-err number)
|
||
dec-language string (scalar number) = Left (scalar-scalar number string (λ ()))
|
||
dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ()))
|
||
dec-language string (scalar string) = Right (scalar string)
|
||
dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ()))
|
||
dec-language string function = Left (scalar-function string)
|
||
dec-language string (function-ok t) = Left (scalar-function-ok string)
|
||
dec-language string (function-err t) = Left (scalar-function-err string)
|
||
dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s)
|
||
dec-language (T₁ ⇒ T₂) function = Right function
|
||
dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t)
|
||
dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t))
|
||
dec-language never t = Left never
|
||
dec-language unknown t = Right unknown
|
||
dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t)
|
||
dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t)
|
||
|
||
-- ¬Language T is the complement of Language T
|
||
language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t)
|
||
language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q
|
||
language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q
|
||
language-comp t (left p) (q₁ , q₂) = language-comp t p q₁
|
||
language-comp t (right p) (q₁ , q₂) = language-comp t p q₂
|
||
language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl
|
||
language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function
|
||
language-comp (scalar s) never (scalar ())
|
||
language-comp function (scalar-function ()) function
|
||
language-comp (function-ok t) (scalar-function-ok ()) (function-ok q)
|
||
language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q
|
||
language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p
|
||
|
||
-- ≮: is the complement of <:
|
||
¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U)
|
||
¬≮:-impl-<: {T} {U} p t q with dec-language U t
|
||
¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r))
|
||
¬≮:-impl-<: {T} {U} p t q | Right r = r
|
||
|
||
<:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U)
|
||
<:-impl-¬≮: p (witness t q r) = language-comp t r (p t q)
|
||
|
||
<:-impl-⊇ : ∀ {T U} → (T <: U) → ∀ t → ¬Language U t → ¬Language T t
|
||
<:-impl-⊇ {T} p t q with dec-language T t
|
||
<:-impl-⊇ {_} p t q | Left r = r
|
||
<:-impl-⊇ {_} p t q | Right r = CONTRADICTION (language-comp t q (p t r))
|
||
|
||
-- reflexivity
|
||
≮:-refl : ∀ {T} → ¬(T ≮: T)
|
||
≮:-refl (witness t p q) = language-comp t q p
|
||
|
||
<:-refl : ∀ {T} → (T <: T)
|
||
<:-refl = ¬≮:-impl-<: ≮:-refl
|
||
|
||
-- transititivity
|
||
≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U)
|
||
≮:-trans-≡ p refl = p
|
||
|
||
≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U)
|
||
≡-trans-≮: refl p = p
|
||
|
||
≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U)
|
||
≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t)
|
||
|
||
<:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U)
|
||
<:-trans p q t r = q t (p t r)
|
||
|
||
<:-trans-≮: : ∀ {S T U} → (S <: T) → (S ≮: U) → (T ≮: U)
|
||
<:-trans-≮: p (witness t q r) = witness t (p t q) r
|
||
|
||
≮:-trans-<: : ∀ {S T U} → (S ≮: U) → (T <: U) → (S ≮: T)
|
||
≮:-trans-<: (witness t p q) r = witness t p (<:-impl-⊇ r t q)
|
||
|
||
-- Properties of union
|
||
|
||
<:-union : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∪ S) <: (T ∪ U))
|
||
<:-union p q t (left r) = left (p t r)
|
||
<:-union p q t (right r) = right (q t r)
|
||
|
||
<:-∪-left : ∀ {S T} → S <: (S ∪ T)
|
||
<:-∪-left t p = left p
|
||
|
||
<:-∪-right : ∀ {S T} → T <: (S ∪ T)
|
||
<:-∪-right t p = right p
|
||
|
||
<:-∪-lub : ∀ {S T U} → (S <: U) → (T <: U) → ((S ∪ T) <: U)
|
||
<:-∪-lub p q t (left r) = p t r
|
||
<:-∪-lub p q t (right r) = q t r
|
||
|
||
<:-∪-symm : ∀ {T U} → (T ∪ U) <: (U ∪ T)
|
||
<:-∪-symm t (left p) = right p
|
||
<:-∪-symm t (right p) = left p
|
||
|
||
<:-∪-assocl : ∀ {S T U} → (S ∪ (T ∪ U)) <: ((S ∪ T) ∪ U)
|
||
<:-∪-assocl t (left p) = left (left p)
|
||
<:-∪-assocl t (right (left p)) = left (right p)
|
||
<:-∪-assocl t (right (right p)) = right p
|
||
|
||
<:-∪-assocr : ∀ {S T U} → ((S ∪ T) ∪ U) <: (S ∪ (T ∪ U))
|
||
<:-∪-assocr t (left (left p)) = left p
|
||
<:-∪-assocr t (left (right p)) = right (left p)
|
||
<:-∪-assocr t (right p) = right (right p)
|
||
|
||
≮:-∪-left : ∀ {S T U} → (S ≮: U) → ((S ∪ T) ≮: U)
|
||
≮:-∪-left (witness t p q) = witness t (left p) q
|
||
|
||
≮:-∪-right : ∀ {S T U} → (T ≮: U) → ((S ∪ T) ≮: U)
|
||
≮:-∪-right (witness t p q) = witness t (right p) q
|
||
|
||
-- Properties of intersection
|
||
|
||
<:-intersect : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∩ S) <: (T ∩ U))
|
||
<:-intersect p q t (r₁ , r₂) = (p t r₁ , q t r₂)
|
||
|
||
<:-∩-left : ∀ {S T} → (S ∩ T) <: S
|
||
<:-∩-left t (p , _) = p
|
||
|
||
<:-∩-right : ∀ {S T} → (S ∩ T) <: T
|
||
<:-∩-right t (_ , p) = p
|
||
|
||
<:-∩-glb : ∀ {S T U} → (S <: T) → (S <: U) → (S <: (T ∩ U))
|
||
<:-∩-glb p q t r = (p t r , q t r)
|
||
|
||
<:-∩-symm : ∀ {T U} → (T ∩ U) <: (U ∩ T)
|
||
<:-∩-symm t (p₁ , p₂) = (p₂ , p₁)
|
||
|
||
≮:-∩-left : ∀ {S T U} → (S ≮: T) → (S ≮: (T ∩ U))
|
||
≮:-∩-left (witness t p q) = witness t p (left q)
|
||
|
||
≮:-∩-right : ∀ {S T U} → (S ≮: U) → (S ≮: (T ∩ U))
|
||
≮:-∩-right (witness t p q) = witness t p (right q)
|
||
|
||
-- Distribution properties
|
||
<:-∩-distl-∪ : ∀ {S T U} → (S ∩ (T ∪ U)) <: ((S ∩ T) ∪ (S ∩ U))
|
||
<:-∩-distl-∪ t (p₁ , left p₂) = left (p₁ , p₂)
|
||
<:-∩-distl-∪ t (p₁ , right p₂) = right (p₁ , p₂)
|
||
|
||
∩-distl-∪-<: : ∀ {S T U} → ((S ∩ T) ∪ (S ∩ U)) <: (S ∩ (T ∪ U))
|
||
∩-distl-∪-<: t (left (p₁ , p₂)) = (p₁ , left p₂)
|
||
∩-distl-∪-<: t (right (p₁ , p₂)) = (p₁ , right p₂)
|
||
|
||
<:-∩-distr-∪ : ∀ {S T U} → ((S ∪ T) ∩ U) <: ((S ∩ U) ∪ (T ∩ U))
|
||
<:-∩-distr-∪ t (left p₁ , p₂) = left (p₁ , p₂)
|
||
<:-∩-distr-∪ t (right p₁ , p₂) = right (p₁ , p₂)
|
||
|
||
∩-distr-∪-<: : ∀ {S T U} → ((S ∩ U) ∪ (T ∩ U)) <: ((S ∪ T) ∩ U)
|
||
∩-distr-∪-<: t (left (p₁ , p₂)) = (left p₁ , p₂)
|
||
∩-distr-∪-<: t (right (p₁ , p₂)) = (right p₁ , p₂)
|
||
|
||
<:-∪-distl-∩ : ∀ {S T U} → (S ∪ (T ∩ U)) <: ((S ∪ T) ∩ (S ∪ U))
|
||
<:-∪-distl-∩ t (left p) = (left p , left p)
|
||
<:-∪-distl-∩ t (right (p₁ , p₂)) = (right p₁ , right p₂)
|
||
|
||
∪-distl-∩-<: : ∀ {S T U} → ((S ∪ T) ∩ (S ∪ U)) <: (S ∪ (T ∩ U))
|
||
∪-distl-∩-<: t (left p₁ , p₂) = left p₁
|
||
∪-distl-∩-<: t (right p₁ , left p₂) = left p₂
|
||
∪-distl-∩-<: t (right p₁ , right p₂) = right (p₁ , p₂)
|
||
|
||
<:-∪-distr-∩ : ∀ {S T U} → ((S ∩ T) ∪ U) <: ((S ∪ U) ∩ (T ∪ U))
|
||
<:-∪-distr-∩ t (left (p₁ , p₂)) = left p₁ , left p₂
|
||
<:-∪-distr-∩ t (right p) = (right p , right p)
|
||
|
||
∪-distr-∩-<: : ∀ {S T U} → ((S ∪ U) ∩ (T ∪ U)) <: ((S ∩ T) ∪ U)
|
||
∪-distr-∩-<: t (left p₁ , left p₂) = left (p₁ , p₂)
|
||
∪-distr-∩-<: t (left p₁ , right p₂) = right p₂
|
||
∪-distr-∩-<: t (right p₁ , p₂) = right p₁
|
||
|
||
-- Properties of functions
|
||
<:-function : ∀ {R S T U} → (R <: S) → (T <: U) → (S ⇒ T) <: (R ⇒ U)
|
||
<:-function p q function function = function
|
||
<:-function p q (function-ok t) (function-ok r) = function-ok (q t r)
|
||
<:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r)
|
||
|
||
<:-function-∩-∪ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∪ S) ⇒ (T ∪ U))
|
||
<:-function-∩-∪ function (function , function) = function
|
||
<:-function-∩-∪ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (right p₂)
|
||
<:-function-∩-∪ (function-err _) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂)
|
||
|
||
<:-function-∩ : ∀ {S T U} → ((S ⇒ T) ∩ (S ⇒ U)) <: (S ⇒ (T ∩ U))
|
||
<:-function-∩ function (function , function) = function
|
||
<:-function-∩ (function-ok t) (function-ok p₁ , function-ok p₂) = function-ok (p₁ , p₂)
|
||
<:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂
|
||
|
||
<:-function-∪ : ∀ {R S T U} → ((R ⇒ S) ∪ (T ⇒ U)) <: ((R ∩ T) ⇒ (S ∪ U))
|
||
<:-function-∪ function (left function) = function
|
||
<:-function-∪ (function-ok t) (left (function-ok p)) = function-ok (left p)
|
||
<:-function-∪ (function-err s) (left (function-err p)) = function-err (left p)
|
||
<:-function-∪ (scalar s) (left (scalar ()))
|
||
<:-function-∪ function (right function) = function
|
||
<:-function-∪ (function-ok t) (right (function-ok p)) = function-ok (right p)
|
||
<:-function-∪ (function-err s) (right (function-err x)) = function-err (right x)
|
||
<:-function-∪ (scalar s) (right (scalar ()))
|
||
|
||
<:-function-∪-∩ : ∀ {R S T U} → ((R ∩ S) ⇒ (T ∪ U)) <: ((R ⇒ T) ∪ (S ⇒ U))
|
||
<:-function-∪-∩ function function = left function
|
||
<:-function-∪-∩ (function-ok t) (function-ok (left p)) = left (function-ok p)
|
||
<:-function-∪-∩ (function-ok t) (function-ok (right p)) = right (function-ok p)
|
||
<:-function-∪-∩ (function-err s) (function-err (left p)) = left (function-err p)
|
||
<:-function-∪-∩ (function-err s) (function-err (right p)) = right (function-err p)
|
||
|
||
≮:-function-left : ∀ {R S T U} → (R ≮: S) → (S ⇒ T) ≮: (R ⇒ U)
|
||
≮:-function-left (witness t p q) = witness (function-err t) (function-err q) (function-err p)
|
||
|
||
≮:-function-right : ∀ {R S T U} → (T ≮: U) → (S ⇒ T) ≮: (R ⇒ U)
|
||
≮:-function-right (witness t p q) = witness (function-ok t) (function-ok p) (function-ok q)
|
||
|
||
-- Properties of scalars
|
||
skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t))
|
||
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
|
||
|
||
scalar-<: : ∀ {S T} → (s : Scalar S) → Language T (scalar s) → (S <: T)
|
||
scalar-<: number p (scalar number) (scalar number) = p
|
||
scalar-<: boolean p (scalar boolean) (scalar boolean) = p
|
||
scalar-<: string p (scalar string) (scalar string) = p
|
||
scalar-<: nil p (scalar nil) (scalar nil) = p
|
||
|
||
scalar-∩-function-<:-never : ∀ {S T U} → (Scalar S) → ((T ⇒ U) ∩ S) <: never
|
||
scalar-∩-function-<:-never number .(scalar number) (() , scalar number)
|
||
scalar-∩-function-<:-never boolean .(scalar boolean) (() , scalar boolean)
|
||
scalar-∩-function-<:-never string .(scalar string) (() , scalar string)
|
||
scalar-∩-function-<:-never nil .(scalar nil) (() , scalar nil)
|
||
|
||
function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U)
|
||
function-≮:-scalar s = witness function function (scalar-function s)
|
||
|
||
scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T))
|
||
scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s)
|
||
|
||
unknown-≮:-scalar : ∀ {U} → (Scalar U) → (unknown ≮: U)
|
||
unknown-≮:-scalar s = witness (function-ok (scalar s)) unknown (scalar-function-ok s)
|
||
|
||
scalar-≮:-never : ∀ {U} → (Scalar U) → (U ≮: never)
|
||
scalar-≮:-never s = witness (scalar s) (scalar s) never
|
||
|
||
scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U)
|
||
scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p)
|
||
|
||
scalar-≢-∩-<:-never : ∀ {T U V} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ∩ U) <: V
|
||
scalar-≢-∩-<:-never s t p u (scalar s₁ , scalar s₂) = CONTRADICTION (p refl)
|
||
|
||
skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s))
|
||
skalar-scalar number = left (scalar number)
|
||
skalar-scalar boolean = right (right (right (scalar boolean)))
|
||
skalar-scalar string = right (left (scalar string))
|
||
skalar-scalar nil = right (right (left (scalar nil)))
|
||
|
||
-- Properties of unknown and never
|
||
unknown-≮: : ∀ {T U} → (T ≮: U) → (unknown ≮: U)
|
||
unknown-≮: (witness t p q) = witness t unknown q
|
||
|
||
never-≮: : ∀ {T U} → (T ≮: U) → (T ≮: never)
|
||
never-≮: (witness t p q) = witness t p never
|
||
|
||
unknown-≮:-never : (unknown ≮: never)
|
||
unknown-≮:-never = witness (scalar nil) unknown never
|
||
|
||
function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never)
|
||
function-≮:-never = witness function function never
|
||
|
||
<:-never : ∀ {T} → (never <: T)
|
||
<:-never t (scalar ())
|
||
|
||
≮:-never-left : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: T) → (S ∩ U) ≮: never
|
||
≮:-never-left p (witness t q₁ q₂) with p t q₁
|
||
≮:-never-left p (witness t q₁ q₂) | left r = CONTRADICTION (language-comp t q₂ r)
|
||
≮:-never-left p (witness t q₁ q₂) | right r = witness t (q₁ , r) never
|
||
|
||
≮:-never-right : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: U) → (S ∩ T) ≮: never
|
||
≮:-never-right p (witness t q₁ q₂) with p t q₁
|
||
≮:-never-right p (witness t q₁ q₂) | left r = witness t (q₁ , r) never
|
||
≮:-never-right p (witness t q₁ q₂) | right r = CONTRADICTION (language-comp t q₂ r)
|
||
|
||
<:-unknown : ∀ {T} → (T <: unknown)
|
||
<:-unknown t p = unknown
|
||
|
||
<:-everything : unknown <: ((never ⇒ unknown) ∪ skalar)
|
||
<:-everything (scalar s) p = right (skalar-scalar s)
|
||
<:-everything function p = left function
|
||
<:-everything (function-ok t) p = left (function-ok unknown)
|
||
<:-everything (function-err s) p = left (function-err never)
|
||
|
||
-- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf)
|
||
-- defines a "set-theoretic" model (sec 2.5)
|
||
-- Unfortunately we don't quite have this property, due to uninhabited types,
|
||
-- for example (never -> T) is equivalent to (never -> U)
|
||
-- when types are interpreted as sets of syntactic values.
|
||
|
||
_⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set
|
||
(P ⊆ Q) = ∀ a → (P a) → (Q a)
|
||
|
||
_⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set)
|
||
(P ⊗ Q) (a , b) = (P a) × (Q b)
|
||
|
||
Comp : ∀ {A : Set} → (A → Set) → (A → Set)
|
||
Comp P a = ¬(P a)
|
||
|
||
Lift : ∀ {A : Set} → (A → Set) → (Maybe A → Set)
|
||
Lift P nothing = ⊥
|
||
Lift P (just a) = P a
|
||
|
||
set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} →
|
||
|
||
-- This is the "if" part of being a set-theoretic model
|
||
-- though it uses the definition from Frisch's thesis
|
||
-- rather than from the Gentle Introduction. The difference
|
||
-- being the presence of Lift, (written D_Ω in Defn 4.2 of
|
||
-- https://www.cduce.org/papers/frisch_phd.pdf).
|
||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) →
|
||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂))))
|
||
|
||
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , just u) Qtu (S₂t , ¬T₂u) = q (t , just u) Qtu (S₁t , ¬T₁u) where
|
||
|
||
S₁t : Language S₁ t
|
||
S₁t with dec-language S₁ t
|
||
S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t)
|
||
S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t)
|
||
S₁t | Right r = r
|
||
|
||
¬T₁u : ¬(Language T₁ u)
|
||
¬T₁u T₁u with p (function-ok u) (function-ok T₁u)
|
||
¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u
|
||
|
||
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _) = q (t , nothing) Qt- (S₁t , λ ()) where
|
||
|
||
S₁t : Language S₁ t
|
||
S₁t with dec-language S₁ t
|
||
S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t)
|
||
S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t)
|
||
S₁t | Right r = r
|
||
|
||
not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} →
|
||
|
||
-- We don't quite have that this is a set-theoretic model
|
||
-- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited
|
||
-- in particular it's not true when T₁ is never, or T₂ is unknown.
|
||
∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ →
|
||
|
||
-- This is the "only if" part of being a set-theoretic model
|
||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) →
|
||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂))
|
||
|
||
not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where
|
||
|
||
Q : (Tree × Maybe Tree) → Set
|
||
Q (t , just u) = Either (¬Language S₁ t) (Language T₁ u)
|
||
Q (t , nothing) = ¬Language S₁ t
|
||
|
||
q : Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁)))
|
||
q (t , just u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t
|
||
q (t , just u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u
|
||
q (t , nothing) ¬S₁t (S₁t , _) = language-comp t ¬S₁t S₁t
|
||
|
||
r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)
|
||
r function function = function
|
||
r (function-err s) (function-err ¬S₁s) with dec-language S₂ s
|
||
r (function-err s) (function-err ¬S₁s) | Left ¬S₂s = function-err ¬S₂s
|
||
r (function-err s) (function-err ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ()))
|
||
r (function-ok t) (function-ok T₁t) with dec-language T₂ t
|
||
r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
|
||
r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t
|
||
|
||
-- A counterexample when the argument type is empty.
|
||
|
||
set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language number))) → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language string))))
|
||
set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p)
|
||
|
||
set-theoretic-counterexample-two : (never ⇒ number) ≮: (never ⇒ string)
|
||
set-theoretic-counterexample-two = witness
|
||
(function-ok (scalar number)) (function-ok (scalar number))
|
||
(function-ok (scalar-scalar number string (λ ())))
|
||
|
||
-- At some point we may deal with overloaded function resolution, which should fix this problem...
|
||
-- The reason why this is connected to overloaded functions is that currently we have that the type of
|
||
-- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U),
|
||
-- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V)
|
||
-- and tgt(never => T) should be unknown. For example
|
||
--
|
||
-- tgt((number => string) & (string => bool))(number)
|
||
-- is tgt(number => string)(number) & tgt(string => bool)(number)
|
||
-- is tgt(number => string)(number) & tgt(string => bool)(number&unknown)
|
||
-- is tgt(number => string)(number) & tgt(string&number => bool)(unknown)
|
||
-- is tgt(number => string)(number) & tgt(never => bool)(unknown)
|
||
-- is string & unknown
|
||
-- is string
|
||
--
|
||
-- there's some discussion of this in the Gentle Introduction paper.
|