luau/tests/Autocomplete.test.cpp
Hunter Goldstein a36a3c41cc
Sync to upstream/release/651 (#1513)
### What's New?

* Fragment Autocomplete: a new API allows for type checking a small
fragment of code against an existing file, significantly speeding up
autocomplete performance in large files.

### New Solver

* E-Graphs have landed: this is an ongoing approach to make the new type
solver simplify types in a more consistent and principled manner, based
on similar work (see: https://egraphs-good.github.io/).
* Adds support for exporting / local user type functions (previously
they were always exported).
* Fixes a set of bugs in which the new solver will fail to complete
inference for simple expressions with just literals and operators.

### General Updates
* Requiring a path with a ".lua" or ".luau" extension will now have a
bespoke error suggesting to remove said extension.
* Fixes a bug in which whether two `Luau::Symbol`s are equal depends on
whether the new solver is enabled.

---

Internal Contributors:

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: David Cope <dcope@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-11-08 13:41:45 -08:00

4308 lines
110 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Autocomplete.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/TypeInfer.h"
#include "Luau/Type.h"
#include "Luau/VisitType.h"
#include "Luau/StringUtils.h"
#include "Fixture.h"
#include "ScopedFlags.h"
#include "doctest.h"
#include <map>
LUAU_FASTFLAG(LuauTraceTypesInNonstrictMode2)
LUAU_FASTFLAG(LuauSetMetatableDoesNotTimeTravel)
LUAU_FASTINT(LuauTypeInferRecursionLimit)
using namespace Luau;
static std::optional<AutocompleteEntryMap> nullCallback(std::string tag, std::optional<const ClassType*> ptr, std::optional<std::string> contents)
{
return std::nullopt;
}
template<class BaseType>
struct ACFixtureImpl : BaseType
{
ACFixtureImpl()
: BaseType(true)
{
}
AutocompleteResult autocomplete(unsigned row, unsigned column)
{
FrontendOptions opts;
opts.forAutocomplete = true;
opts.retainFullTypeGraphs = true;
this->frontend.check("MainModule", opts);
return Luau::autocomplete(this->frontend, "MainModule", Position{row, column}, nullCallback);
}
AutocompleteResult autocomplete(char marker, StringCompletionCallback callback = nullCallback)
{
FrontendOptions opts;
opts.forAutocomplete = true;
opts.retainFullTypeGraphs = true;
this->frontend.check("MainModule", opts);
return Luau::autocomplete(this->frontend, "MainModule", getPosition(marker), callback);
}
AutocompleteResult autocomplete(const ModuleName& name, Position pos, StringCompletionCallback callback = nullCallback)
{
FrontendOptions opts;
opts.forAutocomplete = true;
opts.retainFullTypeGraphs = true;
this->frontend.check(name, opts);
return Luau::autocomplete(this->frontend, name, pos, callback);
}
CheckResult check(const std::string& source)
{
markerPosition.clear();
std::string filteredSource;
filteredSource.reserve(source.size());
Position curPos(0, 0);
char prevChar{};
for (char c : source)
{
if (prevChar == '@')
{
LUAU_ASSERT("Illegal marker character" && ((c >= '0' && c <= '9') || (c >= 'A' && c <= 'Z')));
LUAU_ASSERT("Duplicate marker found" && markerPosition.count(c) == 0);
markerPosition.insert(std::pair{c, curPos});
}
else if (c == '@')
{
// skip the '@' character
}
else
{
filteredSource.push_back(c);
if (c == '\n')
{
curPos.line++;
curPos.column = 0;
}
else
{
curPos.column++;
}
}
prevChar = c;
}
LUAU_ASSERT("Digit expected after @ symbol" && prevChar != '@');
return BaseType::check(filteredSource);
}
LoadDefinitionFileResult loadDefinition(const std::string& source)
{
GlobalTypes& globals = this->frontend.globalsForAutocomplete;
unfreeze(globals.globalTypes);
LoadDefinitionFileResult result = this->frontend.loadDefinitionFile(
globals, globals.globalScope, source, "@test", /* captureComments */ false, /* typeCheckForAutocomplete */ true
);
freeze(globals.globalTypes);
if (FFlag::LuauSolverV2)
{
GlobalTypes& globals = this->frontend.globals;
unfreeze(globals.globalTypes);
LoadDefinitionFileResult result = this->frontend.loadDefinitionFile(
globals, globals.globalScope, source, "@test", /* captureComments */ false, /* typeCheckForAutocomplete */ true
);
freeze(globals.globalTypes);
}
REQUIRE_MESSAGE(result.success, "loadDefinition: unable to load definition file");
return result;
}
const Position& getPosition(char marker) const
{
auto i = markerPosition.find(marker);
LUAU_ASSERT(i != markerPosition.end());
return i->second;
}
// Maps a marker character (0-9 inclusive) to a position in the source code.
std::map<char, Position> markerPosition;
};
struct ACFixture : ACFixtureImpl<Fixture>
{
ACFixture()
: ACFixtureImpl<Fixture>()
{
addGlobalBinding(frontend.globals, "table", Binding{builtinTypes->anyType});
addGlobalBinding(frontend.globals, "math", Binding{builtinTypes->anyType});
addGlobalBinding(frontend.globalsForAutocomplete, "table", Binding{builtinTypes->anyType});
addGlobalBinding(frontend.globalsForAutocomplete, "math", Binding{builtinTypes->anyType});
}
};
struct ACBuiltinsFixture : ACFixtureImpl<BuiltinsFixture>
{
};
TEST_SUITE_BEGIN("AutocompleteTest");
TEST_CASE_FIXTURE(ACFixture, "empty_program")
{
check(" @1");
auto ac = autocomplete('1');
CHECK(!ac.entryMap.empty());
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "local_initializer")
{
check("local a = @1");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "leave_numbers_alone")
{
check("local a = 3.@11");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "user_defined_globals")
{
check("local myLocal = 4; @1");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("myLocal"));
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "dont_suggest_local_before_its_definition")
{
check(R"(
local myLocal = 4
function abc()
@1 local myInnerLocal = 1
@2
end
@3 )");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("myLocal"));
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "myInnerLocal");
ac = autocomplete('2');
CHECK(ac.entryMap.count("myLocal"));
CHECK(ac.entryMap.count("myInnerLocal"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("myLocal"));
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "myInnerLocal");
}
TEST_CASE_FIXTURE(ACFixture, "recursive_function")
{
check(R"(
function foo()
@1 end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("foo"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "nested_recursive_function")
{
check(R"(
local function outer()
local function inner()
@1 end
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("inner"));
CHECK(ac.entryMap.count("outer"));
}
TEST_CASE_FIXTURE(ACFixture, "user_defined_local_functions_in_own_definition")
{
check(R"(
local function abc()
@1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("abc"));
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
check(R"(
local abc = function()
@1
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("abc")); // FIXME: This is actually incorrect!
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
}
TEST_CASE_FIXTURE(ACFixture, "global_functions_are_not_scoped_lexically")
{
check(R"(
if true then
function abc()
end
end
@1 )");
auto ac = autocomplete('1');
CHECK(!ac.entryMap.empty());
CHECK(ac.entryMap.count("abc"));
CHECK(ac.entryMap.count("table"));
CHECK(ac.entryMap.count("math"));
}
TEST_CASE_FIXTURE(ACFixture, "local_functions_fall_out_of_scope")
{
check(R"(
if true then
local function abc()
end
end
@1 )");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "abc");
}
TEST_CASE_FIXTURE(ACFixture, "function_parameters")
{
check(R"(
function abc(test)
@1 end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("test"));
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "get_member_completions")
{
check(R"(
local a = table.@1
)");
auto ac = autocomplete('1');
CHECK_EQ(17, ac.entryMap.size());
CHECK(ac.entryMap.count("find"));
CHECK(ac.entryMap.count("pack"));
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "math");
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "nested_member_completions")
{
check(R"(
local tbl = { abc = { def = 1234, egh = false } }
tbl.abc. @1
)");
auto ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("def"));
CHECK(ac.entryMap.count("egh"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "unsealed_table")
{
check(R"(
local tbl = {}
tbl.prop = 5
tbl.@1
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("prop"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "unsealed_table_2")
{
check(R"(
local tbl = {}
local inner = { prop = 5 }
tbl.inner = inner
tbl.inner. @1
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("prop"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "cyclic_table")
{
check(R"(
local abc = {}
local def = { abc = abc }
abc.def = def
abc.def. @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("abc"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "table_union")
{
check(R"(
type t1 = { a1 : string, b2 : number }
type t2 = { b2 : string, c3 : string }
function func(abc : t1 | t2)
abc. @1
end
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("b2"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "table_intersection")
{
check(R"(
type t1 = { a1 : string, b2 : number }
type t2 = { b2 : number, c3 : string }
function func(abc : t1 & t2)
abc. @1
end
)");
auto ac = autocomplete('1');
CHECK_EQ(3, ac.entryMap.size());
CHECK(ac.entryMap.count("a1"));
CHECK(ac.entryMap.count("b2"));
CHECK(ac.entryMap.count("c3"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "get_string_completions")
{
check(R"(
local a = ("foo"):@1
)");
auto ac = autocomplete('1');
CHECK_EQ(17, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "get_suggestions_for_new_statement")
{
check("@1");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "get_suggestions_for_the_very_start_of_the_script")
{
check(R"(@1
function aaa() end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "method_call_inside_function_body")
{
check(R"(
local game = { GetService=function(s) return 'hello' end }
function a()
game: @1
end
)");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "math");
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "method_call_inside_if_conditional")
{
check(R"(
if table: @1
)");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(ac.entryMap.count("concat"));
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "math");
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "statement_between_two_statements")
{
check(R"(
function getmyscripts() end
g@1
getmyscripts()
)");
auto ac = autocomplete('1');
CHECK_NE(0, ac.entryMap.size());
CHECK(ac.entryMap.count("getmyscripts"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "bias_toward_inner_scope")
{
check(R"(
local A = {one=1}
function B()
local A = {two=2}
A @1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("A"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
TypeId t = follow(*ac.entryMap["A"].type);
const TableType* tt = get<TableType>(t);
REQUIRE(tt);
CHECK(tt->props.count("two"));
}
TEST_CASE_FIXTURE(ACFixture, "recommend_statement_starting_keywords")
{
check("@1");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("local"));
CHECK_EQ(ac.context, AutocompleteContext::Statement);
check("local i = @1");
auto ac2 = autocomplete('1');
CHECK(!ac2.entryMap.count("local"));
CHECK_EQ(ac2.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "do_not_overwrite_context_sensitive_kws")
{
check(R"(
local function continue()
end
@1 )");
auto ac = autocomplete('1');
AutocompleteEntry entry = ac.entryMap["continue"];
CHECK(entry.kind == AutocompleteEntryKind::Binding);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_within_a_comment")
{
check(R"(
--!strict
local foo = {}
function foo:bar() end
--[[
foo:@1
]]
)");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_the_end_of_a_comment")
{
check(R"(
--!strict@1
)");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_within_a_broken_comment")
{
check(R"(
--[[ @1
)");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "dont_offer_any_suggestions_from_within_a_broken_comment_at_the_very_end_of_the_file")
{
check("--[[@1");
auto ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
CHECK_EQ(ac.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_for_middle_keywords")
{
check(R"(
for x @1=
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("do"), 0);
CHECK_EQ(ac1.entryMap.count("end"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Unknown);
check(R"(
for x =@1 1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("do"), 0);
CHECK_EQ(ac2.entryMap.count("end"), 0);
CHECK_EQ(ac2.context, AutocompleteContext::Unknown);
check(R"(
for x = 1,@1 2
)");
auto ac3 = autocomplete('1');
CHECK_EQ(1, ac3.entryMap.size());
CHECK_EQ(ac3.entryMap.count("do"), 1);
CHECK_EQ(ac3.context, AutocompleteContext::Keyword);
check(R"(
for x = 1, @12,
)");
auto ac4 = autocomplete('1');
CHECK_EQ(ac4.entryMap.count("do"), 0);
CHECK_EQ(ac4.entryMap.count("end"), 0);
CHECK_EQ(ac4.context, AutocompleteContext::Expression);
check(R"(
for x = 1, 2, @15
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.count("math"), 1);
CHECK_EQ(ac5.entryMap.count("do"), 0);
CHECK_EQ(ac5.entryMap.count("end"), 0);
CHECK_EQ(ac5.context, AutocompleteContext::Expression);
check(R"(
for x = 1, 2, 5 f@1
)");
auto ac6 = autocomplete('1');
CHECK_EQ(ac6.entryMap.size(), 1);
CHECK_EQ(ac6.entryMap.count("do"), 1);
CHECK_EQ(ac6.context, AutocompleteContext::Keyword);
check(R"(
for x = 1, 2, 5 do @1
)");
auto ac7 = autocomplete('1');
CHECK_EQ(ac7.entryMap.count("end"), 1);
CHECK_EQ(ac7.context, AutocompleteContext::Statement);
check(R"(local Foo = 1
for x = @11, @22, @35
)");
for (int i = 0; i < 3; ++i)
{
auto ac8 = autocomplete('1' + i);
CHECK_EQ(ac8.entryMap.count("Foo"), 1);
CHECK_EQ(ac8.entryMap.count("do"), 0);
}
check(R"(local Foo = 1
for x = @11, @22
)");
for (int i = 0; i < 2; ++i)
{
auto ac9 = autocomplete('1' + i);
CHECK_EQ(ac9.entryMap.count("Foo"), 1);
CHECK_EQ(ac9.entryMap.count("do"), 0);
}
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_for_in_middle_keywords")
{
check(R"(
for @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(0, ac1.entryMap.size());
CHECK_EQ(ac1.context, AutocompleteContext::Unknown);
check(R"(
for x@1 @2
)");
auto ac2 = autocomplete('1');
CHECK_EQ(0, ac2.entryMap.size());
CHECK_EQ(ac2.context, AutocompleteContext::Unknown);
auto ac2a = autocomplete('2');
CHECK_EQ(1, ac2a.entryMap.size());
CHECK_EQ(1, ac2a.entryMap.count("in"));
CHECK_EQ(ac2a.context, AutocompleteContext::Keyword);
check(R"(
for x in y@1
)");
auto ac3 = autocomplete('1');
CHECK_EQ(ac3.entryMap.count("table"), 1);
CHECK_EQ(ac3.entryMap.count("do"), 0);
CHECK_EQ(ac3.context, AutocompleteContext::Expression);
check(R"(
for x in y @1
)");
auto ac4 = autocomplete('1');
CHECK_EQ(ac4.entryMap.size(), 1);
CHECK_EQ(ac4.entryMap.count("do"), 1);
CHECK_EQ(ac4.context, AutocompleteContext::Keyword);
check(R"(
for x in f f@1
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.size(), 1);
CHECK_EQ(ac5.entryMap.count("do"), 1);
CHECK_EQ(ac5.context, AutocompleteContext::Keyword);
check(R"(
for x in y do @1
)");
auto ac6 = autocomplete('1');
CHECK_EQ(ac6.entryMap.count("in"), 0);
CHECK_EQ(ac6.entryMap.count("table"), 1);
CHECK_EQ(ac6.entryMap.count("end"), 1);
CHECK_EQ(ac6.entryMap.count("function"), 1);
CHECK_EQ(ac6.context, AutocompleteContext::Statement);
check(R"(
for x in y do e@1
)");
auto ac7 = autocomplete('1');
CHECK_EQ(ac7.entryMap.count("in"), 0);
CHECK_EQ(ac7.entryMap.count("table"), 1);
CHECK_EQ(ac7.entryMap.count("end"), 1);
CHECK_EQ(ac7.entryMap.count("function"), 1);
CHECK_EQ(ac7.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_while_middle_keywords")
{
check(R"(
while@1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("do"), 0);
CHECK_EQ(ac1.entryMap.count("end"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Expression);
check(R"(
while true @1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(3, ac2.entryMap.size());
CHECK_EQ(ac2.entryMap.count("do"), 1);
CHECK_EQ(ac2.entryMap.count("and"), 1);
CHECK_EQ(ac2.entryMap.count("or"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Keyword);
check(R"(
while true do @1
)");
auto ac3 = autocomplete('1');
CHECK_EQ(ac3.entryMap.count("end"), 1);
CHECK_EQ(ac3.context, AutocompleteContext::Statement);
check(R"(
while true d@1
)");
auto ac4 = autocomplete('1');
CHECK_EQ(3, ac4.entryMap.size());
CHECK_EQ(ac4.entryMap.count("do"), 1);
CHECK_EQ(ac4.entryMap.count("and"), 1);
CHECK_EQ(ac4.entryMap.count("or"), 1);
CHECK_EQ(ac4.context, AutocompleteContext::Keyword);
check(R"(
while t@1
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.count("do"), 0);
CHECK_EQ(ac5.entryMap.count("true"), 1);
CHECK_EQ(ac5.entryMap.count("false"), 1);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_if_middle_keywords")
{
check(R"(
if @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("then"), 0);
CHECK_EQ(
ac1.entryMap.count("function"),
1
); // FIXME: This is kind of dumb. It is technically syntactically valid but you can never do anything interesting with this.
CHECK_EQ(ac1.entryMap.count("table"), 1);
CHECK_EQ(ac1.entryMap.count("else"), 0);
CHECK_EQ(ac1.entryMap.count("elseif"), 0);
CHECK_EQ(ac1.entryMap.count("end"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Expression);
check(R"(
if x @1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("then"), 1);
CHECK_EQ(ac2.entryMap.count("function"), 0);
CHECK_EQ(ac2.entryMap.count("else"), 0);
CHECK_EQ(ac2.entryMap.count("elseif"), 0);
CHECK_EQ(ac2.entryMap.count("end"), 0);
CHECK_EQ(ac2.context, AutocompleteContext::Keyword);
check(R"(
if x t@1
)");
auto ac3 = autocomplete('1');
CHECK_EQ(3, ac3.entryMap.size());
CHECK_EQ(ac3.entryMap.count("then"), 1);
CHECK_EQ(ac3.entryMap.count("and"), 1);
CHECK_EQ(ac3.entryMap.count("or"), 1);
CHECK_EQ(ac3.context, AutocompleteContext::Keyword);
check(R"(
if x then
@1
end
)");
auto ac4 = autocomplete('1');
CHECK_EQ(ac4.entryMap.count("then"), 0);
CHECK_EQ(ac4.entryMap.count("else"), 1);
CHECK_EQ(ac4.entryMap.count("function"), 1);
CHECK_EQ(ac4.entryMap.count("elseif"), 1);
CHECK_EQ(ac4.entryMap.count("end"), 0);
CHECK_EQ(ac4.context, AutocompleteContext::Statement);
check(R"(
if x then
t@1
end
)");
auto ac4a = autocomplete('1');
CHECK_EQ(ac4a.entryMap.count("then"), 0);
CHECK_EQ(ac4a.entryMap.count("table"), 1);
CHECK_EQ(ac4a.entryMap.count("else"), 1);
CHECK_EQ(ac4a.entryMap.count("elseif"), 1);
CHECK_EQ(ac4a.context, AutocompleteContext::Statement);
check(R"(
if x then
@1
elseif x then
end
)");
auto ac5 = autocomplete('1');
CHECK_EQ(ac5.entryMap.count("then"), 0);
CHECK_EQ(ac5.entryMap.count("function"), 1);
CHECK_EQ(ac5.entryMap.count("else"), 0);
CHECK_EQ(ac5.entryMap.count("elseif"), 0);
CHECK_EQ(ac5.entryMap.count("end"), 0);
CHECK_EQ(ac5.context, AutocompleteContext::Statement);
check(R"(
if t@1
)");
auto ac6 = autocomplete('1');
CHECK_EQ(ac6.entryMap.count("true"), 1);
CHECK_EQ(ac6.entryMap.count("false"), 1);
CHECK_EQ(ac6.entryMap.count("then"), 0);
CHECK_EQ(ac6.entryMap.count("function"), 1);
CHECK_EQ(ac6.entryMap.count("else"), 0);
CHECK_EQ(ac6.entryMap.count("elseif"), 0);
CHECK_EQ(ac6.entryMap.count("end"), 0);
CHECK_EQ(ac6.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_until_in_repeat")
{
check(R"(
repeat @1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("table"), 1);
CHECK_EQ(ac.entryMap.count("until"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_until_expression")
{
check(R"(
repeat
until @1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("table"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "local_names")
{
check(R"(
local ab@1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.size(), 1);
CHECK_EQ(ac1.entryMap.count("function"), 1);
CHECK_EQ(ac1.context, AutocompleteContext::Unknown);
check(R"(
local ab, cd@1
)");
auto ac2 = autocomplete('1');
CHECK(ac2.entryMap.empty());
CHECK_EQ(ac2.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_end_with_fn_exprs")
{
check(R"(
local function f() @1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("end"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_end_with_lambda")
{
check(R"(
local a = function() local bar = foo en@1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("end"), 1);
CHECK_EQ(ac.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_end_of_do_block")
{
check("do @1");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("end"));
check(R"(
function f()
do
@1
end
@2
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("end"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("end"));
}
TEST_CASE_FIXTURE(ACFixture, "stop_at_first_stat_when_recommending_keywords")
{
check(R"(
repeat
for x @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("in"), 1);
CHECK_EQ(ac1.entryMap.count("until"), 0);
CHECK_EQ(ac1.context, AutocompleteContext::Keyword);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_repeat_middle_keyword")
{
check(R"(
repeat @1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.count("do"), 1);
CHECK_EQ(ac1.entryMap.count("function"), 1);
CHECK_EQ(ac1.entryMap.count("until"), 1);
check(R"(
repeat f f@1
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("function"), 1);
CHECK_EQ(ac2.entryMap.count("until"), 1);
check(R"(
repeat
u@1
until
)");
auto ac3 = autocomplete('1');
CHECK_EQ(ac3.entryMap.count("until"), 0);
}
TEST_CASE_FIXTURE(ACFixture, "local_function")
{
check(R"(
local f@1
)");
auto ac1 = autocomplete('1');
CHECK_EQ(ac1.entryMap.size(), 1);
CHECK_EQ(ac1.entryMap.count("function"), 1);
check(R"(
local f@1, cd
)");
auto ac2 = autocomplete('1');
CHECK(ac2.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "local_function")
{
check(R"(
local function @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local function @1s@2
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
ac = autocomplete('2');
CHECK(ac.entryMap.empty());
check(R"(
local function @1()@2
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
ac = autocomplete('2');
CHECK(ac.entryMap.count("end"));
check(R"(
local function something@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local tbl = {}
function tbl.something@1() end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "local_function_params")
{
check(R"(
local function @1a@2bc(@3d@4ef)@5 @6
)");
CHECK(autocomplete('1').entryMap.empty());
CHECK(autocomplete('2').entryMap.empty());
CHECK(autocomplete('3').entryMap.empty());
CHECK(autocomplete('4').entryMap.empty());
CHECK(!autocomplete('5').entryMap.empty());
CHECK(!autocomplete('6').entryMap.empty());
check(R"(
local function abc(def)
@1 end
)");
for (unsigned int i = 23; i < 31; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete(1, 32).entryMap.empty());
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("abc"), 1);
CHECK_EQ(ac2.entryMap.count("def"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Statement);
check(R"(
local function abc(def, ghi@1)
end
)");
auto ac3 = autocomplete('1');
CHECK(ac3.entryMap.empty());
CHECK_EQ(ac3.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "global_function_params")
{
check(R"(
function abc(def)
)");
for (unsigned int i = 17; i < 25; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete(1, 26).entryMap.empty());
check(R"(
function abc(def)
end
)");
for (unsigned int i = 17; i < 25; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete(1, 26).entryMap.empty());
check(R"(
function abc(def)
@1
end
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("abc"), 1);
CHECK_EQ(ac2.entryMap.count("def"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Statement);
check(R"(
function abc(def, ghi@1)
end
)");
auto ac3 = autocomplete('1');
CHECK(ac3.entryMap.empty());
CHECK_EQ(ac3.context, AutocompleteContext::Unknown);
}
TEST_CASE_FIXTURE(ACFixture, "arguments_to_global_lambda")
{
check(R"(
abc = function(def, ghi@1)
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "function_expr_params")
{
check(R"(
abc = function(def) @1
)");
for (unsigned int i = 20; i < 27; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete('1').entryMap.empty());
check(R"(
abc = function(def) @1
end
)");
for (unsigned int i = 20; i < 27; ++i)
{
CHECK(autocomplete(1, i).entryMap.empty());
}
CHECK(!autocomplete('1').entryMap.empty());
check(R"(
abc = function(def)
@1
end
)");
auto ac2 = autocomplete('1');
CHECK_EQ(ac2.entryMap.count("def"), 1);
CHECK_EQ(ac2.context, AutocompleteContext::Statement);
}
TEST_CASE_FIXTURE(ACFixture, "local_initializer")
{
check(R"(
local a = t@1
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("table"), 1);
CHECK_EQ(ac.entryMap.count("true"), 1);
}
TEST_CASE_FIXTURE(ACFixture, "local_initializer_2")
{
check(R"(
local a=@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
}
TEST_CASE_FIXTURE(ACFixture, "get_member_completions")
{
check(R"(
local a = 12.@13
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "sometimes_the_metatable_is_an_error")
{
check(R"(
local T = {}
T.__index = T
function T.new()
return setmetatable({x=6}, X) -- oops!
end
local t = T.new()
t. @1
)");
autocomplete('1');
// Don't crash!
}
TEST_CASE_FIXTURE(ACFixture, "local_types_builtin")
{
check(R"(
local a: n@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "private_types")
{
check(R"(
do
type num = number
local a: n@1u
local b: nu@2m
end
local a: nu@3
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("num"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("num"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('3');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "num");
CHECK(ac.entryMap.count("number"));
}
TEST_CASE_FIXTURE(ACFixture, "type_scoping_easy")
{
check(R"(
type Table = { a: number, b: number }
do
type Table = { x: string, y: string }
local a: T@1
end
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("Table"));
REQUIRE(ac.entryMap["Table"].type);
const TableType* tv = get<TableType>(follow(*ac.entryMap["Table"].type));
REQUIRE(tv);
CHECK(tv->props.count("x"));
}
TEST_CASE_FIXTURE(ACFixture, "modules_with_types")
{
fileResolver.source["Module/A"] = R"(
export type A = { x: number, y: number }
export type B = { z: number, w: number }
return {}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local aaa = require(script.Parent.A)
local a: aa
)";
frontend.check("Module/B");
auto ac = autocomplete("Module/B", Position{2, 11});
CHECK(ac.entryMap.count("aaa"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "module_type_members")
{
fileResolver.source["Module/A"] = R"(
export type A = { x: number, y: number }
export type B = { z: number, w: number }
return {}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local aaa = require(script.Parent.A)
local a: aaa.
)";
frontend.check("Module/B");
auto ac = autocomplete("Module/B", Position{2, 13});
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("A"));
CHECK(ac.entryMap.count("B"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "argument_types")
{
check(R"(
local function f(a: n@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "return_types")
{
check(R"(
local function f(a: number): n@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "as_types")
{
check(R"(
local a: any = 5
local b: number = (a :: n@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "function_type_types")
{
check(R"(
local a: (n@1
local b: (number, (n@2
local c: (number, (number) -> n@3
local d: (number, (number) -> (number, n@4
local e: (n: n@5
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('4');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
ac = autocomplete('5');
CHECK(ac.entryMap.count("nil"));
CHECK(ac.entryMap.count("number"));
}
TEST_CASE_FIXTURE(ACFixture, "generic_types")
{
check(R"(
function f<Tee, Use>(a: T@1
local b: string = "don't trip"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("Tee"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_suggestion_in_argument")
{
// local
check(R"(
local function target(a: number, b: string) return a + #b end
local one = 4
local two = "hello"
return target(o@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local one = 4
local two = "hello"
return target(one, t@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
// member
check(R"(
local function target(a: number, b: string) return a + #b end
local a = { one = 4, two = "hello" }
return target(a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local a = { one = 4, two = "hello" }
return target(a.one, a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
// union match
check(R"(
local function target(a: string?) return #b end
local a = { one = 4, two = "hello" }
return target(a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_suggestion_in_table")
{
if (FFlag::LuauSolverV2) // CLI-116815 Autocomplete cannot suggest keys while autocompleting inside of a table
return;
check(R"(
type Foo = { a: number, b: string }
local a = { one = 4, two = "hello" }
local b: Foo = { a = a.@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
CHECK_EQ(ac.context, AutocompleteContext::Property);
check(R"(
type Foo = { a: number, b: string }
local a = { one = 4, two = "hello" }
local b: Foo = { b = a.@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("two"));
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::None);
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_function_return_types")
{
check(R"(
local function target(a: number, b: string) return a + #b end
local function bar1(a: number) return -a end
local function bar2(a: string) return a .. 'x' end
return target(b@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar1"));
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local function bar1(a: number) return -a end
local function bar2(a: string) return a .. 'x' end
return target(bar1, b@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("bar2"));
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::None);
check(R"(
local function target(a: number, b: string) return a + #b end
local function bar1(a: number): (...number) return -a, a end
local function bar2(a: string) return a .. 'x' end
return target(b@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("bar1"));
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_local_type_suggestion")
{
check(R"(
local b: s@1 = "str"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function f() return "str" end
local b: s@1 = f()
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: s@1, c: n@2 = "str", 2
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function f() return 1, "str", 3 end
local a: b@1, b: n@2, c: s@3, d: n@4 = false, f()
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("boolean"));
CHECK(ac.entryMap["boolean"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('3');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('4');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function f(): ...number return 1, 2, 3 end
local a: boolean, b: n@1 = false, f()
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_function_type_suggestion")
{
check(R"(
local b: (n@1) -> number = function(a: number, b: string) return a + #b end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number, s@1 = function(a: number, b: string) return a + #b end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number, string) -> b@1 = function(a: number, b: string): boolean return a + #b == 0 end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("boolean"));
CHECK(ac.entryMap["boolean"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number, ...s@1) = function(a: number, ...: string) return a end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: (number) -> ...s@1 = function(a: number): ...string return "a", "b", "c" end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_full_type_suggestion")
{
check(R"(
local b:@1 @2= "str"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local b: @1= function(a: number) return -a end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("(number) -> number"));
CHECK(ac.entryMap["(number) -> number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_argument_type_suggestion")
{
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a: n@1, b)
return target(a, b)
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a, b: s@1)
return target(a, b)
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a:@1 @2, b)
return target(a, b)
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(a: number, b: string) return a + #b end
local function d(a, b: @1)@2: number
return target(a, b)
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_suggestion")
{
check(R"(
local function target(callback: (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: n@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: n@1, b: @2)
return a + #b
end)
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (...number) -> number) return callback(1, 2, 3) end
local x = target(function(a: n@1)
return a
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_pack_suggestion")
{
check(R"(
local function target(callback: (...number) -> number) return callback(1, 2, 3) end
local x = target(function(...:n@1)
return a
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: (...number) -> number) return callback(1, 2, 3) end
local x = target(function(a:number, b:number, ...:@1)
return a + b
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_return_type_suggestion")
{
check(R"(
local function target(callback: () -> number) return callback() end
local x = target(function(): n@1
return 1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: () -> (number, number)) return callback() end
local x = target(function(): (number, n@1
return 1, 2
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_return_type_pack_suggestion")
{
check(R"(
local function target(callback: () -> ...number) return callback() end
local x = target(function(): ...n@1
return 1, 2, 3
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local function target(callback: () -> ...number) return callback() end
local x = target(function(): (number, number, ...n@1
return 1, 2, 3
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_suggestion_optional")
{
check(R"(
local function target(callback: nil | (a: number, b: string) -> number) return callback(4, "hello") end
local x = target(function(a: @1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_expected_argument_type_suggestion_self")
{
check(R"(
local t = {}
t.x = 5
function t:target(callback: (a: number, b: string) -> number) return callback(self.x, "hello") end
local x = t:target(function(a: @1, b:@2 ) end)
local y = t.target(t, function(a: number, b: @3) end)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap["number"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('3');
CHECK(ac.entryMap.count("string"));
CHECK(ac.entryMap["string"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "do_not_suggest_internal_module_type")
{
fileResolver.source["Module/A"] = R"(
type done = { x: number, y: number }
local function a(a: (done) -> number) return a({x=1, y=2}) end
local function b(a: ((done) -> number) -> number) return a(function(done) return 1 end) end
return {a = a, b = b}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local ex = require(script.Parent.A)
ex.a(function(x:
)";
frontend.check("Module/B");
auto ac = autocomplete("Module/B", Position{2, 16});
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "done");
fileResolver.source["Module/C"] = R"(
local ex = require(script.Parent.A)
ex.b(function(x:
)";
frontend.check("Module/C");
ac = autocomplete("Module/C", Position{2, 16});
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "(done) -> number");
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "suggest_external_module_type")
{
fileResolver.source["Module/A"] = R"(
export type done = { x: number, y: number }
local function a(a: (done) -> number) return a({x=1, y=2}) end
local function b(a: ((done) -> number) -> number) return a(function(done) return 1 end) end
return {a = a, b = b}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local ex = require(script.Parent.A)
ex.a(function(x:
)";
frontend.check("Module/B");
auto ac = autocomplete("Module/B", Position{2, 16});
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "done");
CHECK(ac.entryMap.count("ex.done"));
CHECK(ac.entryMap["ex.done"].typeCorrect == TypeCorrectKind::Correct);
fileResolver.source["Module/C"] = R"(
local ex = require(script.Parent.A)
ex.b(function(x:
)";
frontend.check("Module/C");
ac = autocomplete("Module/C", Position{2, 16});
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "(done) -> number");
CHECK(ac.entryMap.count("(ex.done) -> number"));
CHECK(ac.entryMap["(ex.done) -> number"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "do_not_suggest_synthetic_table_name")
{
check(R"(
local foo = { a = 1, b = 2 }
local bar: @1= foo
)");
auto ac = autocomplete('1');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "foo");
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_function_no_parenthesis")
{
check(R"(
local function target(a: (number) -> number) return a(4) end
local function bar1(a: number) return -a end
local function bar2(a: string) return a .. 'x' end
return target(b@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar1"));
CHECK(ac.entryMap["bar1"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["bar1"].parens == ParenthesesRecommendation::None);
CHECK(ac.entryMap["bar2"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "function_in_assignment_has_parentheses")
{
check(R"(
local function bar(a: number) return -a end
local abc = b@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar"));
CHECK(ac.entryMap["bar"].parens == ParenthesesRecommendation::CursorInside);
}
TEST_CASE_FIXTURE(ACFixture, "function_result_passed_to_function_has_parentheses")
{
check(R"(
local function foo() return 1 end
local function bar(a: number) return -a end
local abc = bar(@1)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("foo"));
CHECK(ac.entryMap["foo"].parens == ParenthesesRecommendation::CursorAfter);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_sealed_table")
{
check(R"(
local function f(a: { x: number, y: number }) return a.x + a.y end
local fp: @1= f
)");
auto ac = autocomplete('1');
if (FFlag::LuauSolverV2)
REQUIRE_EQ("({ x: number, y: number }) -> number", toString(requireType("f")));
else
REQUIRE_EQ("({| x: number, y: number |}) -> number", toString(requireType("f")));
CHECK(ac.entryMap.count("({ x: number, y: number }) -> number"));
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_keywords")
{
check(R"(
local function a(x: boolean) end
local function b(x: number?) end
local function c(x: (number) -> string) end
local function d(x: ((number) -> string)?) end
local function e(x: ((number) -> string) & ((boolean) -> number)) end
local tru = {}
local ni = false
local ac = a(t@1)
local bc = b(n@2)
local cc = c(f@3)
local dc = d(f@4)
local ec = e(f@5)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("tru"));
CHECK(ac.entryMap["tru"].typeCorrect == TypeCorrectKind::None);
CHECK(ac.entryMap["true"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["false"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('2');
CHECK(ac.entryMap.count("ni"));
CHECK(ac.entryMap["ni"].typeCorrect == TypeCorrectKind::None);
CHECK(ac.entryMap["nil"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('3');
CHECK(ac.entryMap.count("false"));
CHECK(ac.entryMap["false"].typeCorrect == TypeCorrectKind::None);
CHECK(ac.entryMap["function"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('4');
CHECK(ac.entryMap["function"].typeCorrect == TypeCorrectKind::Correct);
ac = autocomplete('5');
CHECK(ac.entryMap["function"].typeCorrect == TypeCorrectKind::Correct);
}
TEST_CASE_FIXTURE(ACFixture, "type_correct_suggestion_for_overloads")
{
if (FFlag::LuauSolverV2) // CLI-116814 Autocomplete needs to populate expected types for function arguments correctly
// (overloads and singletons)
return;
check(R"(
local target: ((number) -> string) & ((string) -> number))
local one = 4
local two = "hello"
return target(o@1)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::Correct);
check(R"(
local target: ((number) -> string) & ((number) -> number))
local one = 4
local two = "hello"
return target(o@1)
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
check(R"(
local target: ((number, number) -> string) & ((string) -> number))
local one = 4
local two = "hello"
return target(1, o@1)
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("one"));
CHECK(ac.entryMap["one"].typeCorrect == TypeCorrectKind::Correct);
CHECK(ac.entryMap["two"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "optional_members")
{
check(R"(
local a = { x = 2, y = 3 }
type A = typeof(a)
local b: A? = a
return b.@1
)");
auto ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
check(R"(
local a = { x = 2, y = 3 }
type A = typeof(a)
local b: nil | A = a
return b.@1
)");
ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
check(R"(
local b: nil | nil
return b.@1
)");
ac = autocomplete('1');
CHECK_EQ(0, ac.entryMap.size());
}
TEST_CASE_FIXTURE(ACFixture, "no_function_name_suggestions")
{
check(R"(
function na@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local function @1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
check(R"(
local function na@1
)");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
}
TEST_CASE_FIXTURE(ACFixture, "skip_current_local")
{
check(R"(
local other = 1
local name = na@1
)");
auto ac = autocomplete('1');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "name");
CHECK(ac.entryMap.count("other"));
check(R"(
local other = 1
local name, test = na@1
)");
ac = autocomplete('1');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "name");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "test");
CHECK(ac.entryMap.count("other"));
}
TEST_CASE_FIXTURE(ACFixture, "keyword_members")
{
check(R"(
local a = { done = 1, forever = 2 }
local b = a.do@1
local c = a.for@2
local d = a.@3
do
end
)");
auto ac = autocomplete('1');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("forever"));
ac = autocomplete('2');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("forever"));
ac = autocomplete('3');
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("forever"));
}
TEST_CASE_FIXTURE(ACFixture, "keyword_methods")
{
check(R"(
local a = {}
function a:done() end
local b = a:do@1
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
}
TEST_CASE_FIXTURE(ACFixture, "keyword_types")
{
fileResolver.source["Module/A"] = R"(
export type done = { x: number, y: number }
export type other = { z: number, w: number }
return {}
)";
LUAU_REQUIRE_NO_ERRORS(frontend.check("Module/A"));
fileResolver.source["Module/B"] = R"(
local aaa = require(script.Parent.A)
local a: aaa.do
)";
frontend.check("Module/B");
auto ac = autocomplete("Module/B", Position{2, 15});
CHECK_EQ(2, ac.entryMap.size());
CHECK(ac.entryMap.count("done"));
CHECK(ac.entryMap.count("other"));
}
TEST_CASE_FIXTURE(ACFixture, "comments")
{
fileResolver.source["Comments"] = "--!str";
auto ac = autocomplete("Comments", Position{0, 6});
CHECK_EQ(0, ac.entryMap.size());
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "autocompleteProp_index_function_metamethod_is_variadic")
{
fileResolver.source["Module/A"] = R"(
type Foo = {x: number}
local t = {}
setmetatable(t, {
__index = function(index: string): ...Foo
return {x = 1}, {x = 2}
end
})
local a = t. -- Line 9
-- | Column 20
)";
auto ac = autocomplete("Module/A", Position{9, 20});
REQUIRE_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
}
TEST_CASE_FIXTURE(ACFixture, "if_then_else_full_keywords")
{
check(R"(
local thenceforth = false
local elsewhere = false
local doover = false
local endurance = true
if 1 then@1
else@2
end
while false do@3
end
repeat@4
until
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.size() == 1);
CHECK(ac.entryMap.count("then"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("do"));
ac = autocomplete('4');
CHECK(ac.entryMap.count("do"));
// FIXME: ideally we want to handle start and end of all statements as well
}
TEST_CASE_FIXTURE(ACFixture, "if_then_else_elseif_completions")
{
check(R"(
local elsewhere = false
if true then
return 1
el@1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK(ac.entryMap.count("elsewhere") == 0);
check(R"(
local elsewhere = false
if true then
return 1
else
return 2
el@1
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK(ac.entryMap.count("elsewhere"));
check(R"(
local elsewhere = false
if true then
print("1")
elif true then
print("2")
el@1
end
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK(ac.entryMap.count("elsewhere"));
}
TEST_CASE_FIXTURE(ACFixture, "not_the_var_we_are_defining")
{
fileResolver.source["Module/A"] = "abc,de";
auto ac = autocomplete("Module/A", Position{0, 6});
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "de");
}
TEST_CASE_FIXTURE(ACFixture, "recursive_function_global")
{
fileResolver.source["global"] = R"(function abc()
end
)";
auto ac = autocomplete("global", Position{1, 0});
CHECK(ac.entryMap.count("abc"));
}
TEST_CASE_FIXTURE(ACFixture, "recursive_function_local")
{
fileResolver.source["local"] = R"(local function abc()
end
)";
auto ac = autocomplete("local", Position{1, 0});
CHECK(ac.entryMap.count("abc"));
}
TEST_CASE_FIXTURE(ACFixture, "suggest_table_keys")
{
if (FFlag::LuauSolverV2) // CLI-116812 AutocompleteTest.suggest_table_keys needs to populate expected types for nested
// tables without an annotation
return;
check(R"(
type Test = { first: number, second: number }
local t: Test = { f@1 }
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Intersection
check(R"(
type Test = { first: number } & { second: number }
local t: Test = { f@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Union
check(R"(
type Test = { first: number, second: number } | { second: number, third: number }
local t: Test = { s@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("second"));
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "first");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "third");
CHECK_EQ(ac.context, AutocompleteContext::Property);
// No parenthesis suggestion
check(R"(
type Test = { first: (number) -> number, second: number }
local t: Test = { f@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap["first"].parens == ParenthesesRecommendation::None);
CHECK_EQ(ac.context, AutocompleteContext::Property);
// When key is changed
check(R"(
type Test = { first: number, second: number }
local t: Test = { f@1 = 2 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Alternative key syntax
check(R"(
type Test = { first: number, second: number }
local t: Test = { ["f@1"] }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Not an alternative key syntax
check(R"(
type Test = { first: number, second: number }
local t: Test = { "f@1" }
)");
ac = autocomplete('1');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "first");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "second");
CHECK_EQ(ac.context, AutocompleteContext::String);
// Skip keys that are already defined
check(R"(
type Test = { first: number, second: number }
local t: Test = { first = 2, s@1 }
)");
ac = autocomplete('1');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "first");
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Don't skip active key
check(R"(
type Test = { first: number, second: number }
local t: Test = { first@1 }
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
// Inference after first key
check(R"(
local t = {
{ first = 5, second = 10 },
{ f@1 }
}
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
check(R"(
local t = {
[2] = { first = 5, second = 10 },
[5] = { f@1 }
}
)");
ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "suggest_table_keys_no_initial_character")
{
check(R"(
type Test = { first: number, second: number }
local t: Test = { @1 }
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("first"));
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "suggest_table_keys_no_initial_character_2")
{
check(R"(
type Test = { first: number, second: number }
local t: Test = { first = 1, @1 }
)");
auto ac = autocomplete('1');
CHECK_EQ(ac.entryMap.count("first"), 0);
CHECK(ac.entryMap.count("second"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "suggest_table_keys_no_initial_character_3")
{
check(R"(
type Properties = { TextScaled: boolean, Text: string }
local function create(props: Properties) end
create({ @1 })
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.size() > 0);
CHECK(ac.entryMap.count("TextScaled"));
CHECK(ac.entryMap.count("Text"));
CHECK_EQ(ac.context, AutocompleteContext::Property);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_documentation_symbols")
{
loadDefinition(R"(
declare y: {
x: number,
}
)");
check(R"(
local a = y.@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("x"));
CHECK_EQ(ac.entryMap["x"].documentationSymbol, "@test/global/y.x");
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_ifelse_expressions")
{
check(R"(
local temp = false
local even = true;
local a = true
a = if t@1emp then t
a = if temp t@2
a = if temp then e@3
a = if temp then even e@4
a = if temp then even elseif t@5
a = if temp then even elseif true t@6
a = if temp then even elseif true then t@7
a = if temp then even elseif true then temp e@8
a = if temp then even elseif true then temp else e@9
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("temp"));
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
ac = autocomplete('2');
CHECK(ac.entryMap.count("temp") == 0);
CHECK(ac.entryMap.count("true") == 0);
CHECK(ac.entryMap.count("then"));
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
ac = autocomplete('3');
CHECK(ac.entryMap.count("even"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
ac = autocomplete('4');
CHECK(ac.entryMap.count("even") == 0);
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
ac = autocomplete('5');
CHECK(ac.entryMap.count("temp"));
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
ac = autocomplete('6');
CHECK(ac.entryMap.count("temp") == 0);
CHECK(ac.entryMap.count("true") == 0);
CHECK(ac.entryMap.count("then"));
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
ac = autocomplete('7');
CHECK(ac.entryMap.count("temp"));
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
ac = autocomplete('8');
CHECK(ac.entryMap.count("even") == 0);
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else"));
CHECK(ac.entryMap.count("elseif"));
CHECK_EQ(ac.context, AutocompleteContext::Keyword);
ac = autocomplete('9');
CHECK(ac.entryMap.count("then") == 0);
CHECK(ac.entryMap.count("else") == 0);
CHECK(ac.entryMap.count("elseif") == 0);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_if_else_regression")
{
check(R"(
local abcdef = 0;
local temp = false
local even = true;
local a
a = if temp then even else@1
a = if temp then even else @2
a = if temp then even else abc@3
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("else") == 0);
ac = autocomplete('2');
CHECK(ac.entryMap.count("else") == 0);
ac = autocomplete('3');
CHECK(ac.entryMap.count("abcdef"));
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_constant")
{
check(R"(f(`@1`))");
auto ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
check(R"(f(`@1 {"a"}`))");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
check(R"(f(`{"a"} @1`))");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
check(R"(f(`{"a"} @1 {"b"}`))");
ac = autocomplete('1');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_expression")
{
check(R"(f(`expression = {@1}`))");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_expression_with_comments")
{
check(R"(f(`expression = {--[[ bla bla bla ]]@1`))");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
check(R"(f(`expression = {@1 --[[ bla bla bla ]]`))");
ac = autocomplete('1');
CHECK(!ac.entryMap.empty());
CHECK(ac.entryMap.count("table"));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_interpolated_string_as_singleton")
{
check(R"(
--!strict
local function f(a: "cat" | "dog") end
f(`@1`)
f(`uhhh{'try'}@2`)
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("cat"));
CHECK_EQ(ac.context, AutocompleteContext::String);
ac = autocomplete('2');
CHECK(ac.entryMap.empty());
CHECK_EQ(ac.context, AutocompleteContext::String);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_explicit_type_pack")
{
check(R"(
type A<T...> = () -> T...
local a: A<(number, s@1>
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap.count("string"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_first_function_arg_expected_type")
{
check(R"(
local function foo1() return 1 end
local function foo2() return "1" end
local function bar0() return "got" .. a end
local function bar1(a: number) return "got " .. a end
local function bar2(a: number, b: string) return "got " .. a .. b end
local t = {}
function t:bar1(a: number) return "got " .. a end
local r1 = bar0(@1)
local r2 = bar1(@2)
local r3 = bar2(@3)
local r4 = t:bar1(@4)
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::None);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
ac = autocomplete('2');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
ac = autocomplete('3');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
ac = autocomplete('4');
REQUIRE(ac.entryMap.count("foo1"));
CHECK(ac.entryMap["foo1"].typeCorrect == TypeCorrectKind::CorrectFunctionResult);
REQUIRE(ac.entryMap.count("foo2"));
CHECK(ac.entryMap["foo2"].typeCorrect == TypeCorrectKind::None);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_default_type_parameters")
{
check(R"(
type A<T = @1> = () -> T
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap.count("string"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_default_type_pack_parameters")
{
check(R"(
type A<T... = ...@1> = () -> T
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("number"));
CHECK(ac.entryMap.count("string"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "autocomplete_oop_implicit_self")
{
check(R"(
--!strict
local Class = {}
Class.__index = Class
type Class = typeof(setmetatable({} :: { x: number }, Class))
function Class.new(x: number): Class
return setmetatable({x = x}, Class)
end
function Class.getx(self: Class)
return self.x
end
function test()
local c = Class.new(42)
local n = c:@1
print(n)
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("getx"));
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "autocomplete_on_string_singletons")
{
check(R"(
--!strict
local foo: "hello" | "bye" = "hello"
foo:@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("format"));
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_string_singletons")
{
if (FFlag::LuauSolverV2) // CLI-116814 Autocomplete needs to populate expected types for function arguments correctly
// (overloads and singletons)
return;
check(R"(
type tag = "cat" | "dog"
local function f(a: tag) end
f("@1")
f(@2)
local x: tag = "@3"
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
CHECK_EQ(ac.context, AutocompleteContext::String);
ac = autocomplete('2');
CHECK(ac.entryMap.count("\"cat\""));
CHECK(ac.entryMap.count("\"dog\""));
CHECK_EQ(ac.context, AutocompleteContext::Expression);
ac = autocomplete('3');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
CHECK_EQ(ac.context, AutocompleteContext::String);
check(R"(
type tagged = {tag:"cat", fieldx:number} | {tag:"dog", fieldy:number}
local x: tagged = {tag="@4"}
)");
ac = autocomplete('4');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
CHECK_EQ(ac.context, AutocompleteContext::String);
}
TEST_CASE_FIXTURE(ACFixture, "string_singleton_as_table_key")
{
check(R"(
type Direction = "up" | "down"
local a: {[Direction]: boolean} = {[@1] = true}
local b: {[Direction]: boolean} = {["@2"] = true}
local c: {[Direction]: boolean} = {u@3 = true}
local d: {[Direction]: boolean} = {[u@4] = true}
local e: {[Direction]: boolean} = {[@5]}
local f: {[Direction]: boolean} = {["@6"]}
local g: {[Direction]: boolean} = {u@7}
local h: {[Direction]: boolean} = {[u@8]}
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
ac = autocomplete('2');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('3');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('4');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "up");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "down");
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
ac = autocomplete('5');
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
ac = autocomplete('6');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('7');
CHECK(ac.entryMap.count("up"));
CHECK(ac.entryMap.count("down"));
ac = autocomplete('8');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "up");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "down");
CHECK(ac.entryMap.count("\"up\""));
CHECK(ac.entryMap.count("\"down\""));
}
// https://github.com/Roblox/luau/issues/858
TEST_CASE_FIXTURE(ACFixture, "string_singleton_in_if_statement")
{
ScopedFastFlag sff[]{
{FFlag::LuauSolverV2, true},
};
check(R"(
--!strict
type Direction = "left" | "right"
local dir: Direction = "left"
if dir == @1"@2"@3 then end
local a: {[Direction]: boolean} = {[@4"@5"@6]}
if dir == @7`@8`@9 then end
local a: {[Direction]: boolean} = {[@A`@B`@C]}
)");
Luau::AutocompleteResult ac;
ac = autocomplete('1');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('2');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_KEY(ac.entryMap, "right");
ac = autocomplete('3');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('4');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('5');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_KEY(ac.entryMap, "right");
ac = autocomplete('6');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('7');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('8');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_KEY(ac.entryMap, "right");
ac = autocomplete('9');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('A');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('B');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_KEY(ac.entryMap, "right");
ac = autocomplete('C');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
}
// https://github.com/Roblox/luau/issues/858
TEST_CASE_FIXTURE(ACFixture, "string_singleton_in_if_statement2")
{
// don't run this when the DCR flag isn't set
if (!FFlag::LuauSolverV2)
return;
check(R"(
--!strict
type Direction = "left" | "right"
local dir: Direction
-- typestate here means dir is actually typed as `"left"`
dir = "left"
if dir == @1"@2"@3 then end
local a: {[Direction]: boolean} = {[@4"@5"@6]}
if dir == @7`@8`@9 then end
local a: {[Direction]: boolean} = {[@A`@B`@C]}
)");
Luau::AutocompleteResult ac;
ac = autocomplete('1');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('2');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('3');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('4');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('5');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_KEY(ac.entryMap, "right");
ac = autocomplete('6');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('7');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('8');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('9');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('A');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
ac = autocomplete('B');
LUAU_CHECK_HAS_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_KEY(ac.entryMap, "right");
ac = autocomplete('C');
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "left");
LUAU_CHECK_HAS_NO_KEY(ac.entryMap, "right");
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_string_singleton_equality")
{
check(R"(
type tagged = {tag:"cat", fieldx:number} | {tag:"dog", fieldy:number}
local x: tagged = {tag="cat", fieldx=2}
if x.tag == "@1" or "@2" ~= x.tag then end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
ac = autocomplete('2');
CHECK(ac.entryMap.count("cat"));
CHECK(ac.entryMap.count("dog"));
// CLI-48823: assignment to x.tag should also autocomplete, but union l-values are not supported yet
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_boolean_singleton")
{
check(R"(
local function f(x: true) end
f(@1)
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("true"));
CHECK(ac.entryMap["true"].typeCorrect == TypeCorrectKind::Correct);
REQUIRE(ac.entryMap.count("false"));
CHECK(ac.entryMap["false"].typeCorrect == TypeCorrectKind::None);
CHECK_EQ(ac.context, AutocompleteContext::Expression);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_string_singleton_escape")
{
check(R"(
type tag = "strange\t\"cat\"" | 'nice\t"dog"'
local function f(x: tag) end
f(@1)
f("@2")
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("\"strange\\t\\\"cat\\\"\""));
CHECK(ac.entryMap.count("\"nice\\t\\\"dog\\\"\""));
ac = autocomplete('2');
CHECK(ac.entryMap.count("strange\\t\\\"cat\\\""));
CHECK(ac.entryMap.count("nice\\t\\\"dog\\\""));
}
TEST_CASE_FIXTURE(ACFixture, "function_in_assignment_has_parentheses_2")
{
check(R"(
local bar: ((number) -> number) & (number, number) -> number)
local abc = b@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("bar"));
CHECK(ac.entryMap["bar"].parens == ParenthesesRecommendation::CursorInside);
}
TEST_CASE_FIXTURE(ACFixture, "no_incompatible_self_calls_on_class")
{
loadDefinition(R"(
declare class Foo
function one(self): number
two: () -> number
end
)");
{
check(R"(
local function f(t: Foo)
t:@1
end
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("one"));
REQUIRE(ac.entryMap.count("two"));
CHECK(!ac.entryMap["one"].wrongIndexType);
CHECK(ac.entryMap["two"].wrongIndexType);
CHECK(ac.entryMap["one"].indexedWithSelf);
CHECK(ac.entryMap["two"].indexedWithSelf);
}
{
check(R"(
local function f(t: Foo)
t.@1
end
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("one"));
REQUIRE(ac.entryMap.count("two"));
CHECK(ac.entryMap["one"].wrongIndexType);
CHECK(!ac.entryMap["two"].wrongIndexType);
CHECK(!ac.entryMap["one"].indexedWithSelf);
CHECK(!ac.entryMap["two"].indexedWithSelf);
}
}
TEST_CASE_FIXTURE(ACFixture, "simple")
{
check(R"(
local t = {}
function t:m() end
t:m()
)");
// auto ac = autocomplete('1');
// REQUIRE(ac.entryMap.count("m"));
// CHECK(!ac.entryMap["m"].wrongIndexType);
}
TEST_CASE_FIXTURE(ACFixture, "do_compatible_self_calls")
{
check(R"(
local t = {}
function t:m() end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
CHECK(!ac.entryMap["m"].wrongIndexType);
CHECK(ac.entryMap["m"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "no_incompatible_self_calls")
{
check(R"(
local t = {}
function t.m() end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
CHECK(ac.entryMap["m"].wrongIndexType);
CHECK(ac.entryMap["m"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "no_incompatible_self_calls_2")
{
check(R"(
local f: (() -> number) & ((number) -> number) = function(x: number?) return 2 end
local t = {}
t.f = f
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("f"));
CHECK(ac.entryMap["f"].wrongIndexType);
CHECK(ac.entryMap["f"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "do_wrong_compatible_self_calls")
{
check(R"(
local t = {}
function t.m(x: typeof(t)) end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
// We can make changes to mark this as a wrong way to call even though it's compatible
CHECK(!ac.entryMap["m"].wrongIndexType);
CHECK(ac.entryMap["m"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "do_wrong_compatible_nonself_calls")
{
check(R"(
local t = {}
function t:m(x: string) end
t.@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
if (FFlag::LuauSolverV2)
CHECK(ac.entryMap["m"].wrongIndexType);
else
CHECK(!ac.entryMap["m"].wrongIndexType);
CHECK(!ac.entryMap["m"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "no_wrong_compatible_self_calls_with_generics")
{
check(R"(
local t = {}
function t.m<T>(a: T) end
t:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("m"));
// While this call is compatible with the type, this requires instantiation of a generic type which we don't perform
CHECK(ac.entryMap["m"].wrongIndexType);
CHECK(ac.entryMap["m"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "string_prim_self_calls_are_fine")
{
check(R"(
local s = "hello"
s:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("byte"));
CHECK(ac.entryMap["byte"].wrongIndexType == false);
CHECK(ac.entryMap["byte"].indexedWithSelf);
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == true);
CHECK(ac.entryMap["char"].indexedWithSelf);
REQUIRE(ac.entryMap.count("sub"));
CHECK(ac.entryMap["sub"].wrongIndexType == false);
CHECK(ac.entryMap["sub"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "string_prim_non_self_calls_are_avoided")
{
check(R"(
local s = "hello"
s.@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == false);
CHECK(!ac.entryMap["char"].indexedWithSelf);
REQUIRE(ac.entryMap.count("sub"));
CHECK(ac.entryMap["sub"].wrongIndexType == true);
CHECK(!ac.entryMap["sub"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "library_non_self_calls_are_fine")
{
check(R"(
string.@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("byte"));
CHECK(ac.entryMap["byte"].wrongIndexType == false);
CHECK(!ac.entryMap["byte"].indexedWithSelf);
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == false);
CHECK(!ac.entryMap["char"].indexedWithSelf);
REQUIRE(ac.entryMap.count("sub"));
CHECK(ac.entryMap["sub"].wrongIndexType == false);
CHECK(!ac.entryMap["sub"].indexedWithSelf);
check(R"(
table.@1
)");
ac = autocomplete('1');
REQUIRE(ac.entryMap.count("remove"));
CHECK(ac.entryMap["remove"].wrongIndexType == false);
CHECK(!ac.entryMap["remove"].indexedWithSelf);
REQUIRE(ac.entryMap.count("getn"));
CHECK(ac.entryMap["getn"].wrongIndexType == false);
CHECK(!ac.entryMap["getn"].indexedWithSelf);
REQUIRE(ac.entryMap.count("insert"));
CHECK(ac.entryMap["insert"].wrongIndexType == false);
CHECK(!ac.entryMap["insert"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACBuiltinsFixture, "library_self_calls_are_invalid")
{
check(R"(
string:@1
)");
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count("byte"));
CHECK(ac.entryMap["byte"].wrongIndexType == true);
CHECK(ac.entryMap["byte"].indexedWithSelf);
REQUIRE(ac.entryMap.count("char"));
CHECK(ac.entryMap["char"].wrongIndexType == true);
CHECK(ac.entryMap["char"].indexedWithSelf);
// We want the next test to evaluate to 'true', but we have to allow function defined with 'self' to be callable with ':'
// We may change the definition of the string metatable to not use 'self' types in the future (like byte/char/pack/unpack)
REQUIRE(ac.entryMap.count("sub"));
CHECK(ac.entryMap["sub"].wrongIndexType == false);
CHECK(ac.entryMap["sub"].indexedWithSelf);
}
TEST_CASE_FIXTURE(ACFixture, "source_module_preservation_and_invalidation")
{
check(R"(
local a = { x = 2, y = 4 }
a.@1
)");
frontend.clear();
auto ac = autocomplete('1');
CHECK(2 == ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
frontend.check("MainModule", {});
ac = autocomplete('1');
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
frontend.markDirty("MainModule", nullptr);
ac = autocomplete('1');
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
frontend.check("MainModule", {});
ac = autocomplete('1');
CHECK(ac.entryMap.count("x"));
CHECK(ac.entryMap.count("y"));
}
TEST_CASE_FIXTURE(ACFixture, "globals_are_order_independent")
{
check(R"(
local myLocal = 4
function abc0()
local myInnerLocal = 1
@1
end
function abc1()
local myInnerLocal = 1
end
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("myLocal"));
CHECK(ac.entryMap.count("myInnerLocal"));
CHECK(ac.entryMap.count("abc0"));
CHECK(ac.entryMap.count("abc1"));
}
TEST_CASE_FIXTURE(ACFixture, "string_contents_is_available_to_callback")
{
loadDefinition(R"(
declare function require(path: string): any
)");
GlobalTypes& globals = FFlag::LuauSolverV2 ? frontend.globals : frontend.globalsForAutocomplete;
std::optional<Binding> require = globals.globalScope->linearSearchForBinding("require");
REQUIRE(require);
Luau::unfreeze(globals.globalTypes);
attachTag(require->typeId, "RequireCall");
Luau::freeze(globals.globalTypes);
check(R"(
local x = require("testing/@1")
)");
bool isCorrect = false;
auto ac1 = autocomplete(
'1',
[&isCorrect](std::string, std::optional<const ClassType*>, std::optional<std::string> contents) -> std::optional<AutocompleteEntryMap>
{
isCorrect = contents && *contents == "testing/";
return std::nullopt;
}
);
CHECK(isCorrect);
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_response_perf1" * doctest::timeout(0.5))
{
if (FFlag::LuauSolverV2)
return; // FIXME: This test is just barely at the threshhold which makes it very flaky under the new solver
// Build a function type with a large overload set
const int parts = 100;
std::string source;
for (int i = 0; i < parts; i++)
formatAppend(source, "type T%d = { f%d: number }\n", i, i);
source += "type Instance = { new: (('s0', extra: Instance?) -> T0)";
for (int i = 1; i < parts; i++)
formatAppend(source, " & (('s%d', extra: Instance?) -> T%d)", i, i);
source += " }\n";
source += "local Instance: Instance = {} :: any\n";
source += "local function c(): boolean return t@1 end\n";
check(source);
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("Instance"));
}
TEST_CASE_FIXTURE(ACFixture, "autocomplete_subtyping_recursion_limit")
{
// TODO: in old solver, type resolve can't handle the type in this test without a stack overflow
if (!FFlag::LuauSolverV2)
return;
ScopedFastInt luauTypeInferRecursionLimit{FInt::LuauTypeInferRecursionLimit, 10};
const int parts = 100;
std::string source;
source += "function f()\n";
std::string prefix;
for (int i = 0; i < parts; i++)
formatAppend(prefix, "(nil|({a%d:number}&", i);
formatAppend(prefix, "(nil|{a%d:number})", parts);
for (int i = 0; i < parts; i++)
formatAppend(prefix, "))");
source += "local x1 : " + prefix + "\n";
source += "local y : {a1:number} = x@1\n";
source += "end\n";
check(source);
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("true"));
CHECK(ac.entryMap.count("x1"));
}
TEST_CASE_FIXTURE(ACFixture, "strict_mode_force")
{
check(R"(
--!nonstrict
local a: {x: number} = {x=1}
local b = a
local c = b.@1
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("x"));
}
TEST_CASE_FIXTURE(ACFixture, "suggest_exported_types")
{
check(R"(
export type Type = {a: number}
local a: T@1
)");
auto ac = autocomplete('1');
CHECK(ac.entryMap.count("Type"));
CHECK_EQ(ac.context, AutocompleteContext::Type);
}
TEST_CASE_FIXTURE(ACFixture, "frontend_use_correct_global_scope")
{
loadDefinition(R"(
declare class Instance
Name: string
end
)");
CheckResult result = check(R"(
local a: unknown = nil
if typeof(a) == "Instance" then
local b = a.@1
end
)");
auto ac = autocomplete('1');
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("Name"));
}
TEST_CASE_FIXTURE(ACFixture, "string_completion_outside_quotes")
{
loadDefinition(R"(
declare function require(path: string): any
)");
GlobalTypes& globals = FFlag::LuauSolverV2 ? frontend.globals : frontend.globalsForAutocomplete;
std::optional<Binding> require = globals.globalScope->linearSearchForBinding("require");
REQUIRE(require);
Luau::unfreeze(globals.globalTypes);
attachTag(require->typeId, "RequireCall");
Luau::freeze(globals.globalTypes);
check(R"(
local x = require(@1"@2"@3)
)");
StringCompletionCallback callback = [](std::string, std::optional<const ClassType*>, std::optional<std::string> contents
) -> std::optional<AutocompleteEntryMap>
{
Luau::AutocompleteEntryMap results = {{"test", Luau::AutocompleteEntry{Luau::AutocompleteEntryKind::String, std::nullopt, false, false}}};
return results;
};
auto ac = autocomplete('2', callback);
CHECK_EQ(1, ac.entryMap.size());
CHECK(ac.entryMap.count("test"));
ac = autocomplete('1', callback);
CHECK_EQ(0, ac.entryMap.size());
ac = autocomplete('3', callback);
CHECK_EQ(0, ac.entryMap.size());
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_empty")
{
check(R"(
local function foo(a: () -> ())
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function() end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_args")
{
check(R"(
local function foo(a: (number, string) -> ())
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(a0: number, a1: string) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_args_single_return")
{
check(R"(
local function foo(a: (number, string) -> (string))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(a0: number, a1: string): string end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_args_multi_return")
{
check(R"(
local function foo(a: (number, string) -> (string, number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(a0: number, a1: string): (string, number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled__noargs_multi_return")
{
check(R"(
local function foo(a: () -> (string, number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(): (string, number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled__varargs_multi_return")
{
check(R"(
local function foo(a: (...number) -> (string, number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(...: number): (string, number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_multi_varargs_multi_return")
{
check(R"(
local function foo(a: (string, ...number) -> (string, number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(a0: string, ...: number): (string, number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_multi_varargs_varargs_return")
{
check(R"(
local function foo(a: (string, ...number) -> ...number)
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(a0: string, ...: number): ...number end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_multi_varargs_multi_varargs_return")
{
check(R"(
local function foo(a: (string, ...number) -> (boolean, ...number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(a0: string, ...: number): (boolean, ...number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_named_args")
{
check(R"(
local function foo(a: (foo: number, bar: string) -> (string, number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(foo: number, bar: string): (string, number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_partially_args")
{
check(R"(
local function foo(a: (number, bar: string) -> (string, number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(a0: number, bar: string): (string, number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_partially_args_last")
{
check(R"(
local function foo(a: (foo: number, string) -> (string, number))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(foo: number, a1: string): (string, number) end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_typeof_args")
{
check(R"(
local t = { a = 1, b = 2 }
local function foo(a: (foo: typeof(t)) -> ())
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(foo) end"; // Cannot utter this type.
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_table_literal_args")
{
check(R"(
local function foo(a: (tbl: { x: number, y: number }) -> number) return a({x=2, y = 3}) end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(tbl: { x: number, y: number }): number end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_typeof_returns")
{
check(R"(
local t = { a = 1, b = 2 }
local function foo(a: () -> typeof(t))
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function() end"; // Cannot utter this type.
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_table_literal_args")
{
check(R"(
local function foo(a: () -> { x: number, y: number }) return {x=2, y = 3} end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(): { x: number, y: number } end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_typeof_vararg")
{
check(R"(
local t = { a = 1, b = 2 }
local function foo(a: (...typeof(t)) -> ())
a()
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(...) end"; // Cannot utter this type.
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_generic_type_pack_vararg")
{
// CLI-116932 - Autocomplete on a anonymous function in a function argument should not recommend a function with a generic parameter.
if (FFlag::LuauSolverV2)
return;
check(R"(
local function foo<A>(a: (...A) -> number, ...: A)
return a(...)
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT = "function(...): number end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_CASE_FIXTURE(ACFixture, "anonymous_autofilled_generic_on_argument_type_pack_vararg")
{
check(R"(
local function foo(a: <T...>(...: T...) -> number)
return a(4, 5, 6)
end
foo(@1)
)");
const std::optional<std::string> EXPECTED_INSERT =
FFlag::LuauSolverV2 ? "function(...: number): number end" : "function(...): number end";
auto ac = autocomplete('1');
REQUIRE(ac.entryMap.count(kGeneratedAnonymousFunctionEntryName) == 1);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].kind == Luau::AutocompleteEntryKind::GeneratedFunction);
CHECK(ac.entryMap[kGeneratedAnonymousFunctionEntryName].typeCorrect == Luau::TypeCorrectKind::Correct);
REQUIRE(ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
CHECK_EQ(EXPECTED_INSERT, *ac.entryMap[kGeneratedAnonymousFunctionEntryName].insertText);
}
TEST_SUITE_END();