luau/Analysis/src/Type.cpp
vegorov-rbx c7c986b996
Sync to upstream/release/594 (#1036)
* Fixed `Frontend::markDirty` not working on modules that were not
typechecked yet
* Fixed generic variadic function unification succeeding when it should
have reported an error

New Type Solver:
* Implemented semantic subtyping check for function types

Native Code Generation:
* Improved performance of numerical loops with a constant step
* Simplified IR for `bit32.extract` calls extracting first/last bits
* Improved performance of NaN checks
2023-09-07 17:13:49 -07:00

1282 lines
32 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Type.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Common.h"
#include "Luau/ConstraintSolver.h"
#include "Luau/DenseHash.h"
#include "Luau/Error.h"
#include "Luau/RecursionCounter.h"
#include "Luau/StringUtils.h"
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
#include "Luau/TypePack.h"
#include "Luau/VisitType.h"
#include <algorithm>
#include <optional>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
LUAU_FASTFLAG(DebugLuauFreezeArena)
LUAU_FASTINTVARIABLE(LuauTypeMaximumStringifierLength, 500)
LUAU_FASTINTVARIABLE(LuauTableTypeMaximumStringifierLength, 0)
LUAU_FASTINT(LuauTypeInferRecursionLimit)
LUAU_FASTFLAG(LuauInstantiateInSubtyping)
LUAU_FASTFLAG(LuauNormalizeBlockedTypes)
LUAU_FASTFLAG(DebugLuauReadWriteProperties)
LUAU_FASTFLAGVARIABLE(LuauInitializeStringMetatableInGlobalTypes, false)
namespace Luau
{
// LUAU_NOINLINE prevents unwrapLazy from being inlined into advance below; advance is important to keep inlineable
static LUAU_NOINLINE TypeId unwrapLazy(LazyType* ltv)
{
TypeId unwrapped = ltv->unwrapped.load();
if (unwrapped)
return unwrapped;
ltv->unwrap(*ltv);
unwrapped = ltv->unwrapped.load();
if (!unwrapped)
throw InternalCompilerError("Lazy Type didn't fill in unwrapped type field");
if (get<LazyType>(unwrapped))
throw InternalCompilerError("Lazy Type cannot resolve to another Lazy Type");
return unwrapped;
}
TypeId follow(TypeId t)
{
return follow(t, FollowOption::Normal);
}
TypeId follow(TypeId t, FollowOption followOption)
{
return follow(t, followOption, nullptr, [](const void*, TypeId t) -> TypeId {
return t;
});
}
TypeId follow(TypeId t, const void* context, TypeId (*mapper)(const void*, TypeId))
{
return follow(t, FollowOption::Normal, context, mapper);
}
TypeId follow(TypeId t, FollowOption followOption, const void* context, TypeId (*mapper)(const void*, TypeId))
{
auto advance = [followOption, context, mapper](TypeId ty) -> std::optional<TypeId> {
TypeId mapped = mapper(context, ty);
if (auto btv = get<Unifiable::Bound<TypeId>>(mapped))
return btv->boundTo;
if (auto ttv = get<TableType>(mapped))
return ttv->boundTo;
if (auto ltv = getMutable<LazyType>(mapped); ltv && followOption != FollowOption::DisableLazyTypeThunks)
return unwrapLazy(ltv);
return std::nullopt;
};
TypeId cycleTester = t; // Null once we've determined that there is no cycle
if (auto a = advance(cycleTester))
cycleTester = *a;
else
return t;
if (!advance(cycleTester)) // Short circuit traversal for the rather common case when advance(advance(t)) == null
return cycleTester;
while (true)
{
auto a1 = advance(t);
if (a1)
t = *a1;
else
return t;
if (nullptr != cycleTester)
{
auto a2 = advance(cycleTester);
if (a2)
{
auto a3 = advance(*a2);
if (a3)
cycleTester = *a3;
else
cycleTester = nullptr;
}
else
cycleTester = nullptr;
if (t == cycleTester)
throw InternalCompilerError("Luau::follow detected a Type cycle!!");
}
}
}
std::vector<TypeId> flattenIntersection(TypeId ty)
{
if (!get<IntersectionType>(follow(ty)))
return {ty};
std::unordered_set<TypeId> seen;
std::deque<TypeId> queue{ty};
std::vector<TypeId> result;
while (!queue.empty())
{
TypeId current = follow(queue.front());
queue.pop_front();
if (seen.find(current) != seen.end())
continue;
seen.insert(current);
if (auto itv = get<IntersectionType>(current))
{
for (TypeId ty : itv->parts)
queue.push_back(ty);
}
else
result.push_back(current);
}
return result;
}
bool isPrim(TypeId ty, PrimitiveType::Type primType)
{
auto p = get<PrimitiveType>(follow(ty));
return p && p->type == primType;
}
bool isNil(TypeId ty)
{
return isPrim(ty, PrimitiveType::NilType);
}
bool isBoolean(TypeId ty)
{
if (isPrim(ty, PrimitiveType::Boolean) || get<BooleanSingleton>(get<SingletonType>(follow(ty))))
return true;
if (auto utv = get<UnionType>(follow(ty)))
return std::all_of(begin(utv), end(utv), isBoolean);
return false;
}
bool isNumber(TypeId ty)
{
return isPrim(ty, PrimitiveType::Number);
}
// Returns true when ty is a subtype of string
bool isString(TypeId ty)
{
ty = follow(ty);
if (isPrim(ty, PrimitiveType::String) || get<StringSingleton>(get<SingletonType>(ty)))
return true;
if (auto utv = get<UnionType>(ty))
return std::all_of(begin(utv), end(utv), isString);
return false;
}
// Returns true when ty is a supertype of string
bool maybeString(TypeId ty)
{
ty = follow(ty);
if (isPrim(ty, PrimitiveType::String) || get<AnyType>(ty))
return true;
if (auto utv = get<UnionType>(ty))
return std::any_of(begin(utv), end(utv), maybeString);
return false;
}
bool isThread(TypeId ty)
{
return isPrim(ty, PrimitiveType::Thread);
}
bool isOptional(TypeId ty)
{
if (isNil(ty))
return true;
ty = follow(ty);
if (get<AnyType>(ty) || get<UnknownType>(ty))
return true;
auto utv = get<UnionType>(ty);
if (!utv)
return false;
return std::any_of(begin(utv), end(utv), isOptional);
}
bool isTableIntersection(TypeId ty)
{
if (!get<IntersectionType>(follow(ty)))
return false;
std::vector<TypeId> parts = flattenIntersection(ty);
return std::all_of(parts.begin(), parts.end(), getTableType);
}
bool isOverloadedFunction(TypeId ty)
{
if (!get<IntersectionType>(follow(ty)))
return false;
auto isFunction = [](TypeId part) -> bool {
return get<FunctionType>(part);
};
std::vector<TypeId> parts = flattenIntersection(ty);
return std::all_of(parts.begin(), parts.end(), isFunction);
}
std::optional<TypeId> getMetatable(TypeId type, NotNull<BuiltinTypes> builtinTypes)
{
type = follow(type);
if (const MetatableType* mtType = get<MetatableType>(type))
return mtType->metatable;
else if (const ClassType* classType = get<ClassType>(type))
return classType->metatable;
else if (isString(type))
{
auto ptv = get<PrimitiveType>(builtinTypes->stringType);
LUAU_ASSERT(ptv && ptv->metatable);
return ptv->metatable;
}
return std::nullopt;
}
const TableType* getTableType(TypeId type)
{
type = follow(type);
if (const TableType* ttv = get<TableType>(type))
return ttv;
else if (const MetatableType* mtv = get<MetatableType>(type))
return get<TableType>(follow(mtv->table));
else
return nullptr;
}
TableType* getMutableTableType(TypeId type)
{
return const_cast<TableType*>(getTableType(type));
}
const std::string* getName(TypeId type)
{
type = follow(type);
if (auto mtv = get<MetatableType>(type))
{
if (mtv->syntheticName)
return &*mtv->syntheticName;
type = follow(mtv->table);
}
if (auto ttv = get<TableType>(type))
{
if (ttv->name)
return &*ttv->name;
if (ttv->syntheticName)
return &*ttv->syntheticName;
}
return nullptr;
}
std::optional<ModuleName> getDefinitionModuleName(TypeId type)
{
type = follow(type);
if (auto ttv = get<TableType>(type))
{
if (!ttv->definitionModuleName.empty())
return ttv->definitionModuleName;
}
else if (auto ftv = get<FunctionType>(type))
{
if (ftv->definition)
return ftv->definition->definitionModuleName;
}
else if (auto ctv = get<ClassType>(type))
{
if (!ctv->definitionModuleName.empty())
return ctv->definitionModuleName;
}
return std::nullopt;
}
bool isSubset(const UnionType& super, const UnionType& sub)
{
std::unordered_set<TypeId> superTypes;
for (TypeId id : super.options)
superTypes.insert(id);
for (TypeId id : sub.options)
{
if (superTypes.find(id) == superTypes.end())
return false;
}
return true;
}
bool hasPrimitiveTypeInIntersection(TypeId ty, PrimitiveType::Type primTy)
{
TypeId tf = follow(ty);
if (isPrim(tf, primTy))
return true;
for (auto t : flattenIntersection(tf))
return isPrim(follow(t), primTy);
return false;
}
// When typechecking an assignment `x = e`, we typecheck `x:T` and `e:U`,
// then instantiate U if `isGeneric(U)` is true, and `maybeGeneric(T)` is false.
bool isGeneric(TypeId ty)
{
LUAU_ASSERT(!FFlag::LuauInstantiateInSubtyping);
ty = follow(ty);
if (auto ftv = get<FunctionType>(ty))
return ftv->generics.size() > 0 || ftv->genericPacks.size() > 0;
else
// TODO: recurse on type synonyms CLI-39914
// TODO: recurse on table types CLI-39914
return false;
}
bool maybeGeneric(TypeId ty)
{
LUAU_ASSERT(!FFlag::LuauInstantiateInSubtyping);
ty = follow(ty);
if (get<FreeType>(ty))
return true;
if (auto ttv = get<TableType>(ty))
{
// TODO: recurse on table types CLI-39914
(void)ttv;
return true;
}
if (auto itv = get<IntersectionType>(ty))
{
return std::any_of(begin(itv), end(itv), maybeGeneric);
}
return isGeneric(ty);
}
bool maybeSingleton(TypeId ty)
{
ty = follow(ty);
if (get<SingletonType>(ty))
return true;
if (const UnionType* utv = get<UnionType>(ty))
for (TypeId option : utv)
if (get<SingletonType>(follow(option)))
return true;
return false;
}
bool hasLength(TypeId ty, DenseHashSet<TypeId>& seen, int* recursionCount)
{
RecursionLimiter _rl(recursionCount, FInt::LuauTypeInferRecursionLimit);
ty = follow(ty);
if (seen.contains(ty))
return true;
if (isString(ty) || isPrim(ty, PrimitiveType::Table) || get<AnyType>(ty) || get<TableType>(ty) || get<MetatableType>(ty))
return true;
if (auto uty = get<UnionType>(ty))
{
seen.insert(ty);
for (TypeId part : uty->options)
{
if (!hasLength(part, seen, recursionCount))
return false;
}
return true;
}
if (auto ity = get<IntersectionType>(ty))
{
seen.insert(ty);
for (TypeId part : ity->parts)
{
if (hasLength(part, seen, recursionCount))
return true;
}
return false;
}
return false;
}
FreeType::FreeType(TypeLevel level)
: index(Unifiable::freshIndex())
, level(level)
, scope(nullptr)
{
}
FreeType::FreeType(Scope* scope)
: index(Unifiable::freshIndex())
, level{}
, scope(scope)
{
}
FreeType::FreeType(Scope* scope, TypeLevel level)
: index(Unifiable::freshIndex())
, level(level)
, scope(scope)
{
}
FreeType::FreeType(Scope* scope, TypeId lowerBound, TypeId upperBound)
: index(Unifiable::freshIndex())
, scope(scope)
, lowerBound(lowerBound)
, upperBound(upperBound)
{
}
GenericType::GenericType()
: index(Unifiable::freshIndex())
, name("g" + std::to_string(index))
{
}
GenericType::GenericType(TypeLevel level)
: index(Unifiable::freshIndex())
, level(level)
, name("g" + std::to_string(index))
{
}
GenericType::GenericType(const Name& name)
: index(Unifiable::freshIndex())
, name(name)
, explicitName(true)
{
}
GenericType::GenericType(Scope* scope)
: index(Unifiable::freshIndex())
, scope(scope)
{
}
GenericType::GenericType(TypeLevel level, const Name& name)
: index(Unifiable::freshIndex())
, level(level)
, name(name)
, explicitName(true)
{
}
GenericType::GenericType(Scope* scope, const Name& name)
: index(Unifiable::freshIndex())
, scope(scope)
, name(name)
, explicitName(true)
{
}
BlockedType::BlockedType()
: index(FFlag::LuauNormalizeBlockedTypes ? Unifiable::freshIndex() : ++DEPRECATED_nextIndex)
{
}
int BlockedType::DEPRECATED_nextIndex = 0;
PendingExpansionType::PendingExpansionType(
std::optional<AstName> prefix, AstName name, std::vector<TypeId> typeArguments, std::vector<TypePackId> packArguments)
: prefix(prefix)
, name(name)
, typeArguments(typeArguments)
, packArguments(packArguments)
, index(++nextIndex)
{
}
size_t PendingExpansionType::nextIndex = 0;
FunctionType::FunctionType(TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(TypeLevel level, TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, level(level)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(
TypeLevel level, Scope* scope, TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, level(level)
, scope(scope)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes, TypePackId retTypes,
std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, generics(generics)
, genericPacks(genericPacks)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(TypeLevel level, std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes,
TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, generics(generics)
, genericPacks(genericPacks)
, level(level)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(TypeLevel level, Scope* scope, std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes,
TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, generics(generics)
, genericPacks(genericPacks)
, level(level)
, scope(scope)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
Property::Property() {}
Property::Property(TypeId readTy, bool deprecated, const std::string& deprecatedSuggestion, std::optional<Location> location, const Tags& tags,
const std::optional<std::string>& documentationSymbol)
: deprecated(deprecated)
, deprecatedSuggestion(deprecatedSuggestion)
, location(location)
, tags(tags)
, documentationSymbol(documentationSymbol)
, readTy(readTy)
, writeTy(readTy)
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
}
Property Property::readonly(TypeId ty)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.readTy = ty;
return p;
}
Property Property::writeonly(TypeId ty)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.writeTy = ty;
return p;
}
Property Property::rw(TypeId ty)
{
return Property::rw(ty, ty);
}
Property Property::rw(TypeId read, TypeId write)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.readTy = read;
p.writeTy = write;
return p;
}
Property Property::create(std::optional<TypeId> read, std::optional<TypeId> write)
{
if (read && !write)
return Property::readonly(*read);
else if (!read && write)
return Property::writeonly(*write);
else
{
LUAU_ASSERT(read && write);
return Property::rw(*read, *write);
}
}
TypeId Property::type() const
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(readTy);
return *readTy;
}
void Property::setType(TypeId ty)
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
readTy = ty;
}
std::optional<TypeId> Property::readType() const
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(!(bool(readTy) && bool(writeTy)));
return readTy;
}
std::optional<TypeId> Property::writeType() const
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(!(bool(readTy) && bool(writeTy)));
return writeTy;
}
bool Property::isShared() const
{
return readTy && writeTy && readTy == writeTy;
}
TableType::TableType(TableState state, TypeLevel level, Scope* scope)
: state(state)
, level(level)
, scope(scope)
{
}
TableType::TableType(const Props& props, const std::optional<TableIndexer>& indexer, TypeLevel level, TableState state)
: props(props)
, indexer(indexer)
, state(state)
, level(level)
{
}
TableType::TableType(const Props& props, const std::optional<TableIndexer>& indexer, TypeLevel level, Scope* scope, TableState state)
: props(props)
, indexer(indexer)
, state(state)
, level(level)
, scope(scope)
{
}
// Test Types for equivalence
// More complex than we'd like because Types can self-reference.
bool areSeen(SeenSet& seen, const void* lhs, const void* rhs)
{
if (lhs == rhs)
return true;
auto p = std::make_pair(const_cast<void*>(lhs), const_cast<void*>(rhs));
if (seen.find(p) != seen.end())
return true;
seen.insert(p);
return false;
}
bool areEqual(SeenSet& seen, const FunctionType& lhs, const FunctionType& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
// TODO: check generics CLI-39915
if (!areEqual(seen, *lhs.argTypes, *rhs.argTypes))
return false;
if (!areEqual(seen, *lhs.retTypes, *rhs.retTypes))
return false;
return true;
}
bool areEqual(SeenSet& seen, const TableType& lhs, const TableType& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
if (lhs.state != rhs.state)
return false;
if (lhs.props.size() != rhs.props.size())
return false;
if (bool(lhs.indexer) != bool(rhs.indexer))
return false;
if (lhs.indexer && rhs.indexer)
{
if (!areEqual(seen, *lhs.indexer->indexType, *rhs.indexer->indexType))
return false;
if (!areEqual(seen, *lhs.indexer->indexResultType, *rhs.indexer->indexResultType))
return false;
}
auto l = lhs.props.begin();
auto r = rhs.props.begin();
while (l != lhs.props.end())
{
if (l->first != r->first)
return false;
if (!areEqual(seen, *l->second.type(), *r->second.type()))
return false;
++l;
++r;
}
return true;
}
static bool areEqual(SeenSet& seen, const MetatableType& lhs, const MetatableType& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
return areEqual(seen, *lhs.table, *rhs.table) && areEqual(seen, *lhs.metatable, *rhs.metatable);
}
bool areEqual(SeenSet& seen, const Type& lhs, const Type& rhs)
{
if (auto bound = get_if<BoundType>(&lhs.ty))
return areEqual(seen, *bound->boundTo, rhs);
if (auto bound = get_if<BoundType>(&rhs.ty))
return areEqual(seen, lhs, *bound->boundTo);
if (lhs.ty.index() != rhs.ty.index())
return false;
{
const FreeType* lf = get_if<FreeType>(&lhs.ty);
const FreeType* rf = get_if<FreeType>(&rhs.ty);
if (lf && rf)
return lf->index == rf->index;
}
{
const GenericType* lg = get_if<GenericType>(&lhs.ty);
const GenericType* rg = get_if<GenericType>(&rhs.ty);
if (lg && rg)
return lg->index == rg->index;
}
{
const PrimitiveType* lp = get_if<PrimitiveType>(&lhs.ty);
const PrimitiveType* rp = get_if<PrimitiveType>(&rhs.ty);
if (lp && rp)
return lp->type == rp->type;
}
{
const GenericType* lg = get_if<GenericType>(&lhs.ty);
const GenericType* rg = get_if<GenericType>(&rhs.ty);
if (lg && rg)
return lg->index == rg->index;
}
{
const ErrorType* le = get_if<ErrorType>(&lhs.ty);
const ErrorType* re = get_if<ErrorType>(&rhs.ty);
if (le && re)
return le->index == re->index;
}
{
const FunctionType* lf = get_if<FunctionType>(&lhs.ty);
const FunctionType* rf = get_if<FunctionType>(&rhs.ty);
if (lf && rf)
return areEqual(seen, *lf, *rf);
}
{
const TableType* lt = get_if<TableType>(&lhs.ty);
const TableType* rt = get_if<TableType>(&rhs.ty);
if (lt && rt)
return areEqual(seen, *lt, *rt);
}
{
const MetatableType* lmt = get_if<MetatableType>(&lhs.ty);
const MetatableType* rmt = get_if<MetatableType>(&rhs.ty);
if (lmt && rmt)
return areEqual(seen, *lmt, *rmt);
}
if (get_if<AnyType>(&lhs.ty) && get_if<AnyType>(&rhs.ty))
return true;
return false;
}
Type* asMutable(TypeId ty)
{
return const_cast<Type*>(ty);
}
bool Type::operator==(const Type& rhs) const
{
SeenSet seen;
return areEqual(seen, *this, rhs);
}
bool Type::operator!=(const Type& rhs) const
{
SeenSet seen;
return !areEqual(seen, *this, rhs);
}
Type& Type::operator=(const TypeVariant& rhs)
{
ty = rhs;
return *this;
}
Type& Type::operator=(TypeVariant&& rhs)
{
ty = std::move(rhs);
return *this;
}
Type& Type::operator=(const Type& rhs)
{
LUAU_ASSERT(owningArena == rhs.owningArena);
LUAU_ASSERT(!rhs.persistent);
reassign(rhs);
return *this;
}
TypeId makeFunction(TypeArena& arena, std::optional<TypeId> selfType, std::initializer_list<TypeId> generics,
std::initializer_list<TypePackId> genericPacks, std::initializer_list<TypeId> paramTypes, std::initializer_list<std::string> paramNames,
std::initializer_list<TypeId> retTypes);
TypeId makeStringMetatable(NotNull<BuiltinTypes> builtinTypes); // BuiltinDefinitions.cpp
BuiltinTypes::BuiltinTypes()
: arena(new TypeArena)
, debugFreezeArena(FFlag::DebugLuauFreezeArena)
, nilType(arena->addType(Type{PrimitiveType{PrimitiveType::NilType}, /*persistent*/ true}))
, numberType(arena->addType(Type{PrimitiveType{PrimitiveType::Number}, /*persistent*/ true}))
, stringType(arena->addType(Type{PrimitiveType{PrimitiveType::String}, /*persistent*/ true}))
, booleanType(arena->addType(Type{PrimitiveType{PrimitiveType::Boolean}, /*persistent*/ true}))
, threadType(arena->addType(Type{PrimitiveType{PrimitiveType::Thread}, /*persistent*/ true}))
, functionType(arena->addType(Type{PrimitiveType{PrimitiveType::Function}, /*persistent*/ true}))
, classType(arena->addType(Type{ClassType{"class", {}, std::nullopt, std::nullopt, {}, {}, {}}, /*persistent*/ true}))
, tableType(arena->addType(Type{PrimitiveType{PrimitiveType::Table}, /*persistent*/ true}))
, emptyTableType(arena->addType(Type{TableType{TableState::Sealed, TypeLevel{}, nullptr}, /*persistent*/ true}))
, trueType(arena->addType(Type{SingletonType{BooleanSingleton{true}}, /*persistent*/ true}))
, falseType(arena->addType(Type{SingletonType{BooleanSingleton{false}}, /*persistent*/ true}))
, anyType(arena->addType(Type{AnyType{}, /*persistent*/ true}))
, unknownType(arena->addType(Type{UnknownType{}, /*persistent*/ true}))
, neverType(arena->addType(Type{NeverType{}, /*persistent*/ true}))
, errorType(arena->addType(Type{ErrorType{}, /*persistent*/ true}))
, falsyType(arena->addType(Type{UnionType{{falseType, nilType}}, /*persistent*/ true}))
, truthyType(arena->addType(Type{NegationType{falsyType}, /*persistent*/ true}))
, optionalNumberType(arena->addType(Type{UnionType{{numberType, nilType}}, /*persistent*/ true}))
, optionalStringType(arena->addType(Type{UnionType{{stringType, nilType}}, /*persistent*/ true}))
, emptyTypePack(arena->addTypePack(TypePackVar{TypePack{{}}, /*persistent*/ true}))
, anyTypePack(arena->addTypePack(TypePackVar{VariadicTypePack{anyType}, /*persistent*/ true}))
, neverTypePack(arena->addTypePack(TypePackVar{VariadicTypePack{neverType}, /*persistent*/ true}))
, uninhabitableTypePack(arena->addTypePack(TypePackVar{TypePack{{neverType}, neverTypePack}, /*persistent*/ true}))
, errorTypePack(arena->addTypePack(TypePackVar{Unifiable::Error{}, /*persistent*/ true}))
{
if (!FFlag::LuauInitializeStringMetatableInGlobalTypes)
{
TypeId stringMetatable = makeStringMetatable(NotNull{this});
asMutable(stringType)->ty = PrimitiveType{PrimitiveType::String, stringMetatable};
persist(stringMetatable);
}
freeze(*arena);
}
BuiltinTypes::~BuiltinTypes()
{
// Destroy the arena with the same memory management flags it was created with
bool prevFlag = FFlag::DebugLuauFreezeArena;
FFlag::DebugLuauFreezeArena.value = debugFreezeArena;
unfreeze(*arena);
arena.reset(nullptr);
FFlag::DebugLuauFreezeArena.value = prevFlag;
}
TypeId BuiltinTypes::errorRecoveryType() const
{
return errorType;
}
TypePackId BuiltinTypes::errorRecoveryTypePack() const
{
return errorTypePack;
}
TypeId BuiltinTypes::errorRecoveryType(TypeId guess) const
{
return guess;
}
TypePackId BuiltinTypes::errorRecoveryTypePack(TypePackId guess) const
{
return guess;
}
void persist(TypeId ty)
{
std::deque<TypeId> queue{ty};
while (!queue.empty())
{
TypeId t = queue.front();
queue.pop_front();
if (t->persistent)
continue;
asMutable(t)->persistent = true;
if (auto btv = get<BoundType>(t))
queue.push_back(btv->boundTo);
else if (auto ftv = get<FunctionType>(t))
{
persist(ftv->argTypes);
persist(ftv->retTypes);
}
else if (auto ttv = get<TableType>(t))
{
LUAU_ASSERT(ttv->state != TableState::Free && ttv->state != TableState::Unsealed);
for (const auto& [_name, prop] : ttv->props)
queue.push_back(prop.type());
if (ttv->indexer)
{
queue.push_back(ttv->indexer->indexType);
queue.push_back(ttv->indexer->indexResultType);
}
}
else if (auto ctv = get<ClassType>(t))
{
for (const auto& [_name, prop] : ctv->props)
queue.push_back(prop.type());
}
else if (auto utv = get<UnionType>(t))
{
for (TypeId opt : utv->options)
queue.push_back(opt);
}
else if (auto itv = get<IntersectionType>(t))
{
for (TypeId opt : itv->parts)
queue.push_back(opt);
}
else if (auto mtv = get<MetatableType>(t))
{
queue.push_back(mtv->table);
queue.push_back(mtv->metatable);
}
else if (get<GenericType>(t) || get<AnyType>(t) || get<FreeType>(t) || get<SingletonType>(t) || get<PrimitiveType>(t) || get<NegationType>(t))
{
}
else
{
LUAU_ASSERT(!"TypeId is not supported in a persist call");
}
}
}
void persist(TypePackId tp)
{
if (tp->persistent)
return;
asMutable(tp)->persistent = true;
if (auto p = get<TypePack>(tp))
{
for (TypeId ty : p->head)
persist(ty);
if (p->tail)
persist(*p->tail);
}
else if (auto vtp = get<VariadicTypePack>(tp))
{
persist(vtp->ty);
}
else if (get<GenericTypePack>(tp))
{
}
else
{
LUAU_ASSERT(!"TypePackId is not supported in a persist call");
}
}
const TypeLevel* getLevel(TypeId ty)
{
ty = follow(ty);
if (auto ftv = get<FreeType>(ty))
return &ftv->level;
else if (auto ttv = get<TableType>(ty))
return &ttv->level;
else if (auto ftv = get<FunctionType>(ty))
return &ftv->level;
else
return nullptr;
}
TypeLevel* getMutableLevel(TypeId ty)
{
return const_cast<TypeLevel*>(getLevel(ty));
}
std::optional<TypeLevel> getLevel(TypePackId tp)
{
tp = follow(tp);
if (auto ftv = get<FreeTypePack>(tp))
return ftv->level;
else
return std::nullopt;
}
const Property* lookupClassProp(const ClassType* cls, const Name& name)
{
while (cls)
{
auto it = cls->props.find(name);
if (it != cls->props.end())
return &it->second;
if (cls->parent)
cls = get<ClassType>(*cls->parent);
else
return nullptr;
LUAU_ASSERT(cls);
}
return nullptr;
}
bool isSubclass(const ClassType* cls, const ClassType* parent)
{
while (cls)
{
if (cls == parent)
return true;
else if (!cls->parent)
return false;
cls = get<ClassType>(*cls->parent);
LUAU_ASSERT(cls);
}
return false;
}
const std::vector<TypeId>& getTypes(const UnionType* utv)
{
return utv->options;
}
const std::vector<TypeId>& getTypes(const IntersectionType* itv)
{
return itv->parts;
}
UnionTypeIterator begin(const UnionType* utv)
{
return UnionTypeIterator{utv};
}
UnionTypeIterator end(const UnionType* utv)
{
return UnionTypeIterator{};
}
IntersectionTypeIterator begin(const IntersectionType* itv)
{
return IntersectionTypeIterator{itv};
}
IntersectionTypeIterator end(const IntersectionType* itv)
{
return IntersectionTypeIterator{};
}
TypeId freshType(NotNull<TypeArena> arena, NotNull<BuiltinTypes> builtinTypes, Scope* scope)
{
return arena->addType(FreeType{scope, builtinTypes->neverType, builtinTypes->unknownType});
}
std::vector<TypeId> filterMap(TypeId type, TypeIdPredicate predicate)
{
type = follow(type);
if (auto utv = get<UnionType>(type))
{
std::set<TypeId> options;
for (TypeId option : utv)
if (auto out = predicate(follow(option)))
options.insert(*out);
return std::vector<TypeId>(options.begin(), options.end());
}
else if (auto out = predicate(type))
return {*out};
return {};
}
static Tags* getTags(TypeId ty)
{
ty = follow(ty);
if (auto ftv = getMutable<FunctionType>(ty))
return &ftv->tags;
else if (auto ttv = getMutable<TableType>(ty))
return &ttv->tags;
else if (auto ctv = getMutable<ClassType>(ty))
return &ctv->tags;
return nullptr;
}
void attachTag(TypeId ty, const std::string& tagName)
{
if (auto tags = getTags(ty))
tags->push_back(tagName);
else
LUAU_ASSERT(!"This TypeId does not support tags");
}
void attachTag(Property& prop, const std::string& tagName)
{
prop.tags.push_back(tagName);
}
// We would ideally not expose this because it could cause a footgun.
// If the Base class has a tag and you ask if Derived has that tag, it would return false.
// Unfortunately, there's already use cases that's hard to disentangle. For now, we expose it.
bool hasTag(const Tags& tags, const std::string& tagName)
{
return std::find(tags.begin(), tags.end(), tagName) != tags.end();
}
bool hasTag(TypeId ty, const std::string& tagName)
{
ty = follow(ty);
// We special case classes because getTags only returns a pointer to one vector of tags.
// But classes has multiple vector of tags, represented throughout the hierarchy.
if (auto ctv = get<ClassType>(ty))
{
while (ctv)
{
if (hasTag(ctv->tags, tagName))
return true;
else if (!ctv->parent)
return false;
ctv = get<ClassType>(*ctv->parent);
LUAU_ASSERT(ctv);
}
}
else if (auto tags = getTags(ty))
return hasTag(*tags, tagName);
return false;
}
bool hasTag(const Property& prop, const std::string& tagName)
{
return hasTag(prop.tags, tagName);
}
bool TypeFun::operator==(const TypeFun& rhs) const
{
return type == rhs.type && typeParams == rhs.typeParams && typePackParams == rhs.typePackParams;
}
bool GenericTypeDefinition::operator==(const GenericTypeDefinition& rhs) const
{
return ty == rhs.ty && defaultValue == rhs.defaultValue;
}
bool GenericTypePackDefinition::operator==(const GenericTypePackDefinition& rhs) const
{
return tp == rhs.tp && defaultValue == rhs.defaultValue;
}
} // namespace Luau