luau/Analysis/src/TypeFamily.cpp
vegorov-rbx caee04d82d
Sync to upstream/release/631 (#1299)
### What's new

* Added lint warning for using redundant `@native` attributes on
functions inside a `--!native` module
* Improved typechecking speed in old solver for modules with large types

### New Solver

* Fixed the length type function sealing the table prematurely
* Fixed crashes caused by general table indexing expressions

### VM

* Added support for a specialized 3-argument fast-call instruction to
improve performance of `vector` constructor, `buffer` writes and a few
`bit32` methods

---

### Internal Contributors

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

---------

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Vighnesh <vvijay@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: David Cope <dcope@roblox.com>
Co-authored-by: Lily Brown <lbrown@roblox.com>
2024-06-20 16:37:55 -07:00

2137 lines
84 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/TypeFamily.h"
#include "Luau/Common.h"
#include "Luau/ConstraintSolver.h"
#include "Luau/DenseHash.h"
#include "Luau/Instantiation.h"
#include "Luau/Normalize.h"
#include "Luau/NotNull.h"
#include "Luau/OverloadResolution.h"
#include "Luau/Set.h"
#include "Luau/Simplify.h"
#include "Luau/Subtyping.h"
#include "Luau/ToString.h"
#include "Luau/TxnLog.h"
#include "Luau/Type.h"
#include "Luau/TypeFamilyReductionGuesser.h"
#include "Luau/TypeFwd.h"
#include "Luau/TypeUtils.h"
#include "Luau/Unifier2.h"
#include "Luau/VecDeque.h"
#include "Luau/VisitType.h"
#include <iterator>
// used to control emitting CodeTooComplex warnings on type family reduction
LUAU_DYNAMIC_FASTINTVARIABLE(LuauTypeFamilyGraphReductionMaximumSteps, 1'000'000);
// used to control the limits of type family application over union type arguments
// e.g. `mul<a | b, c | d>` blows up into `mul<a, c> | mul<a, d> | mul<b, c> | mul<b, d>`
LUAU_DYNAMIC_FASTINTVARIABLE(LuauTypeFamilyApplicationCartesianProductLimit, 5'000);
// used to control falling back to a more conservative reduction based on guessing
// when this value is set to a negative value, guessing will be totally disabled.
LUAU_DYNAMIC_FASTINTVARIABLE(LuauTypeFamilyUseGuesserDepth, -1);
LUAU_FASTFLAGVARIABLE(DebugLuauLogTypeFamilies, false);
namespace Luau
{
using TypeOrTypePackIdSet = DenseHashSet<const void*>;
struct InstanceCollector : TypeOnceVisitor
{
VecDeque<TypeId> tys;
VecDeque<TypePackId> tps;
TypeOrTypePackIdSet shouldGuess{nullptr};
std::vector<TypeId> cyclicInstance;
bool visit(TypeId ty, const TypeFamilyInstanceType&) override
{
// TypeOnceVisitor performs a depth-first traversal in the absence of
// cycles. This means that by pushing to the front of the queue, we will
// try to reduce deeper instances first if we start with the first thing
// in the queue. Consider Add<Add<Add<number, number>, number>, number>:
// we want to reduce the innermost Add<number, number> instantiation
// first.
if (DFInt::LuauTypeFamilyUseGuesserDepth >= 0 && typeFamilyDepth > DFInt::LuauTypeFamilyUseGuesserDepth)
shouldGuess.insert(ty);
tys.push_front(ty);
return true;
}
void cycle(TypeId ty) override
{
/// Detected cyclic type pack
TypeId t = follow(ty);
if (get<TypeFamilyInstanceType>(t))
cyclicInstance.push_back(t);
}
bool visit(TypeId ty, const ClassType&) override
{
return false;
}
bool visit(TypePackId tp, const TypeFamilyInstanceTypePack&) override
{
// TypeOnceVisitor performs a depth-first traversal in the absence of
// cycles. This means that by pushing to the front of the queue, we will
// try to reduce deeper instances first if we start with the first thing
// in the queue. Consider Add<Add<Add<number, number>, number>, number>:
// we want to reduce the innermost Add<number, number> instantiation
// first.
if (DFInt::LuauTypeFamilyUseGuesserDepth >= 0 && typeFamilyDepth > DFInt::LuauTypeFamilyUseGuesserDepth)
shouldGuess.insert(tp);
tps.push_front(tp);
return true;
}
};
struct FamilyReducer
{
TypeFamilyContext ctx;
VecDeque<TypeId> queuedTys;
VecDeque<TypePackId> queuedTps;
TypeOrTypePackIdSet shouldGuess;
std::vector<TypeId> cyclicTypeFamilies;
TypeOrTypePackIdSet irreducible{nullptr};
FamilyGraphReductionResult result;
bool force = false;
// Local to the constraint being reduced.
Location location;
FamilyReducer(VecDeque<TypeId> queuedTys, VecDeque<TypePackId> queuedTps, TypeOrTypePackIdSet shouldGuess, std::vector<TypeId> cyclicTypes,
Location location, TypeFamilyContext ctx, bool force = false)
: ctx(ctx)
, queuedTys(std::move(queuedTys))
, queuedTps(std::move(queuedTps))
, shouldGuess(std::move(shouldGuess))
, cyclicTypeFamilies(std::move(cyclicTypes))
, force(force)
, location(location)
{
}
enum class SkipTestResult
{
CyclicTypeFamily,
Irreducible,
Defer,
Okay,
};
SkipTestResult testForSkippability(TypeId ty)
{
ty = follow(ty);
if (is<TypeFamilyInstanceType>(ty))
{
for (auto t : cyclicTypeFamilies)
{
if (ty == t)
return SkipTestResult::CyclicTypeFamily;
}
if (!irreducible.contains(ty))
return SkipTestResult::Defer;
return SkipTestResult::Irreducible;
}
else if (is<GenericType>(ty))
{
return SkipTestResult::Irreducible;
}
return SkipTestResult::Okay;
}
SkipTestResult testForSkippability(TypePackId ty)
{
ty = follow(ty);
if (is<TypeFamilyInstanceTypePack>(ty))
{
if (!irreducible.contains(ty))
return SkipTestResult::Defer;
else
return SkipTestResult::Irreducible;
}
else if (is<GenericTypePack>(ty))
{
return SkipTestResult::Irreducible;
}
return SkipTestResult::Okay;
}
template<typename T>
void replace(T subject, T replacement)
{
if (subject->owningArena != ctx.arena.get())
ctx.ice->ice("Attempting to modify a type family instance from another arena", location);
if (FFlag::DebugLuauLogTypeFamilies)
printf("%s -> %s\n", toString(subject, {true}).c_str(), toString(replacement, {true}).c_str());
asMutable(subject)->ty.template emplace<Unifiable::Bound<T>>(replacement);
if constexpr (std::is_same_v<T, TypeId>)
result.reducedTypes.insert(subject);
else if constexpr (std::is_same_v<T, TypePackId>)
result.reducedPacks.insert(subject);
}
template<typename T>
void handleFamilyReduction(T subject, TypeFamilyReductionResult<T> reduction)
{
if (reduction.result)
replace(subject, *reduction.result);
else
{
irreducible.insert(subject);
if (reduction.uninhabited || force)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("%s is uninhabited\n", toString(subject, {true}).c_str());
if constexpr (std::is_same_v<T, TypeId>)
result.errors.push_back(TypeError{location, UninhabitedTypeFamily{subject}});
else if constexpr (std::is_same_v<T, TypePackId>)
result.errors.push_back(TypeError{location, UninhabitedTypePackFamily{subject}});
}
else if (!reduction.uninhabited && !force)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("%s is irreducible; blocked on %zu types, %zu packs\n", toString(subject, {true}).c_str(), reduction.blockedTypes.size(),
reduction.blockedPacks.size());
for (TypeId b : reduction.blockedTypes)
result.blockedTypes.insert(b);
for (TypePackId b : reduction.blockedPacks)
result.blockedPacks.insert(b);
}
}
}
bool done()
{
return queuedTys.empty() && queuedTps.empty();
}
template<typename T, typename I>
bool testParameters(T subject, const I* tfit)
{
for (TypeId p : tfit->typeArguments)
{
SkipTestResult skip = testForSkippability(p);
if (skip == SkipTestResult::Irreducible)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("%s is irreducible due to a dependency on %s\n", toString(subject, {true}).c_str(), toString(p, {true}).c_str());
irreducible.insert(subject);
return false;
}
else if (skip == SkipTestResult::Defer)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("Deferring %s until %s is solved\n", toString(subject, {true}).c_str(), toString(p, {true}).c_str());
if constexpr (std::is_same_v<T, TypeId>)
queuedTys.push_back(subject);
else if constexpr (std::is_same_v<T, TypePackId>)
queuedTps.push_back(subject);
return false;
}
}
for (TypePackId p : tfit->packArguments)
{
SkipTestResult skip = testForSkippability(p);
if (skip == SkipTestResult::Irreducible)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("%s is irreducible due to a dependency on %s\n", toString(subject, {true}).c_str(), toString(p, {true}).c_str());
irreducible.insert(subject);
return false;
}
else if (skip == SkipTestResult::Defer)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("Deferring %s until %s is solved\n", toString(subject, {true}).c_str(), toString(p, {true}).c_str());
if constexpr (std::is_same_v<T, TypeId>)
queuedTys.push_back(subject);
else if constexpr (std::is_same_v<T, TypePackId>)
queuedTps.push_back(subject);
return false;
}
}
return true;
}
template<typename TID>
inline bool tryGuessing(TID subject)
{
if (shouldGuess.contains(subject))
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("Flagged %s for reduction with guesser.\n", toString(subject, {true}).c_str());
TypeFamilyReductionGuesser guesser{ctx.arena, ctx.builtins, ctx.normalizer};
auto guessed = guesser.guess(subject);
if (guessed)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("Selected %s as the guessed result type.\n", toString(*guessed, {true}).c_str());
replace(subject, *guessed);
return true;
}
if (FFlag::DebugLuauLogTypeFamilies)
printf("Failed to produce a guess for the result of %s.\n", toString(subject, {true}).c_str());
}
return false;
}
void stepType()
{
TypeId subject = follow(queuedTys.front());
queuedTys.pop_front();
if (irreducible.contains(subject))
return;
if (FFlag::DebugLuauLogTypeFamilies)
printf("Trying to reduce %s\n", toString(subject, {true}).c_str());
if (const TypeFamilyInstanceType* tfit = get<TypeFamilyInstanceType>(subject))
{
SkipTestResult testCyclic = testForSkippability(subject);
if (!testParameters(subject, tfit) && testCyclic != SkipTestResult::CyclicTypeFamily)
{
if (FFlag::DebugLuauLogTypeFamilies)
printf("Irreducible due to irreducible/pending and a non-cyclic family\n");
return;
}
if (tryGuessing(subject))
return;
TypeFamilyReductionResult<TypeId> result = tfit->family->reducer(subject, tfit->typeArguments, tfit->packArguments, NotNull{&ctx});
handleFamilyReduction(subject, result);
}
}
void stepPack()
{
TypePackId subject = follow(queuedTps.front());
queuedTps.pop_front();
if (irreducible.contains(subject))
return;
if (FFlag::DebugLuauLogTypeFamilies)
printf("Trying to reduce %s\n", toString(subject, {true}).c_str());
if (const TypeFamilyInstanceTypePack* tfit = get<TypeFamilyInstanceTypePack>(subject))
{
if (!testParameters(subject, tfit))
return;
if (tryGuessing(subject))
return;
TypeFamilyReductionResult<TypePackId> result = tfit->family->reducer(subject, tfit->typeArguments, tfit->packArguments, NotNull{&ctx});
handleFamilyReduction(subject, result);
}
}
void step()
{
if (!queuedTys.empty())
stepType();
else if (!queuedTps.empty())
stepPack();
}
};
static FamilyGraphReductionResult reduceFamiliesInternal(VecDeque<TypeId> queuedTys, VecDeque<TypePackId> queuedTps, TypeOrTypePackIdSet shouldGuess,
std::vector<TypeId> cyclics, Location location, TypeFamilyContext ctx, bool force)
{
FamilyReducer reducer{std::move(queuedTys), std::move(queuedTps), std::move(shouldGuess), std::move(cyclics), location, ctx, force};
int iterationCount = 0;
while (!reducer.done())
{
reducer.step();
++iterationCount;
if (iterationCount > DFInt::LuauTypeFamilyGraphReductionMaximumSteps)
{
reducer.result.errors.push_back(TypeError{location, CodeTooComplex{}});
break;
}
}
return std::move(reducer.result);
}
FamilyGraphReductionResult reduceFamilies(TypeId entrypoint, Location location, TypeFamilyContext ctx, bool force)
{
InstanceCollector collector;
try
{
collector.traverse(entrypoint);
}
catch (RecursionLimitException&)
{
return FamilyGraphReductionResult{};
}
if (collector.tys.empty() && collector.tps.empty())
return {};
return reduceFamiliesInternal(std::move(collector.tys), std::move(collector.tps), std::move(collector.shouldGuess),
std::move(collector.cyclicInstance), location, ctx, force);
}
FamilyGraphReductionResult reduceFamilies(TypePackId entrypoint, Location location, TypeFamilyContext ctx, bool force)
{
InstanceCollector collector;
try
{
collector.traverse(entrypoint);
}
catch (RecursionLimitException&)
{
return FamilyGraphReductionResult{};
}
if (collector.tys.empty() && collector.tps.empty())
return {};
return reduceFamiliesInternal(std::move(collector.tys), std::move(collector.tps), std::move(collector.shouldGuess),
std::move(collector.cyclicInstance), location, ctx, force);
}
bool isPending(TypeId ty, ConstraintSolver* solver)
{
return is<BlockedType, PendingExpansionType, TypeFamilyInstanceType>(ty) || (solver && solver->hasUnresolvedConstraints(ty));
}
template<typename F, typename... Args>
static std::optional<TypeFamilyReductionResult<TypeId>> tryDistributeTypeFamilyApp(F f, TypeId instance, const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx, Args&&... args)
{
// op (a | b) (c | d) ~ (op a (c | d)) | (op b (c | d)) ~ (op a c) | (op a d) | (op b c) | (op b d)
bool uninhabited = false;
std::vector<TypeId> blockedTypes;
std::vector<TypeId> results;
size_t cartesianProductSize = 1;
const UnionType* firstUnion = nullptr;
size_t unionIndex;
std::vector<TypeId> arguments = typeParams;
for (size_t i = 0; i < arguments.size(); ++i)
{
const UnionType* ut = get<UnionType>(follow(arguments[i]));
if (!ut)
continue;
// We want to find the first union type in the set of arguments to distribute that one and only that one union.
// The function `f` we have is recursive, so `arguments[unionIndex]` will be updated in-place for each option in
// the union we've found in this context, so that index will no longer be a union type. Any other arguments at
// index + 1 or after will instead be distributed, if those are a union, which will be subjected to the same rules.
if (!firstUnion && ut)
{
firstUnion = ut;
unionIndex = i;
}
cartesianProductSize *= std::distance(begin(ut), end(ut));
// TODO: We'd like to report that the type family application is too complex here.
if (size_t(DFInt::LuauTypeFamilyApplicationCartesianProductLimit) <= cartesianProductSize)
return {{std::nullopt, true, {}, {}}};
}
if (!firstUnion)
{
// If we couldn't find any union type argument, we're not distributing.
return std::nullopt;
}
for (TypeId option : firstUnion)
{
arguments[unionIndex] = option;
TypeFamilyReductionResult<TypeId> result = f(instance, arguments, packParams, ctx, args...);
blockedTypes.insert(blockedTypes.end(), result.blockedTypes.begin(), result.blockedTypes.end());
uninhabited |= result.uninhabited;
if (result.uninhabited || !result.result)
break;
else
results.push_back(*result.result);
}
if (uninhabited || !blockedTypes.empty())
return {{std::nullopt, uninhabited, blockedTypes, {}}};
if (!results.empty())
{
if (results.size() == 1)
return {{results[0], false, {}, {}}};
TypeId resultTy = ctx->arena->addType(TypeFamilyInstanceType{
NotNull{&kBuiltinTypeFamilies.unionFamily},
std::move(results),
{},
});
return {{resultTy, false, {}, {}}};
}
return std::nullopt;
}
TypeFamilyReductionResult<TypeId> notFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("not type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId ty = follow(typeParams.at(0));
if (ty == instance)
return {ctx->builtins->neverType, false, {}, {}};
if (isPending(ty, ctx->solver))
return {std::nullopt, false, {ty}, {}};
if (auto result = tryDistributeTypeFamilyApp(notFamilyFn, instance, typeParams, packParams, ctx))
return *result;
// `not` operates on anything and returns a `boolean` always.
return {ctx->builtins->booleanType, false, {}, {}};
}
TypeFamilyReductionResult<TypeId> lenFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("len type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId operandTy = follow(typeParams.at(0));
if (operandTy == instance)
return {ctx->builtins->neverType, false, {}, {}};
// check to see if the operand type is resolved enough, and wait to reduce if not
// the use of `typeFromNormal` later necessitates blocking on local types.
if (isPending(operandTy, ctx->solver))
return {std::nullopt, false, {operandTy}, {}};
// if the type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> maybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, operandTy, /* avoidSealingTables */ true);
if (!maybeGeneralized)
return {std::nullopt, false, {operandTy}, {}};
operandTy = *maybeGeneralized;
}
std::shared_ptr<const NormalizedType> normTy = ctx->normalizer->normalize(operandTy);
NormalizationResult inhabited = ctx->normalizer->isInhabited(normTy.get());
// if the type failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normTy || inhabited == NormalizationResult::HitLimits)
return {std::nullopt, false, {}, {}};
// if the operand type is error suppressing, we can immediately reduce to `number`.
if (normTy->shouldSuppressErrors())
return {ctx->builtins->numberType, false, {}, {}};
// if we have an uninhabited type (like `never`), we can never observe that the operator didn't work.
if (inhabited == NormalizationResult::False)
return {ctx->builtins->neverType, false, {}, {}};
// if we're checking the length of a string, that works!
if (normTy->isSubtypeOfString())
return {ctx->builtins->numberType, false, {}, {}};
// we use the normalized operand here in case there was an intersection or union.
TypeId normalizedOperand = ctx->normalizer->typeFromNormal(*normTy);
if (normTy->hasTopTable() || get<TableType>(normalizedOperand))
return {ctx->builtins->numberType, false, {}, {}};
if (auto result = tryDistributeTypeFamilyApp(notFamilyFn, instance, typeParams, packParams, ctx))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, operandTy, "__len", Location{});
if (!mmType)
return {std::nullopt, true, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, false, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, true, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, true, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorRecoveryType(), false, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({operandTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, true, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->normalizer, ctx->ice, ctx->scope};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes).isSubtype) // TODO: is this the right variance?
return {std::nullopt, true, {}, {}};
// `len` must return a `number`.
return {ctx->builtins->numberType, false, {}, {}};
}
TypeFamilyReductionResult<TypeId> unmFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("unm type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId operandTy = follow(typeParams.at(0));
if (operandTy == instance)
return {ctx->builtins->neverType, false, {}, {}};
// check to see if the operand type is resolved enough, and wait to reduce if not
if (isPending(operandTy, ctx->solver))
return {std::nullopt, false, {operandTy}, {}};
// if the type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> maybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, operandTy);
if (!maybeGeneralized)
return {std::nullopt, false, {operandTy}, {}};
operandTy = *maybeGeneralized;
}
std::shared_ptr<const NormalizedType> normTy = ctx->normalizer->normalize(operandTy);
// if the operand failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normTy)
return {std::nullopt, false, {}, {}};
// if the operand is error suppressing, we can just go ahead and reduce.
if (normTy->shouldSuppressErrors())
return {operandTy, false, {}, {}};
// if we have a `never`, we can never observe that the operation didn't work.
if (is<NeverType>(operandTy))
return {ctx->builtins->neverType, false, {}, {}};
// If the type is exactly `number`, we can reduce now.
if (normTy->isExactlyNumber())
return {ctx->builtins->numberType, false, {}, {}};
if (auto result = tryDistributeTypeFamilyApp(notFamilyFn, instance, typeParams, packParams, ctx))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, operandTy, "__unm", Location{});
if (!mmType)
return {std::nullopt, true, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, false, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, true, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, true, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorRecoveryType(), false, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({operandTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, true, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->normalizer, ctx->ice, ctx->scope};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes).isSubtype) // TODO: is this the right variance?
return {std::nullopt, true, {}, {}};
if (std::optional<TypeId> ret = first(instantiatedMmFtv->retTypes))
return {*ret, false, {}, {}};
else
return {std::nullopt, true, {}, {}};
}
NotNull<Constraint> TypeFamilyContext::pushConstraint(ConstraintV&& c)
{
LUAU_ASSERT(solver);
NotNull<Constraint> newConstraint = solver->pushConstraint(scope, constraint ? constraint->location : Location{}, std::move(c));
// Every constraint that is blocked on the current constraint must also be
// blocked on this new one.
if (constraint)
solver->inheritBlocks(NotNull{constraint}, newConstraint);
return newConstraint;
}
TypeFamilyReductionResult<TypeId> numericBinopFamilyFn(TypeId instance, const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx, const std::string metamethod)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// isPending of `lhsTy` or `rhsTy` would return true, even if it cycles. We want a different answer for that.
if (lhsTy == instance || rhsTy == instance)
return {ctx->builtins->neverType, false, {}, {}};
// if we have a `never`, we can never observe that the math operator is unreachable.
if (is<NeverType>(lhsTy) || is<NeverType>(rhsTy))
return {ctx->builtins->neverType, false, {}, {}};
const Location location = ctx->constraint ? ctx->constraint->location : Location{};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, false, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, false, {rhsTy}, {}};
// if either type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> lhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, lhsTy);
std::optional<TypeId> rhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, rhsTy);
if (!lhsMaybeGeneralized)
return {std::nullopt, false, {lhsTy}, {}};
else if (!rhsMaybeGeneralized)
return {std::nullopt, false, {rhsTy}, {}};
lhsTy = *lhsMaybeGeneralized;
rhsTy = *rhsMaybeGeneralized;
}
// TODO: Normalization needs to remove cyclic type families from a `NormalizedType`.
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy)
return {std::nullopt, false, {}, {}};
// if one of the types is error suppressing, we can reduce to `any` since we should suppress errors in the result of the usage.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->anyType, false, {}, {}};
// if we're adding two `number` types, the result is `number`.
if (normLhsTy->isExactlyNumber() && normRhsTy->isExactlyNumber())
return {ctx->builtins->numberType, false, {}, {}};
if (auto result = tryDistributeTypeFamilyApp(numericBinopFamilyFn, instance, typeParams, packParams, ctx, metamethod))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, metamethod, location);
bool reversed = false;
if (!mmType)
{
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, metamethod, location);
reversed = true;
}
if (!mmType)
return {std::nullopt, true, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, false, {*mmType}, {}};
TypePackId argPack = ctx->arena->addTypePack({lhsTy, rhsTy});
SolveResult solveResult;
if (!reversed)
solveResult = solveFunctionCall(ctx->arena, ctx->builtins, ctx->normalizer, ctx->ice, ctx->limits, ctx->scope, location, *mmType, argPack);
else
{
TypePack* p = getMutable<TypePack>(argPack);
std::swap(p->head.front(), p->head.back());
solveResult = solveFunctionCall(ctx->arena, ctx->builtins, ctx->normalizer, ctx->ice, ctx->limits, ctx->scope, location, *mmType, argPack);
}
if (!solveResult.typePackId.has_value())
return {std::nullopt, true, {}, {}};
TypePack extracted = extendTypePack(*ctx->arena, ctx->builtins, *solveResult.typePackId, 1);
if (extracted.head.empty())
return {std::nullopt, true, {}, {}};
return {extracted.head.front(), false, {}, {}};
}
TypeFamilyReductionResult<TypeId> addFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("add type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopFamilyFn(instance, typeParams, packParams, ctx, "__add");
}
TypeFamilyReductionResult<TypeId> subFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("sub type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopFamilyFn(instance, typeParams, packParams, ctx, "__sub");
}
TypeFamilyReductionResult<TypeId> mulFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("mul type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopFamilyFn(instance, typeParams, packParams, ctx, "__mul");
}
TypeFamilyReductionResult<TypeId> divFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("div type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopFamilyFn(instance, typeParams, packParams, ctx, "__div");
}
TypeFamilyReductionResult<TypeId> idivFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("integer div type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopFamilyFn(instance, typeParams, packParams, ctx, "__idiv");
}
TypeFamilyReductionResult<TypeId> powFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("pow type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopFamilyFn(instance, typeParams, packParams, ctx, "__pow");
}
TypeFamilyReductionResult<TypeId> modFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("modulo type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return numericBinopFamilyFn(instance, typeParams, packParams, ctx, "__mod");
}
TypeFamilyReductionResult<TypeId> concatFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("concat type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// isPending of `lhsTy` or `rhsTy` would return true, even if it cycles. We want a different answer for that.
if (lhsTy == instance || rhsTy == instance)
return {ctx->builtins->neverType, false, {}, {}};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, false, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, false, {rhsTy}, {}};
// if either type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> lhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, lhsTy);
std::optional<TypeId> rhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, rhsTy);
if (!lhsMaybeGeneralized)
return {std::nullopt, false, {lhsTy}, {}};
else if (!rhsMaybeGeneralized)
return {std::nullopt, false, {rhsTy}, {}};
lhsTy = *lhsMaybeGeneralized;
rhsTy = *rhsMaybeGeneralized;
}
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy)
return {std::nullopt, false, {}, {}};
// if one of the types is error suppressing, we can reduce to `any` since we should suppress errors in the result of the usage.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->anyType, false, {}, {}};
// if we have a `never`, we can never observe that the numeric operator didn't work.
if (is<NeverType>(lhsTy) || is<NeverType>(rhsTy))
return {ctx->builtins->neverType, false, {}, {}};
// if we're concatenating two elements that are either strings or numbers, the result is `string`.
if ((normLhsTy->isSubtypeOfString() || normLhsTy->isExactlyNumber()) && (normRhsTy->isSubtypeOfString() || normRhsTy->isExactlyNumber()))
return {ctx->builtins->stringType, false, {}, {}};
if (auto result = tryDistributeTypeFamilyApp(concatFamilyFn, instance, typeParams, packParams, ctx))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, "__concat", Location{});
bool reversed = false;
if (!mmType)
{
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, "__concat", Location{});
reversed = true;
}
if (!mmType)
return {std::nullopt, true, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, false, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, true, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, true, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorRecoveryType(), false, {}, {}};
std::vector<TypeId> inferredArgs;
if (!reversed)
inferredArgs = {lhsTy, rhsTy};
else
inferredArgs = {rhsTy, lhsTy};
TypePackId inferredArgPack = ctx->arena->addTypePack(std::move(inferredArgs));
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, true, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->normalizer, ctx->ice, ctx->scope};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes).isSubtype) // TODO: is this the right variance?
return {std::nullopt, true, {}, {}};
return {ctx->builtins->stringType, false, {}, {}};
}
TypeFamilyReductionResult<TypeId> andFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("and type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// t1 = and<lhs, t1> ~> lhs
if (follow(rhsTy) == instance && lhsTy != rhsTy)
return {lhsTy, false, {}, {}};
// t1 = and<t1, rhs> ~> rhs
if (follow(lhsTy) == instance && lhsTy != rhsTy)
return {rhsTy, false, {}, {}};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, false, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, false, {rhsTy}, {}};
// if either type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> lhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, lhsTy);
std::optional<TypeId> rhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, rhsTy);
if (!lhsMaybeGeneralized)
return {std::nullopt, false, {lhsTy}, {}};
else if (!rhsMaybeGeneralized)
return {std::nullopt, false, {rhsTy}, {}};
lhsTy = *lhsMaybeGeneralized;
rhsTy = *rhsMaybeGeneralized;
}
// And evalutes to a boolean if the LHS is falsey, and the RHS type if LHS is truthy.
SimplifyResult filteredLhs = simplifyIntersection(ctx->builtins, ctx->arena, lhsTy, ctx->builtins->falsyType);
SimplifyResult overallResult = simplifyUnion(ctx->builtins, ctx->arena, rhsTy, filteredLhs.result);
std::vector<TypeId> blockedTypes{};
for (auto ty : filteredLhs.blockedTypes)
blockedTypes.push_back(ty);
for (auto ty : overallResult.blockedTypes)
blockedTypes.push_back(ty);
return {overallResult.result, false, std::move(blockedTypes), {}};
}
TypeFamilyReductionResult<TypeId> orFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("or type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// t1 = or<lhs, t1> ~> lhs
if (follow(rhsTy) == instance && lhsTy != rhsTy)
return {lhsTy, false, {}, {}};
// t1 = or<t1, rhs> ~> rhs
if (follow(lhsTy) == instance && lhsTy != rhsTy)
return {rhsTy, false, {}, {}};
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, false, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, false, {rhsTy}, {}};
// if either type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> lhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, lhsTy);
std::optional<TypeId> rhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, rhsTy);
if (!lhsMaybeGeneralized)
return {std::nullopt, false, {lhsTy}, {}};
else if (!rhsMaybeGeneralized)
return {std::nullopt, false, {rhsTy}, {}};
lhsTy = *lhsMaybeGeneralized;
rhsTy = *rhsMaybeGeneralized;
}
// Or evalutes to the LHS type if the LHS is truthy, and the RHS type if LHS is falsy.
SimplifyResult filteredLhs = simplifyIntersection(ctx->builtins, ctx->arena, lhsTy, ctx->builtins->truthyType);
SimplifyResult overallResult = simplifyUnion(ctx->builtins, ctx->arena, rhsTy, filteredLhs.result);
std::vector<TypeId> blockedTypes{};
for (auto ty : filteredLhs.blockedTypes)
blockedTypes.push_back(ty);
for (auto ty : overallResult.blockedTypes)
blockedTypes.push_back(ty);
return {overallResult.result, false, std::move(blockedTypes), {}};
}
static TypeFamilyReductionResult<TypeId> comparisonFamilyFn(TypeId instance, const std::vector<TypeId>& typeParams,
const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx, const std::string metamethod)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
if (lhsTy == instance || rhsTy == instance)
return {ctx->builtins->neverType, false, {}, {}};
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, false, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, false, {rhsTy}, {}};
// Algebra Reduction Rules for comparison family functions
// Note that comparing to never tells you nothing about the other operand
// lt< 'a , never> -> continue
// lt< never, 'a> -> continue
// lt< 'a, t> -> 'a is t - we'll solve the constraint, return and solve lt<t, t> -> bool
// lt< t, 'a> -> same as above
bool canSubmitConstraint = ctx->solver && ctx->constraint;
bool lhsFree = get<FreeType>(lhsTy) != nullptr;
bool rhsFree = get<FreeType>(rhsTy) != nullptr;
if (canSubmitConstraint)
{
// Implement injective type families for comparison type families
// lt <number, t> implies t is number
// lt <t, number> implies t is number
if (lhsFree && isNumber(rhsTy))
emplaceType<BoundType>(asMutable(lhsTy), ctx->builtins->numberType);
else if (rhsFree && isNumber(lhsTy))
emplaceType<BoundType>(asMutable(rhsTy), ctx->builtins->numberType);
else if (lhsFree && ctx->normalizer->isInhabited(rhsTy) != NormalizationResult::False)
{
auto c1 = ctx->pushConstraint(EqualityConstraint{lhsTy, rhsTy});
const_cast<Constraint*>(ctx->constraint)->dependencies.emplace_back(c1);
}
else if (rhsFree && ctx->normalizer->isInhabited(lhsTy) != NormalizationResult::False)
{
auto c1 = ctx->pushConstraint(EqualityConstraint{rhsTy, lhsTy});
const_cast<Constraint*>(ctx->constraint)->dependencies.emplace_back(c1);
}
}
// The above might have caused the operand types to be rebound, we need to follow them again
lhsTy = follow(lhsTy);
rhsTy = follow(rhsTy);
// if either type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> lhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, lhsTy);
std::optional<TypeId> rhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, rhsTy);
if (!lhsMaybeGeneralized)
return {std::nullopt, false, {lhsTy}, {}};
else if (!rhsMaybeGeneralized)
return {std::nullopt, false, {rhsTy}, {}};
lhsTy = *lhsMaybeGeneralized;
rhsTy = *rhsMaybeGeneralized;
}
// check to see if both operand types are resolved enough, and wait to reduce if not
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
NormalizationResult lhsInhabited = ctx->normalizer->isInhabited(normLhsTy.get());
NormalizationResult rhsInhabited = ctx->normalizer->isInhabited(normRhsTy.get());
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy || lhsInhabited == NormalizationResult::HitLimits || rhsInhabited == NormalizationResult::HitLimits)
return {std::nullopt, false, {}, {}};
// if one of the types is error suppressing, we can just go ahead and reduce.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->booleanType, false, {}, {}};
// if we have an uninhabited type (e.g. `never`), we can never observe that the comparison didn't work.
if (lhsInhabited == NormalizationResult::False || rhsInhabited == NormalizationResult::False)
return {ctx->builtins->booleanType, false, {}, {}};
// If both types are some strict subset of `string`, we can reduce now.
if (normLhsTy->isSubtypeOfString() && normRhsTy->isSubtypeOfString())
return {ctx->builtins->booleanType, false, {}, {}};
// If both types are exactly `number`, we can reduce now.
if (normLhsTy->isExactlyNumber() && normRhsTy->isExactlyNumber())
return {ctx->builtins->booleanType, false, {}, {}};
if (auto result = tryDistributeTypeFamilyApp(comparisonFamilyFn, instance, typeParams, packParams, ctx, metamethod))
return *result;
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, metamethod, Location{});
if (!mmType)
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, metamethod, Location{});
if (!mmType)
return {std::nullopt, true, {}, {}};
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, false, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, true, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, true, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorRecoveryType(), false, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({lhsTy, rhsTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, true, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->normalizer, ctx->ice, ctx->scope};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes).isSubtype) // TODO: is this the right variance?
return {std::nullopt, true, {}, {}};
return {ctx->builtins->booleanType, false, {}, {}};
}
TypeFamilyReductionResult<TypeId> ltFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("lt type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return comparisonFamilyFn(instance, typeParams, packParams, ctx, "__lt");
}
TypeFamilyReductionResult<TypeId> leFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("le type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return comparisonFamilyFn(instance, typeParams, packParams, ctx, "__le");
}
TypeFamilyReductionResult<TypeId> eqFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("eq type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId lhsTy = follow(typeParams.at(0));
TypeId rhsTy = follow(typeParams.at(1));
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(lhsTy, ctx->solver))
return {std::nullopt, false, {lhsTy}, {}};
else if (isPending(rhsTy, ctx->solver))
return {std::nullopt, false, {rhsTy}, {}};
// if either type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> lhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, lhsTy);
std::optional<TypeId> rhsMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, rhsTy);
if (!lhsMaybeGeneralized)
return {std::nullopt, false, {lhsTy}, {}};
else if (!rhsMaybeGeneralized)
return {std::nullopt, false, {rhsTy}, {}};
lhsTy = *lhsMaybeGeneralized;
rhsTy = *rhsMaybeGeneralized;
}
std::shared_ptr<const NormalizedType> normLhsTy = ctx->normalizer->normalize(lhsTy);
std::shared_ptr<const NormalizedType> normRhsTy = ctx->normalizer->normalize(rhsTy);
NormalizationResult lhsInhabited = ctx->normalizer->isInhabited(normLhsTy.get());
NormalizationResult rhsInhabited = ctx->normalizer->isInhabited(normRhsTy.get());
// if either failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normLhsTy || !normRhsTy || lhsInhabited == NormalizationResult::HitLimits || rhsInhabited == NormalizationResult::HitLimits)
return {std::nullopt, false, {}, {}};
// if one of the types is error suppressing, we can just go ahead and reduce.
if (normLhsTy->shouldSuppressErrors() || normRhsTy->shouldSuppressErrors())
return {ctx->builtins->booleanType, false, {}, {}};
// if we have a `never`, we can never observe that the comparison didn't work.
if (lhsInhabited == NormalizationResult::False || rhsInhabited == NormalizationResult::False)
return {ctx->builtins->booleanType, false, {}, {}};
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, lhsTy, "__eq", Location{});
if (!mmType)
mmType = findMetatableEntry(ctx->builtins, dummy, rhsTy, "__eq", Location{});
// if neither type has a metatable entry for `__eq`, then we'll check for inhabitance of the intersection!
NormalizationResult intersectInhabited = ctx->normalizer->isIntersectionInhabited(lhsTy, rhsTy);
if (!mmType)
{
if (intersectInhabited == NormalizationResult::True)
return {ctx->builtins->booleanType, false, {}, {}}; // if it's inhabited, everything is okay!
// we might be in a case where we still want to accept the comparison...
if (intersectInhabited == NormalizationResult::False)
{
// if they're both subtypes of `string` but have no common intersection, the comparison is allowed but always `false`.
if (normLhsTy->isSubtypeOfString() && normRhsTy->isSubtypeOfString())
return {ctx->builtins->falseType, false, {}, {}};
// if they're both subtypes of `boolean` but have no common intersection, the comparison is allowed but always `false`.
if (normLhsTy->isSubtypeOfBooleans() && normRhsTy->isSubtypeOfBooleans())
return {ctx->builtins->falseType, false, {}, {}};
}
return {std::nullopt, true, {}, {}}; // if it's not, then this family is irreducible!
}
mmType = follow(*mmType);
if (isPending(*mmType, ctx->solver))
return {std::nullopt, false, {*mmType}, {}};
const FunctionType* mmFtv = get<FunctionType>(*mmType);
if (!mmFtv)
return {std::nullopt, true, {}, {}};
std::optional<TypeId> instantiatedMmType = instantiate(ctx->builtins, ctx->arena, ctx->limits, ctx->scope, *mmType);
if (!instantiatedMmType)
return {std::nullopt, true, {}, {}};
const FunctionType* instantiatedMmFtv = get<FunctionType>(*instantiatedMmType);
if (!instantiatedMmFtv)
return {ctx->builtins->errorRecoveryType(), false, {}, {}};
TypePackId inferredArgPack = ctx->arena->addTypePack({lhsTy, rhsTy});
Unifier2 u2{ctx->arena, ctx->builtins, ctx->scope, ctx->ice};
if (!u2.unify(inferredArgPack, instantiatedMmFtv->argTypes))
return {std::nullopt, true, {}, {}}; // occurs check failed
Subtyping subtyping{ctx->builtins, ctx->arena, ctx->normalizer, ctx->ice, ctx->scope};
if (!subtyping.isSubtype(inferredArgPack, instantiatedMmFtv->argTypes).isSubtype) // TODO: is this the right variance?
return {std::nullopt, true, {}, {}};
return {ctx->builtins->booleanType, false, {}, {}};
}
// Collect types that prevent us from reducing a particular refinement.
struct FindRefinementBlockers : TypeOnceVisitor
{
DenseHashSet<TypeId> found{nullptr};
bool visit(TypeId ty, const BlockedType&) override
{
found.insert(ty);
return false;
}
bool visit(TypeId ty, const PendingExpansionType&) override
{
found.insert(ty);
return false;
}
bool visit(TypeId ty, const ClassType&) override
{
return false;
}
};
TypeFamilyReductionResult<TypeId> refineFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("refine type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId targetTy = follow(typeParams.at(0));
TypeId discriminantTy = follow(typeParams.at(1));
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(targetTy, ctx->solver))
return {std::nullopt, false, {targetTy}, {}};
else if (isPending(discriminantTy, ctx->solver))
return {std::nullopt, false, {discriminantTy}, {}};
// if either type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> targetMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, targetTy);
std::optional<TypeId> discriminantMaybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, discriminantTy);
if (!targetMaybeGeneralized)
return {std::nullopt, false, {targetTy}, {}};
else if (!discriminantMaybeGeneralized)
return {std::nullopt, false, {discriminantTy}, {}};
targetTy = *targetMaybeGeneralized;
discriminantTy = *discriminantMaybeGeneralized;
}
// we need a more complex check for blocking on the discriminant in particular
FindRefinementBlockers frb;
frb.traverse(discriminantTy);
if (!frb.found.empty())
return {std::nullopt, false, {frb.found.begin(), frb.found.end()}, {}};
/* HACK: Refinements sometimes produce a type T & ~any under the assumption
* that ~any is the same as any. This is so so weird, but refinements needs
* some way to say "I may refine this, but I'm not sure."
*
* It does this by refining on a blocked type and deferring the decision
* until it is unblocked.
*
* Refinements also get negated, so we wind up with types like T & ~*blocked*
*
* We need to treat T & ~any as T in this case.
*/
if (auto nt = get<NegationType>(discriminantTy))
if (get<AnyType>(follow(nt->ty)))
return {targetTy, false, {}, {}};
// If the target type is a table, then simplification already implements the logic to deal with refinements properly since the
// type of the discriminant is guaranteed to only ever be an (arbitrarily-nested) table of a single property type.
if (get<TableType>(targetTy))
{
SimplifyResult result = simplifyIntersection(ctx->builtins, ctx->arena, targetTy, discriminantTy);
if (!result.blockedTypes.empty())
return {std::nullopt, false, {result.blockedTypes.begin(), result.blockedTypes.end()}, {}};
return {result.result, false, {}, {}};
}
// In the general case, we'll still use normalization though.
TypeId intersection = ctx->arena->addType(IntersectionType{{targetTy, discriminantTy}});
std::shared_ptr<const NormalizedType> normIntersection = ctx->normalizer->normalize(intersection);
std::shared_ptr<const NormalizedType> normType = ctx->normalizer->normalize(targetTy);
// if the intersection failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normIntersection || !normType)
return {std::nullopt, false, {}, {}};
TypeId resultTy = ctx->normalizer->typeFromNormal(*normIntersection);
// include the error type if the target type is error-suppressing and the intersection we computed is not
if (normType->shouldSuppressErrors() && !normIntersection->shouldSuppressErrors())
resultTy = ctx->arena->addType(UnionType{{resultTy, ctx->builtins->errorType}});
return {resultTy, false, {}, {}};
}
TypeFamilyReductionResult<TypeId> singletonFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("singleton type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId type = follow(typeParams.at(0));
// check to see if both operand types are resolved enough, and wait to reduce if not
if (isPending(type, ctx->solver))
return {std::nullopt, false, {type}, {}};
// if the type is free but has only one remaining reference, we can generalize it to its upper bound here.
if (ctx->solver)
{
std::optional<TypeId> maybeGeneralized = ctx->solver->generalizeFreeType(ctx->scope, type);
if (!maybeGeneralized)
return {std::nullopt, false, {type}, {}};
type = *maybeGeneralized;
}
TypeId followed = type;
// we want to follow through a negation here as well.
if (auto negation = get<NegationType>(followed))
followed = follow(negation->ty);
// if we have a singleton type or `nil`, which is its own singleton type...
if (get<SingletonType>(followed) || isNil(followed))
return {type, false, {}, {}};
// otherwise, we'll return the top type, `unknown`.
return {ctx->builtins->unknownType, false, {}, {}};
}
TypeFamilyReductionResult<TypeId> unionFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (!packParams.empty())
{
ctx->ice->ice("union type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
// if we only have one parameter, there's nothing to do.
if (typeParams.size() == 1)
return {follow(typeParams[0]), false, {}, {}};
// we need to follow all of the type parameters.
std::vector<TypeId> types;
types.reserve(typeParams.size());
for (auto ty : typeParams)
types.emplace_back(follow(ty));
// unfortunately, we need this short-circuit: if all but one type is `never`, we will return that one type.
// this also will early return if _everything_ is `never`, since we already have to check that.
std::optional<TypeId> lastType = std::nullopt;
for (auto ty : types)
{
// if we have a previous type and it's not `never` and the current type isn't `never`...
if (lastType && !get<NeverType>(lastType) && !get<NeverType>(ty))
{
// we know we are not taking the short-circuited path.
lastType = std::nullopt;
break;
}
if (get<NeverType>(ty))
continue;
lastType = ty;
}
// if we still have a `lastType` at the end, we're taking the short-circuit and reducing early.
if (lastType)
return {lastType, false, {}, {}};
// check to see if the operand types are resolved enough, and wait to reduce if not
for (auto ty : types)
if (isPending(ty, ctx->solver))
return {std::nullopt, false, {ty}, {}};
// fold over the types with `simplifyUnion`
TypeId resultTy = ctx->builtins->neverType;
for (auto ty : types)
{
SimplifyResult result = simplifyUnion(ctx->builtins, ctx->arena, resultTy, ty);
if (!result.blockedTypes.empty())
return {std::nullopt, false, {result.blockedTypes.begin(), result.blockedTypes.end()}, {}};
resultTy = result.result;
}
return {resultTy, false, {}, {}};
}
TypeFamilyReductionResult<TypeId> intersectFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (!packParams.empty())
{
ctx->ice->ice("intersect type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
// if we only have one parameter, there's nothing to do.
if (typeParams.size() == 1)
return {follow(typeParams[0]), false, {}, {}};
// we need to follow all of the type parameters.
std::vector<TypeId> types;
types.reserve(typeParams.size());
for (auto ty : typeParams)
types.emplace_back(follow(ty));
// check to see if the operand types are resolved enough, and wait to reduce if not
// if any of them are `never`, the intersection will always be `never`, so we can reduce directly.
for (auto ty : types)
{
if (isPending(ty, ctx->solver))
return {std::nullopt, false, {ty}, {}};
else if (get<NeverType>(ty))
return {ctx->builtins->neverType, false, {}, {}};
}
// fold over the types with `simplifyIntersection`
TypeId resultTy = ctx->builtins->unknownType;
for (auto ty : types)
{
SimplifyResult result = simplifyIntersection(ctx->builtins, ctx->arena, resultTy, ty);
if (!result.blockedTypes.empty())
return {std::nullopt, false, {result.blockedTypes.begin(), result.blockedTypes.end()}, {}};
resultTy = result.result;
}
// if the intersection simplifies to `never`, this gives us bad autocomplete.
// we'll just produce the intersection plainly instead, but this might be revisitable
// if we ever give `never` some kind of "explanation" trail.
if (get<NeverType>(resultTy))
{
TypeId intersection = ctx->arena->addType(IntersectionType{typeParams});
return {intersection, false, {}, {}};
}
return {resultTy, false, {}, {}};
}
// computes the keys of `ty` into `result`
// `isRaw` parameter indicates whether or not we should follow __index metamethods
// returns `false` if `result` should be ignored because the answer is "all strings"
bool computeKeysOf(TypeId ty, Set<std::string>& result, DenseHashSet<TypeId>& seen, bool isRaw, NotNull<TypeFamilyContext> ctx)
{
// if the type is the top table type, the answer is just "all strings"
if (get<PrimitiveType>(ty))
return false;
// if we've already seen this type, we can do nothing
if (seen.contains(ty))
return true;
seen.insert(ty);
// if we have a particular table type, we can insert the keys
if (auto tableTy = get<TableType>(ty))
{
if (tableTy->indexer)
{
// if we have a string indexer, the answer is, again, "all strings"
if (isString(tableTy->indexer->indexType))
return false;
}
for (auto [key, _] : tableTy->props)
result.insert(key);
return true;
}
// otherwise, we have a metatable to deal with
if (auto metatableTy = get<MetatableType>(ty))
{
bool res = true;
if (!isRaw)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, ty, "__index", Location{});
if (mmType)
res = res && computeKeysOf(*mmType, result, seen, isRaw, ctx);
}
res = res && computeKeysOf(metatableTy->table, result, seen, isRaw, ctx);
return res;
}
// this should not be reachable since the type should be a valid tables part from normalization.
LUAU_ASSERT(false);
return false;
}
TypeFamilyReductionResult<TypeId> keyofFamilyImpl(
const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx, bool isRaw)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("keyof type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId operandTy = follow(typeParams.at(0));
std::shared_ptr<const NormalizedType> normTy = ctx->normalizer->normalize(operandTy);
// if the operand failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!normTy)
return {std::nullopt, false, {}, {}};
// if we don't have either just tables or just classes, we've got nothing to get keys of (at least until a future version perhaps adds classes
// as well)
if (normTy->hasTables() == normTy->hasClasses())
return {std::nullopt, true, {}, {}};
// this is sort of atrocious, but we're trying to reject any type that has not normalized to a table or a union of tables.
if (normTy->hasTops() || normTy->hasBooleans() || normTy->hasErrors() || normTy->hasNils() || normTy->hasNumbers() || normTy->hasStrings() ||
normTy->hasThreads() || normTy->hasBuffers() || normTy->hasFunctions() || normTy->hasTyvars())
return {std::nullopt, true, {}, {}};
// we're going to collect the keys in here
Set<std::string> keys{{}};
// computing the keys for classes
if (normTy->hasClasses())
{
LUAU_ASSERT(!normTy->hasTables());
auto classesIter = normTy->classes.ordering.begin();
auto classesIterEnd = normTy->classes.ordering.end();
LUAU_ASSERT(classesIter != classesIterEnd); // should be guaranteed by the `hasClasses` check
auto classTy = get<ClassType>(*classesIter);
if (!classTy)
{
LUAU_ASSERT(false); // this should not be possible according to normalization's spec
return {std::nullopt, true, {}, {}};
}
for (auto [key, _] : classTy->props)
keys.insert(key);
// we need to look at each class to remove any keys that are not common amongst them all
while (++classesIter != classesIterEnd)
{
auto classTy = get<ClassType>(*classesIter);
if (!classTy)
{
LUAU_ASSERT(false); // this should not be possible according to normalization's spec
return {std::nullopt, true, {}, {}};
}
for (auto key : keys)
{
// remove any keys that are not present in each class
if (classTy->props.find(key) == classTy->props.end())
keys.erase(key);
}
}
}
// computing the keys for tables
if (normTy->hasTables())
{
LUAU_ASSERT(!normTy->hasClasses());
// seen set for key computation for tables
DenseHashSet<TypeId> seen{{}};
auto tablesIter = normTy->tables.begin();
LUAU_ASSERT(tablesIter != normTy->tables.end()); // should be guaranteed by the `hasTables` check earlier
// collect all the properties from the first table type
if (!computeKeysOf(*tablesIter, keys, seen, isRaw, ctx))
return {ctx->builtins->stringType, false, {}, {}}; // if it failed, we have the top table type!
// we need to look at each tables to remove any keys that are not common amongst them all
while (++tablesIter != normTy->tables.end())
{
seen.clear(); // we'll reuse the same seen set
Set<std::string> localKeys{{}};
// we can skip to the next table if this one is the top table type
if (!computeKeysOf(*tablesIter, localKeys, seen, isRaw, ctx))
continue;
for (auto key : keys)
{
// remove any keys that are not present in each table
if (!localKeys.contains(key))
keys.erase(key);
}
}
}
// if the set of keys is empty, `keyof<T>` is `never`
if (keys.empty())
return {ctx->builtins->neverType, false, {}, {}};
// everything is validated, we need only construct our big union of singletons now!
std::vector<TypeId> singletons;
singletons.reserve(keys.size());
for (std::string key : keys)
singletons.push_back(ctx->arena->addType(SingletonType{StringSingleton{key}}));
return {ctx->arena->addType(UnionType{singletons}), false, {}, {}};
}
TypeFamilyReductionResult<TypeId> keyofFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("keyof type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return keyofFamilyImpl(typeParams, packParams, ctx, /* isRaw */ false);
}
TypeFamilyReductionResult<TypeId> rawkeyofFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 1 || !packParams.empty())
{
ctx->ice->ice("rawkeyof type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
return keyofFamilyImpl(typeParams, packParams, ctx, /* isRaw */ true);
}
/* Searches through table's or class's props/indexer to find the property of `ty`
If found, appends that property to `result` and returns true
Else, returns false */
bool searchPropsAndIndexer(
TypeId ty, TableType::Props tblProps, std::optional<TableIndexer> tblIndexer, DenseHashSet<TypeId>& result, NotNull<TypeFamilyContext> ctx)
{
ty = follow(ty);
// index into tbl's properties
if (auto stringSingleton = get<StringSingleton>(get<SingletonType>(ty)))
{
if (tblProps.find(stringSingleton->value) != tblProps.end())
{
TypeId propTy = follow(tblProps.at(stringSingleton->value).type());
// property is a union type -> we need to extend our reduction type
if (auto propUnionTy = get<UnionType>(propTy))
{
for (TypeId option : propUnionTy->options)
result.insert(option);
}
else // property is a singular type or intersection type -> we can simply append
result.insert(propTy);
return true;
}
}
// index into tbl's indexer
if (tblIndexer)
{
if (isSubtype(ty, tblIndexer->indexType, ctx->scope, ctx->builtins, *ctx->ice))
{
TypeId idxResultTy = follow(tblIndexer->indexResultType);
// indexResultType is a union type -> we need to extend our reduction type
if (auto idxResUnionTy = get<UnionType>(idxResultTy))
{
for (TypeId option : idxResUnionTy->options)
result.insert(option);
}
else // indexResultType is a singular type or intersection type -> we can simply append
result.insert(idxResultTy);
return true;
}
}
return false;
}
/* Handles recursion / metamethods of tables/classes
`isRaw` parameter indicates whether or not we should follow __index metamethods
returns false if property of `ty` could not be found */
bool tblIndexInto(TypeId indexer, TypeId indexee, DenseHashSet<TypeId>& result, NotNull<TypeFamilyContext> ctx, bool isRaw)
{
indexer = follow(indexer);
indexee = follow(indexee);
// we have a table type to try indexing
if (auto tableTy = get<TableType>(indexee))
{
return searchPropsAndIndexer(indexer, tableTy->props, tableTy->indexer, result, ctx);
}
// we have a metatable type to try indexing
if (auto metatableTy = get<MetatableType>(indexee))
{
if (auto tableTy = get<TableType>(metatableTy->table))
{
// try finding all properties within the current scope of the table
if (searchPropsAndIndexer(indexer, tableTy->props, tableTy->indexer, result, ctx))
return true;
}
// if the code reached here, it means we weren't able to find all properties -> look into __index metamethod
if (!isRaw)
{
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, indexee, "__index", Location{});
if (mmType)
return tblIndexInto(indexer, *mmType, result, ctx, isRaw);
}
}
return false;
}
/* Vocabulary note: indexee refers to the type that contains the properties,
indexer refers to the type that is used to access indexee
Example: index<Person, "name"> => `Person` is the indexee and `"name"` is the indexer */
TypeFamilyReductionResult<TypeId> indexFamilyFn(
TypeId instance, const std::vector<TypeId>& typeParams, const std::vector<TypePackId>& packParams, NotNull<TypeFamilyContext> ctx)
{
if (typeParams.size() != 2 || !packParams.empty())
{
ctx->ice->ice("index type family: encountered a type family instance without the required argument structure");
LUAU_ASSERT(false);
}
TypeId indexeeTy = follow(typeParams.at(0));
std::shared_ptr<const NormalizedType> indexeeNormTy = ctx->normalizer->normalize(indexeeTy);
// if the indexee failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!indexeeNormTy)
return {std::nullopt, false, {}, {}};
// if we don't have either just tables or just classes, we've got nothing to index into
if (indexeeNormTy->hasTables() == indexeeNormTy->hasClasses())
return {std::nullopt, true, {}, {}};
// we're trying to reject any type that has not normalized to a table/class or a union of tables/classes.
if (indexeeNormTy->hasTops() || indexeeNormTy->hasBooleans() || indexeeNormTy->hasErrors() || indexeeNormTy->hasNils() ||
indexeeNormTy->hasNumbers() || indexeeNormTy->hasStrings() || indexeeNormTy->hasThreads() || indexeeNormTy->hasBuffers() ||
indexeeNormTy->hasFunctions() || indexeeNormTy->hasTyvars())
return {std::nullopt, true, {}, {}};
TypeId indexerTy = follow(typeParams.at(1));
std::shared_ptr<const NormalizedType> indexerNormTy = ctx->normalizer->normalize(indexerTy);
// if the indexer failed to normalize, we can't reduce, but know nothing about inhabitance.
if (!indexerNormTy)
return {std::nullopt, false, {}, {}};
// we're trying to reject any type that is not a string singleton or primitive (string, number, boolean, thread, nil, function, table, or buffer)
if (indexerNormTy->hasTops() || indexerNormTy->hasErrors())
return {std::nullopt, true, {}, {}};
// indexer can be a union —> break them down into a vector
const std::vector<TypeId>* typesToFind;
const std::vector<TypeId> singleType{indexerTy};
if (auto unionTy = get<UnionType>(indexerTy))
typesToFind = &unionTy->options;
else
typesToFind = &singleType;
DenseHashSet<TypeId> properties{{}}; // vector of types that will be returned
bool isRaw = false;
if (indexeeNormTy->hasClasses())
{
LUAU_ASSERT(!indexeeNormTy->hasTables());
// at least one class is guaranteed to be in the iterator by .hasClasses()
for (auto classesIter = indexeeNormTy->classes.ordering.begin(); classesIter != indexeeNormTy->classes.ordering.end(); ++classesIter)
{
auto classTy = get<ClassType>(*classesIter);
if (!classTy)
{
LUAU_ASSERT(false); // this should not be possible according to normalization's spec
return {std::nullopt, true, {}, {}};
}
for (TypeId ty : *typesToFind)
{
// Search for all instances of indexer in class->props and class->indexer using `indexInto`
if (searchPropsAndIndexer(ty, classTy->props, classTy->indexer, properties, ctx))
continue; // Indexer was found in this class, so we can move on to the next
// If code reaches here,that means the property not found -> check in the metatable's __index
// findMetatableEntry demands the ability to emit errors, so we must give it
// the necessary state to do that, even if we intend to just eat the errors.
ErrorVec dummy;
std::optional<TypeId> mmType = findMetatableEntry(ctx->builtins, dummy, *classesIter, "__index", Location{});
if (!mmType) // if a metatable does not exist, there is no where else to look
return {std::nullopt, true, {}, {}};
if (!tblIndexInto(ty, *mmType, properties, ctx, isRaw)) // if indexer is not in the metatable, we fail to reduce
return {std::nullopt, true, {}, {}};
}
}
}
if (indexeeNormTy->hasTables())
{
LUAU_ASSERT(!indexeeNormTy->hasClasses());
// at least one table is guaranteed to be in the iterator by .hasTables()
for (auto tablesIter = indexeeNormTy->tables.begin(); tablesIter != indexeeNormTy->tables.end(); ++tablesIter)
{
for (TypeId ty : *typesToFind)
if (!tblIndexInto(ty, *tablesIter, properties, ctx, isRaw))
return {std::nullopt, true, {}, {}};
}
}
// Call `follow()` on each element to resolve all Bound types before returning
std::transform(properties.begin(), properties.end(), properties.begin(), [](TypeId ty) {
return follow(ty);
});
// If the type being reduced to is a single type, no need to union
if (properties.size() == 1)
return {*properties.begin(), false, {}, {}};
return {ctx->arena->addType(UnionType{std::vector<TypeId>(properties.begin(), properties.end())}), false, {}, {}};
}
BuiltinTypeFamilies::BuiltinTypeFamilies()
: notFamily{"not", notFamilyFn}
, lenFamily{"len", lenFamilyFn}
, unmFamily{"unm", unmFamilyFn}
, addFamily{"add", addFamilyFn}
, subFamily{"sub", subFamilyFn}
, mulFamily{"mul", mulFamilyFn}
, divFamily{"div", divFamilyFn}
, idivFamily{"idiv", idivFamilyFn}
, powFamily{"pow", powFamilyFn}
, modFamily{"mod", modFamilyFn}
, concatFamily{"concat", concatFamilyFn}
, andFamily{"and", andFamilyFn}
, orFamily{"or", orFamilyFn}
, ltFamily{"lt", ltFamilyFn}
, leFamily{"le", leFamilyFn}
, eqFamily{"eq", eqFamilyFn}
, refineFamily{"refine", refineFamilyFn}
, singletonFamily{"singleton", singletonFamilyFn}
, unionFamily{"union", unionFamilyFn}
, intersectFamily{"intersect", intersectFamilyFn}
, keyofFamily{"keyof", keyofFamilyFn}
, rawkeyofFamily{"rawkeyof", rawkeyofFamilyFn}
, indexFamily{"index", indexFamilyFn}
{
}
void BuiltinTypeFamilies::addToScope(NotNull<TypeArena> arena, NotNull<Scope> scope) const
{
// make a type function for a one-argument type family
auto mkUnaryTypeFamily = [&](const TypeFamily* family) {
TypeId t = arena->addType(GenericType{"T"});
GenericTypeDefinition genericT{t};
return TypeFun{{genericT}, arena->addType(TypeFamilyInstanceType{NotNull{family}, {t}, {}})};
};
// make a type function for a two-argument type family
auto mkBinaryTypeFamily = [&](const TypeFamily* family) {
TypeId t = arena->addType(GenericType{"T"});
TypeId u = arena->addType(GenericType{"U"});
GenericTypeDefinition genericT{t};
GenericTypeDefinition genericU{u, {t}};
return TypeFun{{genericT, genericU}, arena->addType(TypeFamilyInstanceType{NotNull{family}, {t, u}, {}})};
};
scope->exportedTypeBindings[lenFamily.name] = mkUnaryTypeFamily(&lenFamily);
scope->exportedTypeBindings[unmFamily.name] = mkUnaryTypeFamily(&unmFamily);
scope->exportedTypeBindings[addFamily.name] = mkBinaryTypeFamily(&addFamily);
scope->exportedTypeBindings[subFamily.name] = mkBinaryTypeFamily(&subFamily);
scope->exportedTypeBindings[mulFamily.name] = mkBinaryTypeFamily(&mulFamily);
scope->exportedTypeBindings[divFamily.name] = mkBinaryTypeFamily(&divFamily);
scope->exportedTypeBindings[idivFamily.name] = mkBinaryTypeFamily(&idivFamily);
scope->exportedTypeBindings[powFamily.name] = mkBinaryTypeFamily(&powFamily);
scope->exportedTypeBindings[modFamily.name] = mkBinaryTypeFamily(&modFamily);
scope->exportedTypeBindings[concatFamily.name] = mkBinaryTypeFamily(&concatFamily);
scope->exportedTypeBindings[ltFamily.name] = mkBinaryTypeFamily(&ltFamily);
scope->exportedTypeBindings[leFamily.name] = mkBinaryTypeFamily(&leFamily);
scope->exportedTypeBindings[eqFamily.name] = mkBinaryTypeFamily(&eqFamily);
scope->exportedTypeBindings[keyofFamily.name] = mkUnaryTypeFamily(&keyofFamily);
scope->exportedTypeBindings[rawkeyofFamily.name] = mkUnaryTypeFamily(&rawkeyofFamily);
scope->exportedTypeBindings[indexFamily.name] = mkBinaryTypeFamily(&indexFamily);
}
} // namespace Luau