luau/VM/src/lgc.cpp
2022-01-06 14:10:07 -08:00

1081 lines
30 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
// This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details
#include "lgc.h"
#include "lobject.h"
#include "lstate.h"
#include "ltable.h"
#include "lfunc.h"
#include "lstring.h"
#include "ldo.h"
#include "ludata.h"
#include <string.h>
#define GC_SWEEPMAX 40
#define GC_SWEEPCOST 10
#define GC_INTERRUPT(state) \
{ \
void (*interrupt)(lua_State*, int) = g->cb.interrupt; \
if (LUAU_UNLIKELY(!!interrupt)) \
interrupt(L, state); \
}
#define maskmarks cast_byte(~(bitmask(BLACKBIT) | WHITEBITS))
#define makewhite(g, x) ((x)->gch.marked = cast_byte(((x)->gch.marked & maskmarks) | luaC_white(g)))
#define white2gray(x) reset2bits((x)->gch.marked, WHITE0BIT, WHITE1BIT)
#define black2gray(x) resetbit((x)->gch.marked, BLACKBIT)
#define stringmark(s) reset2bits((s)->marked, WHITE0BIT, WHITE1BIT)
#define markvalue(g, o) \
{ \
checkconsistency(o); \
if (iscollectable(o) && iswhite(gcvalue(o))) \
reallymarkobject(g, gcvalue(o)); \
}
#define markobject(g, t) \
{ \
if (iswhite(obj2gco(t))) \
reallymarkobject(g, obj2gco(t)); \
}
static void recordGcStateTime(global_State* g, int startgcstate, double seconds, bool assist)
{
switch (startgcstate)
{
case GCSpause:
// record root mark time if we have switched to next state
if (g->gcstate == GCSpropagate)
g->gcstats.currcycle.marktime += seconds;
break;
case GCSpropagate:
case GCSpropagateagain:
g->gcstats.currcycle.marktime += seconds;
break;
case GCSatomic:
g->gcstats.currcycle.atomictime += seconds;
break;
case GCSsweepstring:
case GCSsweep:
g->gcstats.currcycle.sweeptime += seconds;
break;
default:
LUAU_ASSERT(!"Unexpected GC state");
}
if (assist)
g->gcstats.stepassisttimeacc += seconds;
else
g->gcstats.stepexplicittimeacc += seconds;
}
static void startGcCycleStats(global_State* g)
{
g->gcstats.currcycle.starttimestamp = lua_clock();
g->gcstats.currcycle.waittime = g->gcstats.currcycle.starttimestamp - g->gcstats.lastcycle.endtimestamp;
}
static void finishGcCycleStats(global_State* g)
{
g->gcstats.currcycle.endtimestamp = lua_clock();
g->gcstats.currcycle.endtotalsizebytes = g->totalbytes;
g->gcstats.completedcycles++;
g->gcstats.lastcycle = g->gcstats.currcycle;
g->gcstats.currcycle = GCCycleStats();
g->gcstats.cyclestatsacc.markitems += g->gcstats.lastcycle.markitems;
g->gcstats.cyclestatsacc.marktime += g->gcstats.lastcycle.marktime;
g->gcstats.cyclestatsacc.atomictime += g->gcstats.lastcycle.atomictime;
g->gcstats.cyclestatsacc.sweepitems += g->gcstats.lastcycle.sweepitems;
g->gcstats.cyclestatsacc.sweeptime += g->gcstats.lastcycle.sweeptime;
}
static void removeentry(LuaNode* n)
{
LUAU_ASSERT(ttisnil(gval(n)));
if (iscollectable(gkey(n)))
setttype(gkey(n), LUA_TDEADKEY); /* dead key; remove it */
}
static void reallymarkobject(global_State* g, GCObject* o)
{
LUAU_ASSERT(iswhite(o) && !isdead(g, o));
white2gray(o);
switch (o->gch.tt)
{
case LUA_TSTRING:
{
return;
}
case LUA_TUSERDATA:
{
Table* mt = gco2u(o)->metatable;
gray2black(o); /* udata are never gray */
if (mt)
markobject(g, mt);
return;
}
case LUA_TUPVAL:
{
UpVal* uv = gco2uv(o);
markvalue(g, uv->v);
if (uv->v == &uv->u.value) /* closed? */
gray2black(o); /* open upvalues are never black */
return;
}
case LUA_TFUNCTION:
{
gco2cl(o)->gclist = g->gray;
g->gray = o;
break;
}
case LUA_TTABLE:
{
gco2h(o)->gclist = g->gray;
g->gray = o;
break;
}
case LUA_TTHREAD:
{
gco2th(o)->gclist = g->gray;
g->gray = o;
break;
}
case LUA_TPROTO:
{
gco2p(o)->gclist = g->gray;
g->gray = o;
break;
}
default:
LUAU_ASSERT(0);
}
}
static const char* gettablemode(global_State* g, Table* h)
{
const TValue* mode = gfasttm(g, h->metatable, TM_MODE);
if (mode && ttisstring(mode))
return svalue(mode);
return NULL;
}
static int traversetable(global_State* g, Table* h)
{
int i;
int weakkey = 0;
int weakvalue = 0;
if (h->metatable)
markobject(g, cast_to(Table*, h->metatable));
/* is there a weak mode? */
if (const char* modev = gettablemode(g, h))
{
weakkey = (strchr(modev, 'k') != NULL);
weakvalue = (strchr(modev, 'v') != NULL);
if (weakkey || weakvalue)
{ /* is really weak? */
h->gclist = g->weak; /* must be cleared after GC, ... */
g->weak = obj2gco(h); /* ... so put in the appropriate list */
}
}
if (weakkey && weakvalue)
return 1;
if (!weakvalue)
{
i = h->sizearray;
while (i--)
markvalue(g, &h->array[i]);
}
i = sizenode(h);
while (i--)
{
LuaNode* n = gnode(h, i);
LUAU_ASSERT(ttype(gkey(n)) != LUA_TDEADKEY || ttisnil(gval(n)));
if (ttisnil(gval(n)))
removeentry(n); /* remove empty entries */
else
{
LUAU_ASSERT(!ttisnil(gkey(n)));
if (!weakkey)
markvalue(g, gkey(n));
if (!weakvalue)
markvalue(g, gval(n));
}
}
return weakkey || weakvalue;
}
/*
** All marks are conditional because a GC may happen while the
** prototype is still being created
*/
static void traverseproto(global_State* g, Proto* f)
{
int i;
if (f->source)
stringmark(f->source);
if (f->debugname)
stringmark(f->debugname);
for (i = 0; i < f->sizek; i++) /* mark literals */
markvalue(g, &f->k[i]);
for (i = 0; i < f->sizeupvalues; i++)
{ /* mark upvalue names */
if (f->upvalues[i])
stringmark(f->upvalues[i]);
}
for (i = 0; i < f->sizep; i++)
{ /* mark nested protos */
if (f->p[i])
markobject(g, f->p[i]);
}
for (i = 0; i < f->sizelocvars; i++)
{ /* mark local-variable names */
if (f->locvars[i].varname)
stringmark(f->locvars[i].varname);
}
}
static void traverseclosure(global_State* g, Closure* cl)
{
markobject(g, cl->env);
if (cl->isC)
{
int i;
for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
markvalue(g, &cl->c.upvals[i]);
}
else
{
int i;
LUAU_ASSERT(cl->nupvalues == cl->l.p->nups);
markobject(g, cast_to(Proto*, cl->l.p));
for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
markvalue(g, &cl->l.uprefs[i]);
}
}
static void traversestack(global_State* g, lua_State* l, bool clearstack)
{
markvalue(g, gt(l));
if (l->namecall)
stringmark(l->namecall);
for (StkId o = l->stack; o < l->top; o++)
markvalue(g, o);
/* final traversal? */
if (g->gcstate == GCSatomic || clearstack)
{
StkId stack_end = l->stack + l->stacksize;
for (StkId o = l->top; o < stack_end; o++) /* clear not-marked stack slice */
setnilvalue(o);
}
}
/*
** traverse one gray object, turning it to black.
** Returns `quantity' traversed.
*/
static size_t propagatemark(global_State* g)
{
GCObject* o = g->gray;
LUAU_ASSERT(isgray(o));
gray2black(o);
switch (o->gch.tt)
{
case LUA_TTABLE:
{
Table* h = gco2h(o);
g->gray = h->gclist;
if (traversetable(g, h)) /* table is weak? */
black2gray(o); /* keep it gray */
return sizeof(Table) + sizeof(TValue) * h->sizearray + sizeof(LuaNode) * sizenode(h);
}
case LUA_TFUNCTION:
{
Closure* cl = gco2cl(o);
g->gray = cl->gclist;
traverseclosure(g, cl);
return cl->isC ? sizeCclosure(cl->nupvalues) : sizeLclosure(cl->nupvalues);
}
case LUA_TTHREAD:
{
lua_State* th = gco2th(o);
g->gray = th->gclist;
LUAU_ASSERT(!luaC_threadsleeping(th));
// threads that are executing and the main thread are not deactivated
bool active = luaC_threadactive(th) || th == th->global->mainthread;
if (!active && g->gcstate == GCSpropagate)
{
traversestack(g, th, /* clearstack= */ true);
l_setbit(th->stackstate, THREAD_SLEEPINGBIT);
}
else
{
th->gclist = g->grayagain;
g->grayagain = o;
black2gray(o);
traversestack(g, th, /* clearstack= */ false);
}
return sizeof(lua_State) + sizeof(TValue) * th->stacksize + sizeof(CallInfo) * th->size_ci;
}
case LUA_TPROTO:
{
Proto* p = gco2p(o);
g->gray = p->gclist;
traverseproto(g, p);
return sizeof(Proto) + sizeof(Instruction) * p->sizecode + sizeof(Proto*) * p->sizep + sizeof(TValue) * p->sizek + p->sizelineinfo +
sizeof(LocVar) * p->sizelocvars + sizeof(TString*) * p->sizeupvalues;
}
default:
LUAU_ASSERT(0);
return 0;
}
}
static size_t propagateall(global_State* g)
{
size_t work = 0;
while (g->gray)
{
work += propagatemark(g);
}
return work;
}
/*
** The next function tells whether a key or value can be cleared from
** a weak table. Non-collectable objects are never removed from weak
** tables. Strings behave as `values', so are never removed too. for
** other objects: if really collected, cannot keep them.
*/
static int isobjcleared(GCObject* o)
{
if (o->gch.tt == LUA_TSTRING)
{
stringmark(&o->ts); /* strings are `values', so are never weak */
return 0;
}
return iswhite(o);
}
#define iscleared(o) (iscollectable(o) && isobjcleared(gcvalue(o)))
/*
** clear collected entries from weaktables
*/
static size_t cleartable(lua_State* L, GCObject* l)
{
size_t work = 0;
while (l)
{
Table* h = gco2h(l);
work += sizeof(Table) + sizeof(TValue) * h->sizearray + sizeof(LuaNode) * sizenode(h);
int i = h->sizearray;
while (i--)
{
TValue* o = &h->array[i];
if (iscleared(o)) /* value was collected? */
setnilvalue(o); /* remove value */
}
i = sizenode(h);
int activevalues = 0;
while (i--)
{
LuaNode* n = gnode(h, i);
// non-empty entry?
if (!ttisnil(gval(n)))
{
// can we clear key or value?
if (iscleared(gkey(n)) || iscleared(gval(n)))
{
setnilvalue(gval(n)); /* remove value ... */
removeentry(n); /* remove entry from table */
}
else
{
activevalues++;
}
}
}
if (const char* modev = gettablemode(L->global, h))
{
// are we allowed to shrink this weak table?
if (strchr(modev, 's'))
{
// shrink at 37.5% occupancy
if (activevalues < sizenode(h) * 3 / 8)
luaH_resizehash(L, h, activevalues);
}
}
l = h->gclist;
}
return work;
}
static void shrinkstack(lua_State* L)
{
/* compute used stack - note that we can't use th->top if we're in the middle of vararg call */
StkId lim = L->top;
for (CallInfo* ci = L->base_ci; ci <= L->ci; ci++)
{
LUAU_ASSERT(ci->top <= L->stack_last);
if (lim < ci->top)
lim = ci->top;
}
/* shrink stack and callinfo arrays if we aren't using most of the space */
int ci_used = cast_int(L->ci - L->base_ci); /* number of `ci' in use */
int s_used = cast_int(lim - L->stack); /* part of stack in use */
if (L->size_ci > LUAI_MAXCALLS) /* handling overflow? */
return; /* do not touch the stacks */
if (3 * ci_used < L->size_ci && 2 * BASIC_CI_SIZE < L->size_ci)
luaD_reallocCI(L, L->size_ci / 2); /* still big enough... */
condhardstacktests(luaD_reallocCI(L, ci_used + 1));
if (3 * s_used < L->stacksize && 2 * (BASIC_STACK_SIZE + EXTRA_STACK) < L->stacksize)
luaD_reallocstack(L, L->stacksize / 2); /* still big enough... */
condhardstacktests(luaD_reallocstack(L, s_used));
}
static void freeobj(lua_State* L, GCObject* o)
{
switch (o->gch.tt)
{
case LUA_TPROTO:
luaF_freeproto(L, gco2p(o));
break;
case LUA_TFUNCTION:
luaF_freeclosure(L, gco2cl(o));
break;
case LUA_TUPVAL:
luaF_freeupval(L, gco2uv(o));
break;
case LUA_TTABLE:
luaH_free(L, gco2h(o));
break;
case LUA_TTHREAD:
LUAU_ASSERT(gco2th(o) != L && gco2th(o) != L->global->mainthread);
luaE_freethread(L, gco2th(o));
break;
case LUA_TSTRING:
luaS_free(L, gco2ts(o));
break;
case LUA_TUSERDATA:
luaU_freeudata(L, gco2u(o));
break;
default:
LUAU_ASSERT(0);
}
}
#define sweepwholelist(L, p, tc) sweeplist(L, p, SIZE_MAX, tc)
static GCObject** sweeplist(lua_State* L, GCObject** p, size_t count, size_t* traversedcount)
{
GCObject* curr;
global_State* g = L->global;
int deadmask = otherwhite(g);
size_t startcount = count;
LUAU_ASSERT(testbit(deadmask, FIXEDBIT)); /* make sure we never sweep fixed objects */
while ((curr = *p) != NULL && count-- > 0)
{
int alive = (curr->gch.marked ^ WHITEBITS) & deadmask;
if (curr->gch.tt == LUA_TTHREAD)
{
sweepwholelist(L, &gco2th(curr)->openupval, traversedcount); /* sweep open upvalues */
lua_State* th = gco2th(curr);
if (alive)
{
resetbit(th->stackstate, THREAD_SLEEPINGBIT);
shrinkstack(th);
}
}
if (alive)
{ /* not dead? */
LUAU_ASSERT(!isdead(g, curr));
makewhite(g, curr); /* make it white (for next cycle) */
p = &curr->gch.next;
}
else
{ /* must erase `curr' */
LUAU_ASSERT(isdead(g, curr));
*p = curr->gch.next;
if (curr == g->rootgc) /* is the first element of the list? */
g->rootgc = curr->gch.next; /* adjust first */
freeobj(L, curr);
}
}
// if we didn't reach the end of the list it means that we've stopped because the count dropped below zero
if (traversedcount)
*traversedcount += startcount - (curr ? count + 1 : count);
return p;
}
static void deletelist(lua_State* L, GCObject** p, GCObject* limit)
{
GCObject* curr;
while ((curr = *p) != limit)
{
if (curr->gch.tt == LUA_TTHREAD) /* delete open upvalues of each thread */
deletelist(L, &gco2th(curr)->openupval, NULL);
*p = curr->gch.next;
freeobj(L, curr);
}
}
static void shrinkbuffers(lua_State* L)
{
global_State* g = L->global;
/* check size of string hash */
if (g->strt.nuse < cast_to(uint32_t, g->strt.size / 4) && g->strt.size > LUA_MINSTRTABSIZE * 2)
luaS_resize(L, g->strt.size / 2); /* table is too big */
}
static void shrinkbuffersfull(lua_State* L)
{
global_State* g = L->global;
/* check size of string hash */
int hashsize = g->strt.size;
while (g->strt.nuse < cast_to(uint32_t, hashsize / 4) && hashsize > LUA_MINSTRTABSIZE * 2)
hashsize /= 2;
if (hashsize != g->strt.size)
luaS_resize(L, hashsize); /* table is too big */
}
void luaC_freeall(lua_State* L)
{
global_State* g = L->global;
LUAU_ASSERT(L == g->mainthread);
LUAU_ASSERT(L->next == NULL); /* mainthread is at the end of rootgc list */
deletelist(L, &g->rootgc, obj2gco(L));
for (int i = 0; i < g->strt.size; i++) /* free all string lists */
deletelist(L, &g->strt.hash[i], NULL);
LUAU_ASSERT(L->global->strt.nuse == 0);
deletelist(L, &g->strbufgc, NULL);
// unfortunately, when string objects are freed, the string table use count is decremented
// even when the string is a buffer that wasn't placed into the table
L->global->strt.nuse = 0;
}
static void markmt(global_State* g)
{
int i;
for (i = 0; i < LUA_T_COUNT; i++)
if (g->mt[i])
markobject(g, g->mt[i]);
}
/* mark root set */
static void markroot(lua_State* L)
{
global_State* g = L->global;
g->gray = NULL;
g->grayagain = NULL;
g->weak = NULL;
markobject(g, g->mainthread);
/* make global table be traversed before main stack */
markvalue(g, gt(g->mainthread));
markvalue(g, registry(L));
markmt(g);
g->gcstate = GCSpropagate;
}
static size_t remarkupvals(global_State* g)
{
size_t work = 0;
for (UpVal* uv = g->uvhead.u.l.next; uv != &g->uvhead; uv = uv->u.l.next)
{
work += sizeof(UpVal);
LUAU_ASSERT(uv->u.l.next->u.l.prev == uv && uv->u.l.prev->u.l.next == uv);
if (isgray(obj2gco(uv)))
markvalue(g, uv->v);
}
return work;
}
static size_t atomic(lua_State* L)
{
global_State* g = L->global;
LUAU_ASSERT(g->gcstate == GCSatomic);
size_t work = 0;
/* remark occasional upvalues of (maybe) dead threads */
work += remarkupvals(g);
/* traverse objects caught by write barrier and by 'remarkupvals' */
work += propagateall(g);
/* remark weak tables */
g->gray = g->weak;
g->weak = NULL;
LUAU_ASSERT(!iswhite(obj2gco(g->mainthread)));
markobject(g, L); /* mark running thread */
markmt(g); /* mark basic metatables (again) */
work += propagateall(g);
/* remark gray again */
g->gray = g->grayagain;
g->grayagain = NULL;
work += propagateall(g);
work += cleartable(L, g->weak); /* remove collected objects from weak tables */
g->weak = NULL;
/* flip current white */
g->currentwhite = cast_byte(otherwhite(g));
g->sweepstrgc = 0;
g->sweepgc = &g->rootgc;
g->gcstate = GCSsweepstring;
return work;
}
static size_t gcstep(lua_State* L, size_t limit)
{
size_t cost = 0;
global_State* g = L->global;
switch (g->gcstate)
{
case GCSpause:
{
markroot(L); /* start a new collection */
LUAU_ASSERT(g->gcstate == GCSpropagate);
break;
}
case GCSpropagate:
{
while (g->gray && cost < limit)
{
g->gcstats.currcycle.markitems++;
cost += propagatemark(g);
}
if (!g->gray)
{
// perform one iteration over 'gray again' list
g->gray = g->grayagain;
g->grayagain = NULL;
g->gcstate = GCSpropagateagain;
}
break;
}
case GCSpropagateagain:
{
while (g->gray && cost < limit)
{
g->gcstats.currcycle.markitems++;
cost += propagatemark(g);
}
if (!g->gray) /* no more `gray' objects */
{
g->gcstate = GCSatomic;
}
break;
}
case GCSatomic:
{
g->gcstats.currcycle.atomicstarttimestamp = lua_clock();
g->gcstats.currcycle.atomicstarttotalsizebytes = g->totalbytes;
cost = atomic(L); /* finish mark phase */
LUAU_ASSERT(g->gcstate == GCSsweepstring);
break;
}
case GCSsweepstring:
{
while (g->sweepstrgc < g->strt.size && cost < limit)
{
size_t traversedcount = 0;
sweepwholelist(L, &g->strt.hash[g->sweepstrgc++], &traversedcount);
g->gcstats.currcycle.sweepitems += traversedcount;
cost += GC_SWEEPCOST;
}
// nothing more to sweep?
if (g->sweepstrgc >= g->strt.size)
{
// sweep string buffer list and preserve used string count
uint32_t nuse = L->global->strt.nuse;
size_t traversedcount = 0;
sweepwholelist(L, &g->strbufgc, &traversedcount);
L->global->strt.nuse = nuse;
g->gcstats.currcycle.sweepitems += traversedcount;
g->gcstate = GCSsweep; // end sweep-string phase
}
break;
}
case GCSsweep:
{
while (*g->sweepgc && cost < limit)
{
size_t traversedcount = 0;
g->sweepgc = sweeplist(L, g->sweepgc, GC_SWEEPMAX, &traversedcount);
g->gcstats.currcycle.sweepitems += traversedcount;
cost += GC_SWEEPMAX * GC_SWEEPCOST;
}
if (*g->sweepgc == NULL)
{ /* nothing more to sweep? */
shrinkbuffers(L);
g->gcstate = GCSpause; /* end collection */
}
break;
}
default:
LUAU_ASSERT(!"Unexpected GC state");
}
return cost;
}
static int64_t getheaptriggererroroffset(GCHeapTriggerStats* triggerstats, GCCycleStats* cyclestats)
{
// adjust for error using Proportional-Integral controller
// https://en.wikipedia.org/wiki/PID_controller
int32_t errorKb = int32_t((cyclestats->atomicstarttotalsizebytes - cyclestats->heapgoalsizebytes) / 1024);
// we use sliding window for the error integral to avoid error sum 'windup' when the desired target cannot be reached
int32_t* slot = &triggerstats->terms[triggerstats->termpos % triggerstats->termcount];
int32_t prev = *slot;
*slot = errorKb;
triggerstats->integral += errorKb - prev;
triggerstats->termpos++;
// controller tuning
// https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
const double Ku = 0.9; // ultimate gain (measured)
const double Tu = 2.5; // oscillation period (measured)
const double Kp = 0.45 * Ku; // proportional gain
const double Ti = 0.8 * Tu;
const double Ki = 0.54 * Ku / Ti; // integral gain
double proportionalTerm = Kp * errorKb;
double integralTerm = Ki * triggerstats->integral;
double totalTerm = proportionalTerm + integralTerm;
return int64_t(totalTerm * 1024);
}
static size_t getheaptrigger(global_State* g, size_t heapgoal)
{
GCCycleStats* lastcycle = &g->gcstats.lastcycle;
GCCycleStats* currcycle = &g->gcstats.currcycle;
// adjust threshold based on a guess of how many bytes will be allocated between the cycle start and sweep phase
// our goal is to begin the sweep when used memory has reached the heap goal
const double durationthreshold = 1e-3;
double allocationduration = currcycle->atomicstarttimestamp - lastcycle->endtimestamp;
// avoid measuring intervals smaller than 1ms
if (allocationduration < durationthreshold)
return heapgoal;
double allocationrate = (currcycle->atomicstarttotalsizebytes - lastcycle->endtotalsizebytes) / allocationduration;
double markduration = currcycle->atomicstarttimestamp - currcycle->starttimestamp;
int64_t expectedgrowth = int64_t(markduration * allocationrate);
int64_t offset = getheaptriggererroroffset(&g->gcstats.triggerstats, currcycle);
int64_t heaptrigger = heapgoal - (expectedgrowth + offset);
// clamp the trigger between memory use at the end of the cycle and the heap goal
return heaptrigger < int64_t(g->totalbytes) ? g->totalbytes : (heaptrigger > int64_t(heapgoal) ? heapgoal : size_t(heaptrigger));
}
void luaC_step(lua_State* L, bool assist)
{
global_State* g = L->global;
int lim = (g->gcstepsize / 100) * g->gcstepmul; /* how much to work */
LUAU_ASSERT(g->totalbytes >= g->GCthreshold);
size_t debt = g->totalbytes - g->GCthreshold;
GC_INTERRUPT(0);
// at the start of the new cycle
if (g->gcstate == GCSpause)
startGcCycleStats(g);
int lastgcstate = g->gcstate;
double lasttimestamp = lua_clock();
size_t work = gcstep(L, lim);
if (assist)
g->gcstats.currcycle.assistwork += work;
else
g->gcstats.currcycle.explicitwork += work;
recordGcStateTime(g, lastgcstate, lua_clock() - lasttimestamp, assist);
// at the end of the last cycle
if (g->gcstate == GCSpause)
{
// at the end of a collection cycle, set goal based on gcgoal setting
size_t heapgoal = (g->totalbytes / 100) * g->gcgoal;
size_t heaptrigger = getheaptrigger(g, heapgoal);
g->GCthreshold = heaptrigger;
finishGcCycleStats(g);
g->gcstats.currcycle.heapgoalsizebytes = heapgoal;
g->gcstats.currcycle.heaptriggersizebytes = heaptrigger;
}
else
{
g->GCthreshold = g->totalbytes + g->gcstepsize;
// compensate if GC is "behind schedule" (has some debt to pay)
if (g->GCthreshold > debt)
g->GCthreshold -= debt;
}
GC_INTERRUPT(lastgcstate);
}
void luaC_fullgc(lua_State* L)
{
global_State* g = L->global;
if (g->gcstate == GCSpause)
startGcCycleStats(g);
if (g->gcstate <= GCSatomic)
{
/* reset sweep marks to sweep all elements (returning them to white) */
g->sweepstrgc = 0;
g->sweepgc = &g->rootgc;
/* reset other collector lists */
g->gray = NULL;
g->grayagain = NULL;
g->weak = NULL;
g->gcstate = GCSsweepstring;
}
LUAU_ASSERT(g->gcstate == GCSsweepstring || g->gcstate == GCSsweep);
/* finish any pending sweep phase */
while (g->gcstate != GCSpause)
{
LUAU_ASSERT(g->gcstate == GCSsweepstring || g->gcstate == GCSsweep);
gcstep(L, SIZE_MAX);
}
finishGcCycleStats(g);
/* run a full collection cycle */
startGcCycleStats(g);
markroot(L);
while (g->gcstate != GCSpause)
{
gcstep(L, SIZE_MAX);
}
/* reclaim as much buffer memory as possible (shrinkbuffers() called during sweep is incremental) */
shrinkbuffersfull(L);
size_t heapgoalsizebytes = (g->totalbytes / 100) * g->gcgoal;
// trigger cannot be correctly adjusted after a forced full GC.
// we will try to place it so that we can reach the goal based on
// the rate at which we run the GC relative to allocation rate
// and on amount of bytes we need to traverse in propagation stage.
// goal and stepmul are defined in percents
g->GCthreshold = g->totalbytes * (g->gcgoal * g->gcstepmul / 100 - 100) / g->gcstepmul;
// but it might be impossible to satisfy that directly
if (g->GCthreshold < g->totalbytes)
g->GCthreshold = g->totalbytes;
finishGcCycleStats(g);
g->gcstats.currcycle.heapgoalsizebytes = heapgoalsizebytes;
g->gcstats.currcycle.heaptriggersizebytes = g->GCthreshold;
}
void luaC_barrierupval(lua_State* L, GCObject* v)
{
global_State* g = L->global;
LUAU_ASSERT(iswhite(v) && !isdead(g, v));
if (keepinvariant(g))
reallymarkobject(g, v);
}
void luaC_barrierf(lua_State* L, GCObject* o, GCObject* v)
{
global_State* g = L->global;
LUAU_ASSERT(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
LUAU_ASSERT(g->gcstate != GCSpause);
/* must keep invariant? */
if (keepinvariant(g))
reallymarkobject(g, v); /* restore invariant */
else /* don't mind */
makewhite(g, o); /* mark as white just to avoid other barriers */
}
void luaC_barriertable(lua_State* L, Table* t, GCObject* v)
{
global_State* g = L->global;
GCObject* o = obj2gco(t);
// in the second propagation stage, table assignment barrier works as a forward barrier
if (g->gcstate == GCSpropagateagain)
{
LUAU_ASSERT(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
reallymarkobject(g, v);
return;
}
LUAU_ASSERT(isblack(o) && !isdead(g, o));
LUAU_ASSERT(g->gcstate != GCSpause);
black2gray(o); /* make table gray (again) */
t->gclist = g->grayagain;
g->grayagain = o;
}
void luaC_barrierback(lua_State* L, Table* t)
{
global_State* g = L->global;
GCObject* o = obj2gco(t);
LUAU_ASSERT(isblack(o) && !isdead(g, o));
LUAU_ASSERT(g->gcstate != GCSpause);
black2gray(o); /* make table gray (again) */
t->gclist = g->grayagain;
g->grayagain = o;
}
void luaC_linkobj(lua_State* L, GCObject* o, uint8_t tt)
{
global_State* g = L->global;
o->gch.next = g->rootgc;
g->rootgc = o;
o->gch.marked = luaC_white(g);
o->gch.tt = tt;
o->gch.memcat = L->activememcat;
}
void luaC_linkupval(lua_State* L, UpVal* uv)
{
global_State* g = L->global;
GCObject* o = obj2gco(uv);
o->gch.next = g->rootgc; /* link upvalue into `rootgc' list */
g->rootgc = o;
if (isgray(o))
{
if (keepinvariant(g))
{
gray2black(o); /* closed upvalues need barrier */
luaC_barrier(L, uv, uv->v);
}
else
{ /* sweep phase: sweep it (turning it into white) */
makewhite(g, o);
LUAU_ASSERT(g->gcstate != GCSpause);
}
}
}
// measure the allocation rate in bytes/sec
// returns -1 if allocation rate cannot be measured
int64_t luaC_allocationrate(lua_State* L)
{
global_State* g = L->global;
const double durationthreshold = 1e-3; // avoid measuring intervals smaller than 1ms
if (g->gcstate <= GCSatomic)
{
double duration = lua_clock() - g->gcstats.lastcycle.endtimestamp;
if (duration < durationthreshold)
return -1;
return int64_t((g->totalbytes - g->gcstats.lastcycle.endtotalsizebytes) / duration);
}
// totalbytes is unstable during the sweep, use the rate measured at the end of mark phase
double duration = g->gcstats.currcycle.atomicstarttimestamp - g->gcstats.lastcycle.endtimestamp;
if (duration < durationthreshold)
return -1;
return int64_t((g->gcstats.currcycle.atomicstarttotalsizebytes - g->gcstats.lastcycle.endtotalsizebytes) / duration);
}
void luaC_wakethread(lua_State* L)
{
if (!luaC_threadsleeping(L))
return;
global_State* g = L->global;
resetbit(L->stackstate, THREAD_SLEEPINGBIT);
if (keepinvariant(g))
{
GCObject* o = obj2gco(L);
L->gclist = g->grayagain;
g->grayagain = o;
black2gray(o);
}
}
const char* luaC_statename(int state)
{
switch (state)
{
case GCSpause:
return "pause";
case GCSpropagate:
return "mark";
case GCSpropagateagain:
return "remark";
case GCSatomic:
return "atomic";
case GCSsweepstring:
return "sweepstring";
case GCSsweep:
return "sweep";
default:
return NULL;
}
}