luau/Analysis/src/TypeChecker2.cpp
Hunter Goldstein c759cd5581
Some checks failed
benchmark / callgrind (map[branch:main name:luau-lang/benchmark-data], ubuntu-22.04) (push) Has been cancelled
build / macos (push) Has been cancelled
build / macos-arm (push) Has been cancelled
build / ubuntu (push) Has been cancelled
build / windows (Win32) (push) Has been cancelled
build / windows (x64) (push) Has been cancelled
build / coverage (push) Has been cancelled
build / web (push) Has been cancelled
release / macos (push) Has been cancelled
release / ubuntu (push) Has been cancelled
release / windows (push) Has been cancelled
release / web (push) Has been cancelled
Sync to upstream/release/656 (#1612)
# General

All code has been re-formatted by `clang-format`; this is not
mechanically enforced, so Luau may go out-of-sync over the course of the
year.

# New Solver

* Track free types interior to a block of code on `Scope`, which should
reduce the number of free types that remain un-generalized after type
checking is complete (e.g.: less errors like `'a <: number is
incompatible with number`).

# Autocomplete

* Fragment autocomplete now does *not* provide suggestions within
comments (matching non-fragment autocomplete behavior).
* Autocomplete now respects iteration and recursion limits (some hangs
will now early exit with a "unification too complex error," some crashes
will now become internal complier exceptions).

# Runtime

* Add a limit to how many Luau codegen slot nodes addresses can be in
use at the same time (fixes #1605, fixes #1558).
* Added constant folding for vector arithmetic (fixes #1553).
* Added support for `buffer.readbits` and `buffer.writebits` (see:
https://github.com/luau-lang/rfcs/pull/18).

---

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: David Cope <dcope@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2025-01-10 11:34:39 -08:00

3197 lines
104 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/TypeChecker2.h"
#include "Luau/Ast.h"
#include "Luau/AstQuery.h"
#include "Luau/Common.h"
#include "Luau/DcrLogger.h"
#include "Luau/DenseHash.h"
#include "Luau/Error.h"
#include "Luau/InsertionOrderedMap.h"
#include "Luau/Instantiation.h"
#include "Luau/Metamethods.h"
#include "Luau/Normalize.h"
#include "Luau/OverloadResolution.h"
#include "Luau/Subtyping.h"
#include "Luau/TimeTrace.h"
#include "Luau/ToString.h"
#include "Luau/TxnLog.h"
#include "Luau/Type.h"
#include "Luau/TypeFunction.h"
#include "Luau/TypeFunctionReductionGuesser.h"
#include "Luau/TypeFwd.h"
#include "Luau/TypePack.h"
#include "Luau/TypePath.h"
#include "Luau/TypeUtils.h"
#include "Luau/TypeOrPack.h"
#include "Luau/VisitType.h"
#include <algorithm>
#include <iostream>
#include <ostream>
LUAU_FASTFLAG(DebugLuauMagicTypes)
LUAU_FASTFLAG(InferGlobalTypes)
LUAU_FASTFLAGVARIABLE(LuauTableKeysAreRValues)
namespace Luau
{
// TypeInfer.h
// TODO move these
using PrintLineProc = void (*)(const std::string&);
extern PrintLineProc luauPrintLine;
/* Push a scope onto the end of a stack for the lifetime of the StackPusher instance.
* TypeChecker2 uses this to maintain knowledge about which scope encloses every
* given AstNode.
*/
struct StackPusher
{
std::vector<NotNull<Scope>>* stack;
NotNull<Scope> scope;
explicit StackPusher(std::vector<NotNull<Scope>>& stack, Scope* scope)
: stack(&stack)
, scope(scope)
{
stack.push_back(NotNull{scope});
}
~StackPusher()
{
if (stack)
{
LUAU_ASSERT(stack->back() == scope);
stack->pop_back();
}
}
StackPusher(const StackPusher&) = delete;
StackPusher&& operator=(const StackPusher&) = delete;
StackPusher(StackPusher&& other)
: stack(std::exchange(other.stack, nullptr))
, scope(other.scope)
{
}
};
struct PropertyTypes
{
// a vector of all the types assigned to the given property.
std::vector<TypeId> typesOfProp;
// a vector of all the types that are missing the given property.
std::vector<TypeId> missingProp;
bool foundOneProp() const
{
return !typesOfProp.empty();
}
bool noneMissingProp() const
{
return missingProp.empty();
}
bool foundMissingProp() const
{
return !missingProp.empty();
}
};
struct PropertyType
{
NormalizationResult present;
std::optional<TypeId> result;
};
static std::optional<std::string> getIdentifierOfBaseVar(AstExpr* node)
{
if (AstExprGlobal* expr = node->as<AstExprGlobal>())
return expr->name.value;
if (AstExprLocal* expr = node->as<AstExprLocal>())
return expr->local->name.value;
if (AstExprIndexExpr* expr = node->as<AstExprIndexExpr>())
return getIdentifierOfBaseVar(expr->expr);
if (AstExprIndexName* expr = node->as<AstExprIndexName>())
return getIdentifierOfBaseVar(expr->expr);
return std::nullopt;
}
template<typename T>
bool areEquivalent(const T& a, const T& b)
{
if (a.function != b.function)
return false;
if (a.typeArguments.size() != b.typeArguments.size() || a.packArguments.size() != b.packArguments.size())
return false;
for (size_t i = 0; i < a.typeArguments.size(); ++i)
{
if (follow(a.typeArguments[i]) != follow(b.typeArguments[i]))
return false;
}
for (size_t i = 0; i < a.packArguments.size(); ++i)
{
if (follow(a.packArguments[i]) != follow(b.packArguments[i]))
return false;
}
return true;
}
struct TypeFunctionFinder : TypeOnceVisitor
{
DenseHashSet<TypeId> mentionedFunctions{nullptr};
DenseHashSet<TypePackId> mentionedFunctionPacks{nullptr};
bool visit(TypeId ty, const TypeFunctionInstanceType&) override
{
mentionedFunctions.insert(ty);
return true;
}
bool visit(TypePackId tp, const TypeFunctionInstanceTypePack&) override
{
mentionedFunctionPacks.insert(tp);
return true;
}
};
struct InternalTypeFunctionFinder : TypeOnceVisitor
{
DenseHashSet<TypeId> internalFunctions{nullptr};
DenseHashSet<TypePackId> internalPackFunctions{nullptr};
DenseHashSet<TypeId> mentionedFunctions{nullptr};
DenseHashSet<TypePackId> mentionedFunctionPacks{nullptr};
InternalTypeFunctionFinder(std::vector<TypeId>& declStack)
{
TypeFunctionFinder f;
for (TypeId fn : declStack)
f.traverse(fn);
mentionedFunctions = std::move(f.mentionedFunctions);
mentionedFunctionPacks = std::move(f.mentionedFunctionPacks);
}
bool visit(TypeId ty, const TypeFunctionInstanceType& tfit) override
{
bool hasGeneric = false;
for (TypeId p : tfit.typeArguments)
{
if (get<GenericType>(follow(p)))
{
hasGeneric = true;
break;
}
}
for (TypePackId p : tfit.packArguments)
{
if (get<GenericTypePack>(follow(p)))
{
hasGeneric = true;
break;
}
}
if (hasGeneric)
{
for (TypeId mentioned : mentionedFunctions)
{
const TypeFunctionInstanceType* mentionedTfit = get<TypeFunctionInstanceType>(mentioned);
LUAU_ASSERT(mentionedTfit);
if (areEquivalent(tfit, *mentionedTfit))
{
return true;
}
}
internalFunctions.insert(ty);
}
return true;
}
bool visit(TypePackId tp, const TypeFunctionInstanceTypePack& tfitp) override
{
bool hasGeneric = false;
for (TypeId p : tfitp.typeArguments)
{
if (get<GenericType>(follow(p)))
{
hasGeneric = true;
break;
}
}
for (TypePackId p : tfitp.packArguments)
{
if (get<GenericTypePack>(follow(p)))
{
hasGeneric = true;
break;
}
}
if (hasGeneric)
{
for (TypePackId mentioned : mentionedFunctionPacks)
{
const TypeFunctionInstanceTypePack* mentionedTfitp = get<TypeFunctionInstanceTypePack>(mentioned);
LUAU_ASSERT(mentionedTfitp);
if (areEquivalent(tfitp, *mentionedTfitp))
{
return true;
}
}
internalPackFunctions.insert(tp);
}
return true;
}
};
void check(
NotNull<BuiltinTypes> builtinTypes,
NotNull<Simplifier> simplifier,
NotNull<TypeFunctionRuntime> typeFunctionRuntime,
NotNull<UnifierSharedState> unifierState,
NotNull<TypeCheckLimits> limits,
DcrLogger* logger,
const SourceModule& sourceModule,
Module* module
)
{
LUAU_TIMETRACE_SCOPE("check", "Typechecking");
TypeChecker2 typeChecker{builtinTypes, simplifier, typeFunctionRuntime, unifierState, limits, logger, &sourceModule, module};
typeChecker.visit(sourceModule.root);
// if the only error we're producing is one about constraint solving being incomplete, we can silence it.
// this means we won't give this warning if types seem totally nonsensical, but there are no other errors.
// this is probably, on the whole, a good decision to not annoy users though.
if (module->errors.size() == 1 && get<ConstraintSolvingIncompleteError>(module->errors[0]))
module->errors.clear();
unfreeze(module->interfaceTypes);
copyErrors(module->errors, module->interfaceTypes, builtinTypes);
freeze(module->interfaceTypes);
}
TypeChecker2::TypeChecker2(
NotNull<BuiltinTypes> builtinTypes,
NotNull<Simplifier> simplifier,
NotNull<TypeFunctionRuntime> typeFunctionRuntime,
NotNull<UnifierSharedState> unifierState,
NotNull<TypeCheckLimits> limits,
DcrLogger* logger,
const SourceModule* sourceModule,
Module* module
)
: builtinTypes(builtinTypes)
, simplifier(simplifier)
, typeFunctionRuntime(typeFunctionRuntime)
, logger(logger)
, limits(limits)
, ice(unifierState->iceHandler)
, sourceModule(sourceModule)
, module(module)
, normalizer{&module->internalTypes, builtinTypes, unifierState, /* cacheInhabitance */ true}
, _subtyping{builtinTypes, NotNull{&module->internalTypes}, simplifier, NotNull{&normalizer}, typeFunctionRuntime, NotNull{unifierState->iceHandler}}
, subtyping(&_subtyping)
{
}
bool TypeChecker2::allowsNoReturnValues(const TypePackId tp)
{
for (TypeId ty : tp)
{
if (!get<ErrorType>(follow(ty)))
return false;
}
return true;
}
Location TypeChecker2::getEndLocation(const AstExprFunction* function)
{
Location loc = function->location;
if (loc.begin.line != loc.end.line)
{
Position begin = loc.end;
begin.column = std::max(0u, begin.column - 3);
loc = Location(begin, 3);
}
return loc;
}
bool TypeChecker2::isErrorCall(const AstExprCall* call)
{
const AstExprGlobal* global = call->func->as<AstExprGlobal>();
if (!global)
return false;
if (global->name == "error")
return true;
else if (global->name == "assert")
{
// assert() will error because it is missing the first argument
if (call->args.size == 0)
return true;
if (AstExprConstantBool* expr = call->args.data[0]->as<AstExprConstantBool>())
if (!expr->value)
return true;
}
return false;
}
bool TypeChecker2::hasBreak(AstStat* node)
{
if (AstStatBlock* stat = node->as<AstStatBlock>())
{
for (size_t i = 0; i < stat->body.size; ++i)
{
if (hasBreak(stat->body.data[i]))
return true;
}
return false;
}
if (node->is<AstStatBreak>())
return true;
if (AstStatIf* stat = node->as<AstStatIf>())
{
if (hasBreak(stat->thenbody))
return true;
if (stat->elsebody && hasBreak(stat->elsebody))
return true;
return false;
}
return false;
}
const AstStat* TypeChecker2::getFallthrough(const AstStat* node)
{
if (const AstStatBlock* stat = node->as<AstStatBlock>())
{
if (stat->body.size == 0)
return stat;
for (size_t i = 0; i < stat->body.size - 1; ++i)
{
if (getFallthrough(stat->body.data[i]) == nullptr)
return nullptr;
}
return getFallthrough(stat->body.data[stat->body.size - 1]);
}
if (const AstStatIf* stat = node->as<AstStatIf>())
{
if (const AstStat* thenf = getFallthrough(stat->thenbody))
return thenf;
if (stat->elsebody)
{
if (const AstStat* elsef = getFallthrough(stat->elsebody))
return elsef;
return nullptr;
}
else
return stat;
}
if (node->is<AstStatReturn>())
return nullptr;
if (const AstStatExpr* stat = node->as<AstStatExpr>())
{
if (AstExprCall* call = stat->expr->as<AstExprCall>(); call && isErrorCall(call))
return nullptr;
return stat;
}
if (const AstStatWhile* stat = node->as<AstStatWhile>())
{
if (AstExprConstantBool* expr = stat->condition->as<AstExprConstantBool>())
{
if (expr->value && !hasBreak(stat->body))
return nullptr;
}
return node;
}
if (const AstStatRepeat* stat = node->as<AstStatRepeat>())
{
if (AstExprConstantBool* expr = stat->condition->as<AstExprConstantBool>())
{
if (!expr->value && !hasBreak(stat->body))
return nullptr;
}
if (getFallthrough(stat->body) == nullptr)
return nullptr;
return node;
}
return node;
}
std::optional<StackPusher> TypeChecker2::pushStack(AstNode* node)
{
if (Scope** scope = module->astScopes.find(node))
return StackPusher{stack, *scope};
else
return std::nullopt;
}
void TypeChecker2::checkForInternalTypeFunction(TypeId ty, Location location)
{
InternalTypeFunctionFinder finder(functionDeclStack);
finder.traverse(ty);
for (TypeId internal : finder.internalFunctions)
reportError(WhereClauseNeeded{internal}, location);
for (TypePackId internal : finder.internalPackFunctions)
reportError(PackWhereClauseNeeded{internal}, location);
}
TypeId TypeChecker2::checkForTypeFunctionInhabitance(TypeId instance, Location location)
{
if (seenTypeFunctionInstances.find(instance))
return instance;
seenTypeFunctionInstances.insert(instance);
ErrorVec errors =
reduceTypeFunctions(
instance,
location,
TypeFunctionContext{
NotNull{&module->internalTypes}, builtinTypes, stack.back(), simplifier, NotNull{&normalizer}, typeFunctionRuntime, ice, limits
},
true
)
.errors;
if (!isErrorSuppressing(location, instance))
reportErrors(std::move(errors));
return instance;
}
TypePackId TypeChecker2::lookupPack(AstExpr* expr)
{
// If a type isn't in the type graph, it probably means that a recursion limit was exceeded.
// We'll just return anyType in these cases. Typechecking against any is very fast and this
// allows us not to think about this very much in the actual typechecking logic.
TypePackId* tp = module->astTypePacks.find(expr);
if (tp)
return follow(*tp);
else
return builtinTypes->anyTypePack;
}
TypeId TypeChecker2::lookupType(AstExpr* expr)
{
// If a type isn't in the type graph, it probably means that a recursion limit was exceeded.
// We'll just return anyType in these cases. Typechecking against any is very fast and this
// allows us not to think about this very much in the actual typechecking logic.
TypeId* ty = module->astTypes.find(expr);
if (ty)
return checkForTypeFunctionInhabitance(follow(*ty), expr->location);
TypePackId* tp = module->astTypePacks.find(expr);
if (tp)
return checkForTypeFunctionInhabitance(flattenPack(*tp), expr->location);
return builtinTypes->anyType;
}
TypeId TypeChecker2::lookupAnnotation(AstType* annotation)
{
if (FFlag::DebugLuauMagicTypes)
{
if (auto ref = annotation->as<AstTypeReference>(); ref && ref->name == "_luau_print" && ref->parameters.size > 0)
{
if (auto ann = ref->parameters.data[0].type)
{
TypeId argTy = lookupAnnotation(ref->parameters.data[0].type);
luauPrintLine(
format("_luau_print (%d, %d): %s\n", annotation->location.begin.line, annotation->location.begin.column, toString(argTy).c_str())
);
return follow(argTy);
}
}
}
TypeId* ty = module->astResolvedTypes.find(annotation);
LUAU_ASSERT(ty);
return checkForTypeFunctionInhabitance(follow(*ty), annotation->location);
}
std::optional<TypePackId> TypeChecker2::lookupPackAnnotation(AstTypePack* annotation)
{
TypePackId* tp = module->astResolvedTypePacks.find(annotation);
if (tp != nullptr)
return {follow(*tp)};
return {};
}
TypeId TypeChecker2::lookupExpectedType(AstExpr* expr)
{
if (TypeId* ty = module->astExpectedTypes.find(expr))
return follow(*ty);
return builtinTypes->anyType;
}
TypePackId TypeChecker2::lookupExpectedPack(AstExpr* expr, TypeArena& arena)
{
if (TypeId* ty = module->astExpectedTypes.find(expr))
return arena.addTypePack(TypePack{{follow(*ty)}, std::nullopt});
return builtinTypes->anyTypePack;
}
TypePackId TypeChecker2::reconstructPack(AstArray<AstExpr*> exprs, TypeArena& arena)
{
if (exprs.size == 0)
return arena.addTypePack(TypePack{{}, std::nullopt});
std::vector<TypeId> head;
for (size_t i = 0; i < exprs.size - 1; ++i)
{
head.push_back(lookupType(exprs.data[i]));
}
TypePackId tail = lookupPack(exprs.data[exprs.size - 1]);
return arena.addTypePack(TypePack{head, tail});
}
Scope* TypeChecker2::findInnermostScope(Location location)
{
Scope* bestScope = module->getModuleScope().get();
bool didNarrow;
do
{
didNarrow = false;
for (auto scope : bestScope->children)
{
if (scope->location.encloses(location))
{
bestScope = scope.get();
didNarrow = true;
break;
}
}
} while (didNarrow && bestScope->children.size() > 0);
return bestScope;
}
void TypeChecker2::visit(AstStat* stat)
{
auto pusher = pushStack(stat);
if (auto s = stat->as<AstStatBlock>())
return visit(s);
else if (auto s = stat->as<AstStatIf>())
return visit(s);
else if (auto s = stat->as<AstStatWhile>())
return visit(s);
else if (auto s = stat->as<AstStatRepeat>())
return visit(s);
else if (auto s = stat->as<AstStatBreak>())
return visit(s);
else if (auto s = stat->as<AstStatContinue>())
return visit(s);
else if (auto s = stat->as<AstStatReturn>())
return visit(s);
else if (auto s = stat->as<AstStatExpr>())
return visit(s);
else if (auto s = stat->as<AstStatLocal>())
return visit(s);
else if (auto s = stat->as<AstStatFor>())
return visit(s);
else if (auto s = stat->as<AstStatForIn>())
return visit(s);
else if (auto s = stat->as<AstStatAssign>())
return visit(s);
else if (auto s = stat->as<AstStatCompoundAssign>())
return visit(s);
else if (auto s = stat->as<AstStatFunction>())
return visit(s);
else if (auto s = stat->as<AstStatLocalFunction>())
return visit(s);
else if (auto s = stat->as<AstStatTypeAlias>())
return visit(s);
else if (auto f = stat->as<AstStatTypeFunction>())
return visit(f);
else if (auto s = stat->as<AstStatDeclareFunction>())
return visit(s);
else if (auto s = stat->as<AstStatDeclareGlobal>())
return visit(s);
else if (auto s = stat->as<AstStatDeclareClass>())
return visit(s);
else if (auto s = stat->as<AstStatError>())
return visit(s);
else
LUAU_ASSERT(!"TypeChecker2 encountered an unknown node type");
}
void TypeChecker2::visit(AstStatBlock* block)
{
auto StackPusher = pushStack(block);
for (AstStat* statement : block->body)
visit(statement);
}
void TypeChecker2::visit(AstStatIf* ifStatement)
{
{
InConditionalContext flipper{&typeContext};
visit(ifStatement->condition, ValueContext::RValue);
}
visit(ifStatement->thenbody);
if (ifStatement->elsebody)
visit(ifStatement->elsebody);
}
void TypeChecker2::visit(AstStatWhile* whileStatement)
{
visit(whileStatement->condition, ValueContext::RValue);
visit(whileStatement->body);
}
void TypeChecker2::visit(AstStatRepeat* repeatStatement)
{
visit(repeatStatement->body);
visit(repeatStatement->condition, ValueContext::RValue);
}
void TypeChecker2::visit(AstStatBreak*) {}
void TypeChecker2::visit(AstStatContinue*) {}
void TypeChecker2::visit(AstStatReturn* ret)
{
Scope* scope = findInnermostScope(ret->location);
TypePackId expectedRetType = scope->returnType;
TypeArena* arena = &module->internalTypes;
TypePackId actualRetType = reconstructPack(ret->list, *arena);
testIsSubtype(actualRetType, expectedRetType, ret->location);
for (AstExpr* expr : ret->list)
visit(expr, ValueContext::RValue);
}
void TypeChecker2::visit(AstStatExpr* expr)
{
visit(expr->expr, ValueContext::RValue);
}
void TypeChecker2::visit(AstStatLocal* local)
{
size_t count = std::max(local->values.size, local->vars.size);
for (size_t i = 0; i < count; ++i)
{
AstExpr* value = i < local->values.size ? local->values.data[i] : nullptr;
const bool isPack = value && (value->is<AstExprCall>() || value->is<AstExprVarargs>());
if (value)
visit(value, ValueContext::RValue);
if (i != local->values.size - 1 || !isPack)
{
AstLocal* var = i < local->vars.size ? local->vars.data[i] : nullptr;
if (var && var->annotation)
{
TypeId annotationType = lookupAnnotation(var->annotation);
TypeId valueType = value ? lookupType(value) : nullptr;
if (valueType)
testIsSubtype(valueType, annotationType, value->location);
visit(var->annotation);
}
}
else if (value)
{
TypePackId valuePack = lookupPack(value);
TypePack valueTypes;
if (i < local->vars.size)
valueTypes = extendTypePack(module->internalTypes, builtinTypes, valuePack, local->vars.size - i);
Location errorLocation;
for (size_t j = i; j < local->vars.size; ++j)
{
if (j - i >= valueTypes.head.size())
{
errorLocation = local->vars.data[j]->location;
break;
}
AstLocal* var = local->vars.data[j];
if (var->annotation)
{
TypeId varType = lookupAnnotation(var->annotation);
testIsSubtype(valueTypes.head[j - i], varType, value->location);
visit(var->annotation);
}
}
if (valueTypes.head.size() < local->vars.size - i)
{
reportError(
CountMismatch{
// We subtract 1 here because the final AST
// expression is not worth one value. It is worth 0
// or more depending on valueTypes.head
local->values.size - 1 + valueTypes.head.size(),
std::nullopt,
local->vars.size,
local->values.data[local->values.size - 1]->is<AstExprCall>() ? CountMismatch::FunctionResult : CountMismatch::ExprListResult,
},
errorLocation
);
}
}
}
}
void TypeChecker2::visit(AstStatFor* forStatement)
{
if (forStatement->var->annotation)
{
visit(forStatement->var->annotation);
TypeId annotatedType = lookupAnnotation(forStatement->var->annotation);
testIsSubtype(builtinTypes->numberType, annotatedType, forStatement->var->location);
}
auto checkNumber = [this](AstExpr* expr)
{
if (!expr)
return;
visit(expr, ValueContext::RValue);
testIsSubtype(lookupType(expr), builtinTypes->numberType, expr->location);
};
checkNumber(forStatement->from);
checkNumber(forStatement->to);
checkNumber(forStatement->step);
visit(forStatement->body);
}
void TypeChecker2::visit(AstStatForIn* forInStatement)
{
for (AstLocal* local : forInStatement->vars)
{
if (local->annotation)
visit(local->annotation);
}
for (AstExpr* expr : forInStatement->values)
visit(expr, ValueContext::RValue);
visit(forInStatement->body);
// Rule out crazy stuff. Maybe possible if the file is not syntactically valid.
if (!forInStatement->vars.size || !forInStatement->values.size)
return;
NotNull<Scope> scope = stack.back();
TypeArena& arena = module->internalTypes;
std::vector<TypeId> variableTypes;
for (AstLocal* var : forInStatement->vars)
{
std::optional<TypeId> ty = scope->lookup(var);
LUAU_ASSERT(ty);
variableTypes.emplace_back(*ty);
}
AstExpr* firstValue = forInStatement->values.data[0];
// we need to build up a typepack for the iterators/values portion of the for-in statement.
std::vector<TypeId> valueTypes;
std::optional<TypePackId> iteratorTail;
// since the first value may be the only iterator (e.g. if it is a call), we want to
// look to see if it has a resulting typepack as our iterators.
TypePackId* retPack = module->astTypePacks.find(firstValue);
if (retPack)
{
auto [head, tail] = flatten(*retPack);
valueTypes = head;
iteratorTail = tail;
}
else
{
valueTypes.emplace_back(lookupType(firstValue));
}
// if the initial and expected types from the iterator unified during constraint solving,
// we'll have a resolved type to use here, but we'll only use it if either the iterator is
// directly present in the for-in statement or if we have an iterator state constraining us
TypeId* resolvedTy = module->astForInNextTypes.find(firstValue);
if (resolvedTy && (!retPack || valueTypes.size() > 1))
valueTypes[0] = *resolvedTy;
for (size_t i = 1; i < forInStatement->values.size - 1; ++i)
{
valueTypes.emplace_back(lookupType(forInStatement->values.data[i]));
}
// if we had more than one value, the tail from the first value is no longer appropriate to use.
if (forInStatement->values.size > 1)
{
auto [head, tail] = flatten(lookupPack(forInStatement->values.data[forInStatement->values.size - 1]));
valueTypes.insert(valueTypes.end(), head.begin(), head.end());
iteratorTail = tail;
}
// and now we can put everything together to get the actual typepack of the iterators.
TypePackId iteratorPack = arena.addTypePack(valueTypes, iteratorTail);
// ... and then expand it out to 3 values (if possible)
TypePack iteratorTypes = extendTypePack(arena, builtinTypes, iteratorPack, 3);
if (iteratorTypes.head.empty())
{
reportError(GenericError{"for..in loops require at least one value to iterate over. Got zero"}, getLocation(forInStatement->values));
return;
}
TypeId iteratorTy = follow(iteratorTypes.head[0]);
auto checkFunction = [this, &arena, &forInStatement, &variableTypes](const FunctionType* iterFtv, std::vector<TypeId> iterTys, bool isMm)
{
if (iterTys.size() < 1 || iterTys.size() > 3)
{
if (isMm)
reportError(GenericError{"__iter metamethod must return (next[, table[, state]])"}, getLocation(forInStatement->values));
else
reportError(GenericError{"for..in loops must be passed (next[, table[, state]])"}, getLocation(forInStatement->values));
return;
}
// It is okay if there aren't enough iterators, but the iteratee must provide enough.
TypePack expectedVariableTypes = extendTypePack(arena, builtinTypes, iterFtv->retTypes, variableTypes.size());
if (expectedVariableTypes.head.size() < variableTypes.size())
{
if (isMm)
reportError(GenericError{"__iter metamethod's next() function does not return enough values"}, getLocation(forInStatement->values));
else
reportError(GenericError{"next() does not return enough values"}, forInStatement->values.data[0]->location);
}
for (size_t i = 0; i < std::min(expectedVariableTypes.head.size(), variableTypes.size()); ++i)
testIsSubtype(variableTypes[i], expectedVariableTypes.head[i], forInStatement->vars.data[i]->location);
// nextFn is going to be invoked with (arrayTy, startIndexTy)
// It will be passed two arguments on every iteration save the
// first.
// It may be invoked with 0 or 1 argument on the first iteration.
// This depends on the types in iterateePack and therefore
// iteratorTypes.
// If the iteratee is an error type, then we can't really say anything else about iteration over it.
// After all, it _could've_ been a table.
if (get<ErrorType>(follow(flattenPack(iterFtv->argTypes))))
return;
// If iteratorTypes is too short to be a valid call to nextFn, we have to report a count mismatch error.
// If 2 is too short to be a valid call to nextFn, we have to report a count mismatch error.
// If 2 is too long to be a valid call to nextFn, we have to report a count mismatch error.
auto [minCount, maxCount] = getParameterExtents(TxnLog::empty(), iterFtv->argTypes, /*includeHiddenVariadics*/ true);
TypePack flattenedArgTypes = extendTypePack(arena, builtinTypes, iterFtv->argTypes, 2);
size_t firstIterationArgCount = iterTys.empty() ? 0 : iterTys.size() - 1;
size_t actualArgCount = expectedVariableTypes.head.size();
if (firstIterationArgCount < minCount)
{
if (isMm)
reportError(GenericError{"__iter metamethod must return (next[, table[, state]])"}, getLocation(forInStatement->values));
else
reportError(CountMismatch{2, std::nullopt, firstIterationArgCount, CountMismatch::Arg}, forInStatement->values.data[0]->location);
}
else if (actualArgCount < minCount)
{
if (isMm)
reportError(GenericError{"__iter metamethod must return (next[, table[, state]])"}, getLocation(forInStatement->values));
else
reportError(CountMismatch{2, std::nullopt, firstIterationArgCount, CountMismatch::Arg}, forInStatement->values.data[0]->location);
}
if (iterTys.size() >= 2 && flattenedArgTypes.head.size() > 0)
{
size_t valueIndex = forInStatement->values.size > 1 ? 1 : 0;
testIsSubtype(iterTys[1], flattenedArgTypes.head[0], forInStatement->values.data[valueIndex]->location);
}
if (iterTys.size() == 3 && flattenedArgTypes.head.size() > 1)
{
size_t valueIndex = forInStatement->values.size > 2 ? 2 : 0;
testIsSubtype(iterTys[2], flattenedArgTypes.head[1], forInStatement->values.data[valueIndex]->location);
}
};
std::shared_ptr<const NormalizedType> iteratorNorm = normalizer.normalize(iteratorTy);
if (!iteratorNorm)
reportError(NormalizationTooComplex{}, firstValue->location);
/*
* If the first iterator argument is a function
* * There must be 1 to 3 iterator arguments. Name them (nextTy,
* arrayTy, startIndexTy)
* * The return type of nextTy() must correspond to the variables'
* types and counts. HOWEVER the first iterator will never be nil.
* * The first return value of nextTy must be compatible with
* startIndexTy.
* * The first argument to nextTy() must be compatible with arrayTy if
* present. nil if not.
* * The second argument to nextTy() must be compatible with
* startIndexTy if it is present. Else, it must be compatible with
* nil.
* * nextTy() must be callable with only 2 arguments.
*/
if (const FunctionType* nextFn = get<FunctionType>(iteratorTy))
{
checkFunction(nextFn, iteratorTypes.head, false);
}
else if (const TableType* ttv = get<TableType>(iteratorTy))
{
if ((forInStatement->vars.size == 1 || forInStatement->vars.size == 2) && ttv->indexer)
{
testIsSubtype(variableTypes[0], ttv->indexer->indexType, forInStatement->vars.data[0]->location);
if (variableTypes.size() == 2)
testIsSubtype(variableTypes[1], ttv->indexer->indexResultType, forInStatement->vars.data[1]->location);
}
else
reportError(GenericError{"Cannot iterate over a table without indexer"}, forInStatement->values.data[0]->location);
}
else if (get<AnyType>(iteratorTy) || get<ErrorType>(iteratorTy) || get<NeverType>(iteratorTy))
{
// nothing
}
else if (isOptional(iteratorTy) && !(iteratorNorm && iteratorNorm->shouldSuppressErrors()))
{
reportError(OptionalValueAccess{iteratorTy}, forInStatement->values.data[0]->location);
}
else if (std::optional<TypeId> iterMmTy =
findMetatableEntry(builtinTypes, module->errors, iteratorTy, "__iter", forInStatement->values.data[0]->location))
{
Instantiation instantiation{TxnLog::empty(), &arena, builtinTypes, TypeLevel{}, scope};
if (std::optional<TypeId> instantiatedIterMmTy = instantiate(builtinTypes, NotNull{&arena}, limits, scope, *iterMmTy))
{
if (const FunctionType* iterMmFtv = get<FunctionType>(*instantiatedIterMmTy))
{
TypePackId argPack = arena.addTypePack({iteratorTy});
testIsSubtype(argPack, iterMmFtv->argTypes, forInStatement->values.data[0]->location);
TypePack mmIteratorTypes = extendTypePack(arena, builtinTypes, iterMmFtv->retTypes, 3);
if (mmIteratorTypes.head.size() == 0)
{
reportError(GenericError{"__iter must return at least one value"}, forInStatement->values.data[0]->location);
return;
}
TypeId nextFn = follow(mmIteratorTypes.head[0]);
if (std::optional<TypeId> instantiatedNextFn = instantiation.substitute(nextFn))
{
std::vector<TypeId> instantiatedIteratorTypes = mmIteratorTypes.head;
instantiatedIteratorTypes[0] = *instantiatedNextFn;
if (const FunctionType* nextFtv = get<FunctionType>(*instantiatedNextFn))
{
checkFunction(nextFtv, instantiatedIteratorTypes, true);
}
else if (!isErrorSuppressing(forInStatement->values.data[0]->location, *instantiatedNextFn))
{
reportError(CannotCallNonFunction{*instantiatedNextFn}, forInStatement->values.data[0]->location);
}
}
else
{
reportError(UnificationTooComplex{}, forInStatement->values.data[0]->location);
}
}
else if (!isErrorSuppressing(forInStatement->values.data[0]->location, *iterMmTy))
{
// TODO: This will not tell the user that this is because the
// metamethod isn't callable. This is not ideal, and we should
// improve this error message.
// TODO: This will also not handle intersections of functions or
// callable tables (which are supported by the runtime).
reportError(CannotCallNonFunction{*iterMmTy}, forInStatement->values.data[0]->location);
}
}
else
{
reportError(UnificationTooComplex{}, forInStatement->values.data[0]->location);
}
}
else if (iteratorNorm && iteratorNorm->hasTables())
{
// Ok. All tables can be iterated.
}
else if (!iteratorNorm || !iteratorNorm->shouldSuppressErrors())
{
reportError(CannotCallNonFunction{iteratorTy}, forInStatement->values.data[0]->location);
}
}
std::optional<TypeId> TypeChecker2::getBindingType(AstExpr* expr)
{
if (auto localExpr = expr->as<AstExprLocal>())
{
Scope* s = stack.back();
return s->lookup(localExpr->local);
}
else if (auto globalExpr = expr->as<AstExprGlobal>())
{
Scope* s = stack.back();
return s->lookup(globalExpr->name);
}
else
return std::nullopt;
}
void TypeChecker2::reportErrorsFromAssigningToNever(AstExpr* lhs, TypeId rhsType)
{
if (auto indexName = lhs->as<AstExprIndexName>())
{
TypeId indexedType = lookupType(indexName->expr);
// if it's already never, I don't think we have anything to do here.
if (get<NeverType>(indexedType))
return;
std::string prop = indexName->index.value;
std::shared_ptr<const NormalizedType> norm = normalizer.normalize(indexedType);
if (!norm)
{
reportError(NormalizationTooComplex{}, lhs->location);
return;
}
// if the type is error suppressing, we don't actually have any work left to do.
if (norm->shouldSuppressErrors())
return;
const auto propTypes = lookupProp(norm.get(), prop, ValueContext::LValue, lhs->location, builtinTypes->stringType, module->errors);
reportError(CannotAssignToNever{rhsType, propTypes.typesOfProp, CannotAssignToNever::Reason::PropertyNarrowed}, lhs->location);
}
}
void TypeChecker2::visit(AstStatAssign* assign)
{
size_t count = std::min(assign->vars.size, assign->values.size);
for (size_t i = 0; i < count; ++i)
{
AstExpr* lhs = assign->vars.data[i];
visit(lhs, ValueContext::LValue);
TypeId lhsType = lookupType(lhs);
AstExpr* rhs = assign->values.data[i];
visit(rhs, ValueContext::RValue);
TypeId rhsType = lookupType(rhs);
if (get<NeverType>(lhsType))
{
reportErrorsFromAssigningToNever(lhs, rhsType);
continue;
}
bool ok = testIsSubtype(rhsType, lhsType, rhs->location);
// If rhsType </: lhsType, then it's not useful to also report that rhsType </: bindingType
if (ok)
{
std::optional<TypeId> bindingType = getBindingType(lhs);
if (bindingType)
testIsSubtype(rhsType, *bindingType, rhs->location);
}
}
}
void TypeChecker2::visit(AstStatCompoundAssign* stat)
{
AstExprBinary fake{stat->location, stat->op, stat->var, stat->value};
visit(&fake, stat);
TypeId* resultTy = module->astCompoundAssignResultTypes.find(stat);
LUAU_ASSERT(resultTy);
TypeId varTy = lookupType(stat->var);
testIsSubtype(*resultTy, varTy, stat->location);
}
void TypeChecker2::visit(AstStatFunction* stat)
{
visit(stat->name, ValueContext::LValue);
visit(stat->func);
}
void TypeChecker2::visit(AstStatLocalFunction* stat)
{
visit(stat->func);
}
void TypeChecker2::visit(const AstTypeList* typeList)
{
for (AstType* ty : typeList->types)
visit(ty);
if (typeList->tailType)
visit(typeList->tailType);
}
void TypeChecker2::visit(AstStatTypeAlias* stat)
{
visitGenerics(stat->generics, stat->genericPacks);
visit(stat->type);
}
void TypeChecker2::visit(AstStatTypeFunction* stat)
{
// TODO: add type checking for user-defined type functions
}
void TypeChecker2::visit(AstTypeList types)
{
for (AstType* type : types.types)
visit(type);
if (types.tailType)
visit(types.tailType);
}
void TypeChecker2::visit(AstStatDeclareFunction* stat)
{
visitGenerics(stat->generics, stat->genericPacks);
visit(stat->params);
visit(stat->retTypes);
}
void TypeChecker2::visit(AstStatDeclareGlobal* stat)
{
visit(stat->type);
}
void TypeChecker2::visit(AstStatDeclareClass* stat)
{
for (const AstDeclaredClassProp& prop : stat->props)
visit(prop.ty);
}
void TypeChecker2::visit(AstStatError* stat)
{
for (AstExpr* expr : stat->expressions)
visit(expr, ValueContext::RValue);
for (AstStat* s : stat->statements)
visit(s);
}
void TypeChecker2::visit(AstExpr* expr, ValueContext context)
{
auto StackPusher = pushStack(expr);
if (auto e = expr->as<AstExprGroup>())
return visit(e, context);
else if (auto e = expr->as<AstExprConstantNil>())
return visit(e);
else if (auto e = expr->as<AstExprConstantBool>())
return visit(e);
else if (auto e = expr->as<AstExprConstantNumber>())
return visit(e);
else if (auto e = expr->as<AstExprConstantString>())
return visit(e);
else if (auto e = expr->as<AstExprLocal>())
return visit(e);
else if (auto e = expr->as<AstExprGlobal>())
return visit(e);
else if (auto e = expr->as<AstExprVarargs>())
return visit(e);
else if (auto e = expr->as<AstExprCall>())
return visit(e);
else if (auto e = expr->as<AstExprIndexName>())
return visit(e, context);
else if (auto e = expr->as<AstExprIndexExpr>())
return visit(e, context);
else if (auto e = expr->as<AstExprFunction>())
return visit(e);
else if (auto e = expr->as<AstExprTable>())
return visit(e);
else if (auto e = expr->as<AstExprUnary>())
return visit(e);
else if (auto e = expr->as<AstExprBinary>())
{
visit(e);
return;
}
else if (auto e = expr->as<AstExprTypeAssertion>())
return visit(e);
else if (auto e = expr->as<AstExprIfElse>())
return visit(e);
else if (auto e = expr->as<AstExprInterpString>())
return visit(e);
else if (auto e = expr->as<AstExprError>())
return visit(e);
else
LUAU_ASSERT(!"TypeChecker2 encountered an unknown expression type");
}
void TypeChecker2::visit(AstExprGroup* expr, ValueContext context)
{
visit(expr->expr, context);
}
void TypeChecker2::visit(AstExprConstantNil* expr)
{
#if defined(LUAU_ENABLE_ASSERT)
TypeId actualType = lookupType(expr);
TypeId expectedType = builtinTypes->nilType;
NotNull<Scope> scope{findInnermostScope(expr->location)};
SubtypingResult r = subtyping->isSubtype(actualType, expectedType, scope);
LUAU_ASSERT(r.isSubtype || isErrorSuppressing(expr->location, actualType));
#endif
}
void TypeChecker2::visit(AstExprConstantBool* expr)
{
// booleans use specialized inference logic for singleton types, which can lead to real type errors here.
const TypeId bestType = expr->value ? builtinTypes->trueType : builtinTypes->falseType;
const TypeId inferredType = lookupType(expr);
NotNull<Scope> scope{findInnermostScope(expr->location)};
const SubtypingResult r = subtyping->isSubtype(bestType, inferredType, scope);
if (!r.isSubtype && !isErrorSuppressing(expr->location, inferredType))
reportError(TypeMismatch{inferredType, bestType}, expr->location);
}
void TypeChecker2::visit(AstExprConstantNumber* expr)
{
#if defined(LUAU_ENABLE_ASSERT)
const TypeId bestType = builtinTypes->numberType;
const TypeId inferredType = lookupType(expr);
NotNull<Scope> scope{findInnermostScope(expr->location)};
const SubtypingResult r = subtyping->isSubtype(bestType, inferredType, scope);
LUAU_ASSERT(r.isSubtype || isErrorSuppressing(expr->location, inferredType));
#endif
}
void TypeChecker2::visit(AstExprConstantString* expr)
{
// strings use specialized inference logic for singleton types, which can lead to real type errors here.
const TypeId bestType = module->internalTypes.addType(SingletonType{StringSingleton{std::string{expr->value.data, expr->value.size}}});
const TypeId inferredType = lookupType(expr);
NotNull<Scope> scope{findInnermostScope(expr->location)};
const SubtypingResult r = subtyping->isSubtype(bestType, inferredType, scope);
if (!r.isSubtype && !isErrorSuppressing(expr->location, inferredType))
reportError(TypeMismatch{inferredType, bestType}, expr->location);
}
void TypeChecker2::visit(AstExprLocal* expr)
{
// TODO!
}
void TypeChecker2::visit(AstExprGlobal* expr)
{
NotNull<Scope> scope = stack.back();
if (!scope->lookup(expr->name))
{
reportError(UnknownSymbol{expr->name.value, UnknownSymbol::Binding}, expr->location);
}
else if (FFlag::InferGlobalTypes)
{
if (scope->shouldWarnGlobal(expr->name.value) && !warnedGlobals.contains(expr->name.value))
{
reportError(UnknownSymbol{expr->name.value, UnknownSymbol::Binding}, expr->location);
warnedGlobals.insert(expr->name.value);
}
}
}
void TypeChecker2::visit(AstExprVarargs* expr)
{
// TODO!
}
void TypeChecker2::visitCall(AstExprCall* call)
{
TypePack args;
std::vector<AstExpr*> argExprs;
NotNull<Scope> scope{findInnermostScope(call->location)};
argExprs.reserve(call->args.size + 1);
TypeId* originalCallTy = module->astOriginalCallTypes.find(call->func);
TypeId* selectedOverloadTy = module->astOverloadResolvedTypes.find(call);
if (!originalCallTy)
return;
TypeId fnTy = follow(*originalCallTy);
if (get<AnyType>(fnTy) || get<ErrorType>(fnTy) || get<NeverType>(fnTy))
return;
else if (isOptional(fnTy))
{
switch (shouldSuppressErrors(NotNull{&normalizer}, fnTy))
{
case ErrorSuppression::Suppress:
break;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, call->func->location);
[[fallthrough]];
case ErrorSuppression::DoNotSuppress:
reportError(OptionalValueAccess{fnTy}, call->func->location);
}
return;
}
if (selectedOverloadTy)
{
SubtypingResult result = subtyping->isSubtype(*originalCallTy, *selectedOverloadTy, scope);
if (result.isSubtype)
fnTy = follow(*selectedOverloadTy);
if (result.normalizationTooComplex)
{
reportError(NormalizationTooComplex{}, call->func->location);
return;
}
}
if (call->self)
{
AstExprIndexName* indexExpr = call->func->as<AstExprIndexName>();
if (!indexExpr)
ice->ice("method call expression has no 'self'");
args.head.push_back(lookupType(indexExpr->expr));
argExprs.push_back(indexExpr->expr);
}
for (size_t i = 0; i < call->args.size; ++i)
{
AstExpr* arg = call->args.data[i];
argExprs.push_back(arg);
TypeId* argTy = module->astTypes.find(arg);
if (argTy)
args.head.push_back(*argTy);
else if (i == call->args.size - 1)
{
if (auto argTail = module->astTypePacks.find(arg))
{
auto [head, tail] = flatten(*argTail);
args.head.insert(args.head.end(), head.begin(), head.end());
args.tail = tail;
}
else
args.tail = builtinTypes->anyTypePack;
}
else
args.head.push_back(builtinTypes->anyType);
}
TypePackId argsTp = module->internalTypes.addTypePack(args);
if (auto ftv = get<FunctionType>(follow(*originalCallTy)))
{
if (ftv->dcrMagicTypeCheck)
{
ftv->dcrMagicTypeCheck(MagicFunctionTypeCheckContext{NotNull{this}, builtinTypes, call, argsTp, scope});
return;
}
}
OverloadResolver resolver{
builtinTypes,
NotNull{&module->internalTypes},
simplifier,
NotNull{&normalizer},
typeFunctionRuntime,
NotNull{stack.back()},
ice,
limits,
call->location,
};
resolver.resolve(fnTy, &args, call->func, &argExprs);
auto norm = normalizer.normalize(fnTy);
if (!norm)
reportError(NormalizationTooComplex{}, call->func->location);
auto isInhabited = normalizer.isInhabited(norm.get());
if (isInhabited == NormalizationResult::HitLimits)
reportError(NormalizationTooComplex{}, call->func->location);
if (norm && norm->shouldSuppressErrors())
return; // error suppressing function type!
else if (!resolver.ok.empty())
return; // We found a call that works, so this is ok.
else if (!norm || isInhabited == NormalizationResult::False)
return; // Ok. Calling an uninhabited type is no-op.
else if (!resolver.nonviableOverloads.empty())
{
if (resolver.nonviableOverloads.size() == 1 && !isErrorSuppressing(call->func->location, resolver.nonviableOverloads.front().first))
reportErrors(resolver.nonviableOverloads.front().second);
else
{
std::string s = "None of the overloads for function that accept ";
s += std::to_string(args.head.size());
s += " arguments are compatible.";
reportError(GenericError{std::move(s)}, call->location);
}
}
else if (!resolver.arityMismatches.empty())
{
if (resolver.arityMismatches.size() == 1)
reportErrors(resolver.arityMismatches.front().second);
else
{
std::string s = "No overload for function accepts ";
s += std::to_string(args.head.size());
s += " arguments.";
reportError(GenericError{std::move(s)}, call->location);
}
}
else if (!resolver.nonFunctions.empty())
reportError(CannotCallNonFunction{fnTy}, call->func->location);
else
LUAU_ASSERT(!"Generating the best possible error from this function call resolution was inexhaustive?");
if (resolver.nonviableOverloads.size() <= 1 && resolver.arityMismatches.size() <= 1)
return;
std::string s = "Available overloads: ";
std::vector<TypeId> overloads;
if (resolver.nonviableOverloads.empty())
{
for (const auto& [ty, p] : resolver.resolution)
{
if (p.first == OverloadResolver::TypeIsNotAFunction)
continue;
overloads.push_back(ty);
}
}
else
{
for (const auto& [ty, _] : resolver.nonviableOverloads)
overloads.push_back(ty);
}
if (overloads.size() <= 1)
return;
for (size_t i = 0; i < overloads.size(); ++i)
{
if (i > 0)
s += (i == overloads.size() - 1) ? "; and " : "; ";
s += toString(overloads[i]);
}
reportError(ExtraInformation{std::move(s)}, call->func->location);
}
void TypeChecker2::visit(AstExprCall* call)
{
visit(call->func, ValueContext::RValue);
for (AstExpr* arg : call->args)
visit(arg, ValueContext::RValue);
visitCall(call);
}
std::optional<TypeId> TypeChecker2::tryStripUnionFromNil(TypeId ty)
{
if (const UnionType* utv = get<UnionType>(ty))
{
if (!std::any_of(begin(utv), end(utv), isNil))
return ty;
std::vector<TypeId> result;
for (TypeId option : utv)
{
if (!isNil(option))
result.push_back(option);
}
if (result.empty())
return std::nullopt;
return result.size() == 1 ? result[0] : module->internalTypes.addType(UnionType{std::move(result)});
}
return std::nullopt;
}
TypeId TypeChecker2::stripFromNilAndReport(TypeId ty, const Location& location)
{
ty = follow(ty);
if (auto utv = get<UnionType>(ty))
{
if (!std::any_of(begin(utv), end(utv), isNil))
return ty;
}
if (std::optional<TypeId> strippedUnion = tryStripUnionFromNil(ty))
{
switch (shouldSuppressErrors(NotNull{&normalizer}, ty))
{
case ErrorSuppression::Suppress:
break;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, location);
[[fallthrough]];
case ErrorSuppression::DoNotSuppress:
reportError(OptionalValueAccess{ty}, location);
}
return follow(*strippedUnion);
}
return ty;
}
void TypeChecker2::visitExprName(AstExpr* expr, Location location, const std::string& propName, ValueContext context, TypeId astIndexExprTy)
{
visit(expr, ValueContext::RValue);
TypeId leftType = stripFromNilAndReport(lookupType(expr), location);
checkIndexTypeFromType(leftType, propName, context, location, astIndexExprTy);
}
void TypeChecker2::visit(AstExprIndexName* indexName, ValueContext context)
{
// If we're indexing like _.foo - foo could either be a prop or a string.
visitExprName(indexName->expr, indexName->location, indexName->index.value, context, builtinTypes->stringType);
}
void TypeChecker2::indexExprMetatableHelper(AstExprIndexExpr* indexExpr, const MetatableType* metaTable, TypeId exprType, TypeId indexType)
{
if (auto tt = get<TableType>(follow(metaTable->table)); tt && tt->indexer)
testIsSubtype(indexType, tt->indexer->indexType, indexExpr->index->location);
else if (auto mt = get<MetatableType>(follow(metaTable->table)))
indexExprMetatableHelper(indexExpr, mt, exprType, indexType);
else if (auto tmt = get<TableType>(follow(metaTable->metatable)); tmt && tmt->indexer)
testIsSubtype(indexType, tmt->indexer->indexType, indexExpr->index->location);
else if (auto mtmt = get<MetatableType>(follow(metaTable->metatable)))
indexExprMetatableHelper(indexExpr, mtmt, exprType, indexType);
else
{
// CLI-122161: We're not handling unions correctly (probably).
reportError(CannotExtendTable{exprType, CannotExtendTable::Indexer, "indexer??"}, indexExpr->location);
}
}
void TypeChecker2::visit(AstExprIndexExpr* indexExpr, ValueContext context)
{
if (auto str = indexExpr->index->as<AstExprConstantString>())
{
TypeId astIndexExprType = lookupType(indexExpr->index);
const std::string stringValue(str->value.data, str->value.size);
visitExprName(indexExpr->expr, indexExpr->location, stringValue, context, astIndexExprType);
return;
}
visit(indexExpr->expr, ValueContext::RValue);
visit(indexExpr->index, ValueContext::RValue);
TypeId exprType = follow(lookupType(indexExpr->expr));
TypeId indexType = follow(lookupType(indexExpr->index));
if (auto tt = get<TableType>(exprType))
{
if (tt->indexer)
testIsSubtype(indexType, tt->indexer->indexType, indexExpr->index->location);
else
reportError(CannotExtendTable{exprType, CannotExtendTable::Indexer, "indexer??"}, indexExpr->location);
}
else if (auto mt = get<MetatableType>(exprType))
{
return indexExprMetatableHelper(indexExpr, mt, exprType, indexType);
}
else if (auto cls = get<ClassType>(exprType))
{
if (cls->indexer)
testIsSubtype(indexType, cls->indexer->indexType, indexExpr->index->location);
else
reportError(DynamicPropertyLookupOnClassesUnsafe{exprType}, indexExpr->location);
}
else if (get<UnionType>(exprType) && isOptional(exprType))
{
switch (shouldSuppressErrors(NotNull{&normalizer}, exprType))
{
case ErrorSuppression::Suppress:
break;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, indexExpr->location);
[[fallthrough]];
case ErrorSuppression::DoNotSuppress:
reportError(OptionalValueAccess{exprType}, indexExpr->location);
}
}
else if (auto ut = get<UnionType>(exprType))
{
// if all of the types are a table type, the union must be a table, and so we shouldn't error.
if (!std::all_of(begin(ut), end(ut), getTableType))
reportError(NotATable{exprType}, indexExpr->location);
}
else if (auto it = get<IntersectionType>(exprType))
{
// if any of the types are a table type, the intersection must be a table, and so we shouldn't error.
if (!std::any_of(begin(it), end(it), getTableType))
reportError(NotATable{exprType}, indexExpr->location);
}
else if (get<NeverType>(exprType) || isErrorSuppressing(indexExpr->location, exprType))
{
// Nothing
}
else
reportError(NotATable{exprType}, indexExpr->location);
}
void TypeChecker2::visit(AstExprFunction* fn)
{
auto StackPusher = pushStack(fn);
visitGenerics(fn->generics, fn->genericPacks);
TypeId inferredFnTy = lookupType(fn);
functionDeclStack.push_back(inferredFnTy);
std::shared_ptr<const NormalizedType> normalizedFnTy = normalizer.normalize(inferredFnTy);
if (!normalizedFnTy)
{
reportError(CodeTooComplex{}, fn->location);
}
else if (get<ErrorType>(normalizedFnTy->errors))
{
// Nothing
}
else if (!normalizedFnTy->hasFunctions())
{
ice->ice("Internal error: Lambda has non-function type " + toString(inferredFnTy), fn->location);
}
else
{
if (1 != normalizedFnTy->functions.parts.size())
ice->ice("Unexpected: Lambda has unexpected type " + toString(inferredFnTy), fn->location);
const FunctionType* inferredFtv = get<FunctionType>(normalizedFnTy->functions.parts.front());
LUAU_ASSERT(inferredFtv);
// There is no way to write an annotation for the self argument, so we
// cannot do anything to check it.
auto argIt = begin(inferredFtv->argTypes);
if (fn->self)
++argIt;
for (const auto& arg : fn->args)
{
if (argIt == end(inferredFtv->argTypes))
break;
TypeId inferredArgTy = *argIt;
if (arg->annotation)
{
// we need to typecheck any argument annotations themselves.
visit(arg->annotation);
TypeId annotatedArgTy = lookupAnnotation(arg->annotation);
testIsSubtype(inferredArgTy, annotatedArgTy, arg->location);
}
// Some Luau constructs can result in an argument type being
// reduced to never by inference. In this case, we want to
// report an error at the function, instead of reporting an
// error at every callsite.
if (is<NeverType>(follow(inferredArgTy)))
{
// If the annotation simplified to never, we don't want to
// even look at contributors.
bool explicitlyNever = false;
if (arg->annotation)
{
TypeId annotatedArgTy = lookupAnnotation(arg->annotation);
explicitlyNever = is<NeverType>(annotatedArgTy);
}
// Not following here is deliberate: the contribution map is
// keyed by type pointer, but that type pointer has, at some
// point, been transmuted to a bound type pointing to never.
if (const auto contributors = module->upperBoundContributors.find(inferredArgTy); contributors && !explicitlyNever)
{
// It's unfortunate that we can't link error messages
// together. For now, this will work.
reportError(
GenericError{format(
"Parameter '%s' has been reduced to never. This function is not callable with any possible value.", arg->name.value
)},
arg->location
);
for (const auto& [site, component] : *contributors)
reportError(
ExtraInformation{
format("Parameter '%s' is required to be a subtype of '%s' here.", arg->name.value, toString(component).c_str())
},
site
);
}
}
++argIt;
}
// we need to typecheck the vararg annotation, if it exists.
if (fn->vararg && fn->varargAnnotation)
visit(fn->varargAnnotation);
bool reachesImplicitReturn = getFallthrough(fn->body) != nullptr;
if (reachesImplicitReturn && !allowsNoReturnValues(follow(inferredFtv->retTypes)))
reportError(FunctionExitsWithoutReturning{inferredFtv->retTypes}, getEndLocation(fn));
}
visit(fn->body);
// we need to typecheck the return annotation itself, if it exists.
if (fn->returnAnnotation)
visit(*fn->returnAnnotation);
// If the function type has a function annotation, we need to see if we can suggest an annotation
if (normalizedFnTy)
{
const FunctionType* inferredFtv = get<FunctionType>(normalizedFnTy->functions.parts.front());
LUAU_ASSERT(inferredFtv);
TypeFunctionReductionGuesser guesser{NotNull{&module->internalTypes}, builtinTypes, NotNull{&normalizer}};
for (TypeId retTy : inferredFtv->retTypes)
{
if (get<TypeFunctionInstanceType>(follow(retTy)))
{
TypeFunctionReductionGuessResult result = guesser.guessTypeFunctionReductionForFunctionExpr(*fn, inferredFtv, retTy);
if (result.shouldRecommendAnnotation && !get<UnknownType>(result.guessedReturnType))
reportError(
ExplicitFunctionAnnotationRecommended{std::move(result.guessedFunctionAnnotations), result.guessedReturnType}, fn->location
);
}
}
}
functionDeclStack.pop_back();
}
void TypeChecker2::visit(AstExprTable* expr)
{
for (const AstExprTable::Item& item : expr->items)
{
if (FFlag::LuauTableKeysAreRValues)
{
if (item.key)
visit(item.key, ValueContext::RValue);
}
else
{
if (item.key)
visit(item.key, ValueContext::LValue);
}
visit(item.value, ValueContext::RValue);
}
}
void TypeChecker2::visit(AstExprUnary* expr)
{
visit(expr->expr, ValueContext::RValue);
TypeId operandType = lookupType(expr->expr);
TypeId resultType = lookupType(expr);
if (isErrorSuppressing(expr->expr->location, operandType))
return;
if (auto it = kUnaryOpMetamethods.find(expr->op); it != kUnaryOpMetamethods.end())
{
std::optional<TypeId> mm = findMetatableEntry(builtinTypes, module->errors, operandType, it->second, expr->location);
if (mm)
{
if (const FunctionType* ftv = get<FunctionType>(follow(*mm)))
{
if (std::optional<TypeId> ret = first(ftv->retTypes))
{
if (expr->op == AstExprUnary::Op::Len)
{
testIsSubtype(follow(*ret), builtinTypes->numberType, expr->location);
}
}
else
{
reportError(GenericError{format("Metamethod '%s' must return a value", it->second)}, expr->location);
}
std::optional<TypeId> firstArg = first(ftv->argTypes);
if (!firstArg)
{
reportError(GenericError{"__unm metamethod must accept one argument"}, expr->location);
return;
}
TypePackId expectedArgs = module->internalTypes.addTypePack({operandType});
TypePackId expectedRet = module->internalTypes.addTypePack({resultType});
TypeId expectedFunction = module->internalTypes.addType(FunctionType{expectedArgs, expectedRet});
bool success = testIsSubtype(*mm, expectedFunction, expr->location);
if (!success)
return;
}
return;
}
}
if (expr->op == AstExprUnary::Op::Len)
{
DenseHashSet<TypeId> seen{nullptr};
int recursionCount = 0;
std::shared_ptr<const NormalizedType> nty = normalizer.normalize(operandType);
if (nty && nty->shouldSuppressErrors())
return;
switch (normalizer.isInhabited(nty.get()))
{
case NormalizationResult::True:
break;
case NormalizationResult::False:
return;
case NormalizationResult::HitLimits:
reportError(NormalizationTooComplex{}, expr->location);
return;
}
if (!hasLength(operandType, seen, &recursionCount))
{
if (isOptional(operandType))
reportError(OptionalValueAccess{operandType}, expr->location);
else
reportError(NotATable{operandType}, expr->location);
}
}
else if (expr->op == AstExprUnary::Op::Minus)
{
testIsSubtype(operandType, builtinTypes->numberType, expr->location);
}
else if (expr->op == AstExprUnary::Op::Not)
{
}
else
{
LUAU_ASSERT(!"Unhandled unary operator");
}
}
TypeId TypeChecker2::visit(AstExprBinary* expr, AstNode* overrideKey)
{
visit(expr->left, ValueContext::RValue);
visit(expr->right, ValueContext::RValue);
NotNull<Scope> scope = stack.back();
bool isEquality = expr->op == AstExprBinary::Op::CompareEq || expr->op == AstExprBinary::Op::CompareNe;
bool isComparison = expr->op >= AstExprBinary::Op::CompareEq && expr->op <= AstExprBinary::Op::CompareGe;
bool isLogical = expr->op == AstExprBinary::Op::And || expr->op == AstExprBinary::Op::Or;
TypeId leftType = follow(lookupType(expr->left));
TypeId rightType = follow(lookupType(expr->right));
TypeId expectedResult = follow(lookupType(expr));
if (get<TypeFunctionInstanceType>(expectedResult))
{
checkForInternalTypeFunction(expectedResult, expr->location);
return expectedResult;
}
if (expr->op == AstExprBinary::Op::Or)
{
leftType = stripNil(builtinTypes, module->internalTypes, leftType);
}
std::shared_ptr<const NormalizedType> normLeft = normalizer.normalize(leftType);
std::shared_ptr<const NormalizedType> normRight = normalizer.normalize(rightType);
bool isStringOperation =
(normLeft ? normLeft->isSubtypeOfString() : isString(leftType)) && (normRight ? normRight->isSubtypeOfString() : isString(rightType));
leftType = follow(leftType);
if (get<AnyType>(leftType) || get<ErrorType>(leftType) || get<NeverType>(leftType))
return leftType;
else if (get<AnyType>(rightType) || get<ErrorType>(rightType) || get<NeverType>(rightType))
return rightType;
else if ((normLeft && normLeft->shouldSuppressErrors()) || (normRight && normRight->shouldSuppressErrors()))
return builtinTypes->anyType; // we can't say anything better if it's error suppressing but not any or error alone.
if ((get<BlockedType>(leftType) || get<FreeType>(leftType) || get<GenericType>(leftType)) && !isEquality && !isLogical)
{
auto name = getIdentifierOfBaseVar(expr->left);
reportError(
CannotInferBinaryOperation{
expr->op, name, isComparison ? CannotInferBinaryOperation::OpKind::Comparison : CannotInferBinaryOperation::OpKind::Operation
},
expr->location
);
return leftType;
}
NormalizationResult typesHaveIntersection = normalizer.isIntersectionInhabited(leftType, rightType);
if (auto it = kBinaryOpMetamethods.find(expr->op); it != kBinaryOpMetamethods.end())
{
std::optional<TypeId> leftMt = getMetatable(leftType, builtinTypes);
std::optional<TypeId> rightMt = getMetatable(rightType, builtinTypes);
bool matches = leftMt == rightMt;
if (isEquality && !matches)
{
auto testUnion = [&matches, builtinTypes = this->builtinTypes](const UnionType* utv, std::optional<TypeId> otherMt)
{
for (TypeId option : utv)
{
if (getMetatable(follow(option), builtinTypes) == otherMt)
{
matches = true;
break;
}
}
};
if (const UnionType* utv = get<UnionType>(leftType); utv && rightMt)
{
testUnion(utv, rightMt);
}
if (const UnionType* utv = get<UnionType>(rightType); utv && leftMt && !matches)
{
testUnion(utv, leftMt);
}
}
// If we're working with things that are not tables, the metatable comparisons above are a little excessive
// It's ok for one type to have a meta table and the other to not. In that case, we should fall back on
// checking if the intersection of the types is inhabited. If `typesHaveIntersection` failed due to limits,
// TODO: Maybe add more checks here (e.g. for functions, classes, etc)
if (!(get<TableType>(leftType) || get<TableType>(rightType)))
if (!leftMt.has_value() || !rightMt.has_value())
matches = matches || typesHaveIntersection != NormalizationResult::False;
if (!matches && isComparison)
{
reportError(
GenericError{format(
"Types %s and %s cannot be compared with %s because they do not have the same metatable",
toString(leftType).c_str(),
toString(rightType).c_str(),
toString(expr->op).c_str()
)},
expr->location
);
return builtinTypes->errorRecoveryType();
}
std::optional<TypeId> mm;
if (std::optional<TypeId> leftMm = findMetatableEntry(builtinTypes, module->errors, leftType, it->second, expr->left->location))
mm = leftMm;
else if (std::optional<TypeId> rightMm = findMetatableEntry(builtinTypes, module->errors, rightType, it->second, expr->right->location))
{
mm = rightMm;
std::swap(leftType, rightType);
}
if (mm)
{
AstNode* key = expr;
if (overrideKey != nullptr)
key = overrideKey;
TypeId* selectedOverloadTy = module->astOverloadResolvedTypes.find(key);
if (!selectedOverloadTy)
{
// reportError(CodeTooComplex{}, expr->location);
// was handled by a type function
return expectedResult;
}
else if (const FunctionType* ftv = get<FunctionType>(follow(*selectedOverloadTy)))
{
TypePackId expectedArgs;
// For >= and > we invoke __lt and __le respectively with
// swapped argument ordering.
if (expr->op == AstExprBinary::Op::CompareGe || expr->op == AstExprBinary::Op::CompareGt)
{
expectedArgs = module->internalTypes.addTypePack({rightType, leftType});
}
else
{
expectedArgs = module->internalTypes.addTypePack({leftType, rightType});
}
TypePackId expectedRets;
if (expr->op == AstExprBinary::CompareEq || expr->op == AstExprBinary::CompareNe || expr->op == AstExprBinary::CompareGe ||
expr->op == AstExprBinary::CompareGt || expr->op == AstExprBinary::Op::CompareLe || expr->op == AstExprBinary::Op::CompareLt)
{
expectedRets = module->internalTypes.addTypePack({builtinTypes->booleanType});
}
else
{
expectedRets = module->internalTypes.addTypePack({module->internalTypes.freshType(scope, TypeLevel{})});
}
TypeId expectedTy = module->internalTypes.addType(FunctionType(expectedArgs, expectedRets));
testIsSubtype(follow(*mm), expectedTy, expr->location);
std::optional<TypeId> ret = first(ftv->retTypes);
if (ret)
{
if (isComparison)
{
if (!isBoolean(follow(*ret)))
{
reportError(GenericError{format("Metamethod '%s' must return a boolean", it->second)}, expr->location);
}
return builtinTypes->booleanType;
}
else
{
return follow(*ret);
}
}
else
{
if (isComparison)
{
reportError(GenericError{format("Metamethod '%s' must return a boolean", it->second)}, expr->location);
}
else
{
reportError(GenericError{format("Metamethod '%s' must return a value", it->second)}, expr->location);
}
return builtinTypes->errorRecoveryType();
}
}
else
{
reportError(CannotCallNonFunction{*mm}, expr->location);
}
return builtinTypes->errorRecoveryType();
}
// If this is a string comparison, or a concatenation of strings, we
// want to fall through to primitive behavior.
else if (!isEquality && !(isStringOperation && (expr->op == AstExprBinary::Op::Concat || isComparison)))
{
if ((leftMt && !isString(leftType)) || (rightMt && !isString(rightType)))
{
if (isComparison)
{
reportError(
GenericError{format(
"Types '%s' and '%s' cannot be compared with %s because neither type's metatable has a '%s' metamethod",
toString(leftType).c_str(),
toString(rightType).c_str(),
toString(expr->op).c_str(),
it->second
)},
expr->location
);
}
else
{
reportError(
GenericError{format(
"Operator %s is not applicable for '%s' and '%s' because neither type's metatable has a '%s' metamethod",
toString(expr->op).c_str(),
toString(leftType).c_str(),
toString(rightType).c_str(),
it->second
)},
expr->location
);
}
return builtinTypes->errorRecoveryType();
}
else if (!leftMt && !rightMt && (get<TableType>(leftType) || get<TableType>(rightType)))
{
if (isComparison)
{
reportError(
GenericError{format(
"Types '%s' and '%s' cannot be compared with %s because neither type has a metatable",
toString(leftType).c_str(),
toString(rightType).c_str(),
toString(expr->op).c_str()
)},
expr->location
);
}
else
{
reportError(
GenericError{format(
"Operator %s is not applicable for '%s' and '%s' because neither type has a metatable",
toString(expr->op).c_str(),
toString(leftType).c_str(),
toString(rightType).c_str()
)},
expr->location
);
}
return builtinTypes->errorRecoveryType();
}
}
}
switch (expr->op)
{
case AstExprBinary::Op::Add:
case AstExprBinary::Op::Sub:
case AstExprBinary::Op::Mul:
case AstExprBinary::Op::Div:
case AstExprBinary::Op::FloorDiv:
case AstExprBinary::Op::Pow:
case AstExprBinary::Op::Mod:
testIsSubtype(leftType, builtinTypes->numberType, expr->left->location);
testIsSubtype(rightType, builtinTypes->numberType, expr->right->location);
return builtinTypes->numberType;
case AstExprBinary::Op::Concat:
testIsSubtype(leftType, builtinTypes->stringType, expr->left->location);
testIsSubtype(rightType, builtinTypes->stringType, expr->right->location);
return builtinTypes->stringType;
case AstExprBinary::Op::CompareGe:
case AstExprBinary::Op::CompareGt:
case AstExprBinary::Op::CompareLe:
case AstExprBinary::Op::CompareLt:
{
if (normLeft && normLeft->shouldSuppressErrors())
return builtinTypes->booleanType;
// if we're comparing against an uninhabited type, it's unobservable that the comparison did not run
if (normLeft && normalizer.isInhabited(normLeft.get()) == NormalizationResult::False)
return builtinTypes->booleanType;
if (normLeft && normLeft->isExactlyNumber())
{
testIsSubtype(rightType, builtinTypes->numberType, expr->right->location);
return builtinTypes->booleanType;
}
if (normLeft && normLeft->isSubtypeOfString())
{
testIsSubtype(rightType, builtinTypes->stringType, expr->right->location);
return builtinTypes->booleanType;
}
reportError(
GenericError{format(
"Types '%s' and '%s' cannot be compared with relational operator %s",
toString(leftType).c_str(),
toString(rightType).c_str(),
toString(expr->op).c_str()
)},
expr->location
);
return builtinTypes->errorRecoveryType();
}
case AstExprBinary::Op::And:
case AstExprBinary::Op::Or:
case AstExprBinary::Op::CompareEq:
case AstExprBinary::Op::CompareNe:
// Ugly case: we don't care about this possibility, because a
// compound assignment will never exist with one of these operators.
return builtinTypes->anyType;
default:
// Unhandled AstExprBinary::Op possibility.
LUAU_ASSERT(false);
return builtinTypes->errorRecoveryType();
}
}
void TypeChecker2::visit(AstExprTypeAssertion* expr)
{
visit(expr->expr, ValueContext::RValue);
visit(expr->annotation);
TypeId annotationType = lookupAnnotation(expr->annotation);
TypeId computedType = lookupType(expr->expr);
switch (shouldSuppressErrors(NotNull{&normalizer}, computedType).orElse(shouldSuppressErrors(NotNull{&normalizer}, annotationType)))
{
case ErrorSuppression::Suppress:
return;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, expr->location);
return;
case ErrorSuppression::DoNotSuppress:
break;
}
switch (normalizer.isInhabited(computedType))
{
case NormalizationResult::True:
break;
case NormalizationResult::False:
return;
case NormalizationResult::HitLimits:
reportError(NormalizationTooComplex{}, expr->location);
return;
}
switch (normalizer.isIntersectionInhabited(computedType, annotationType))
{
case NormalizationResult::True:
return;
case NormalizationResult::False:
reportError(TypesAreUnrelated{computedType, annotationType}, expr->location);
break;
case NormalizationResult::HitLimits:
reportError(NormalizationTooComplex{}, expr->location);
break;
}
}
void TypeChecker2::visit(AstExprIfElse* expr)
{
// TODO!
visit(expr->condition, ValueContext::RValue);
visit(expr->trueExpr, ValueContext::RValue);
visit(expr->falseExpr, ValueContext::RValue);
}
void TypeChecker2::visit(AstExprInterpString* interpString)
{
for (AstExpr* expr : interpString->expressions)
visit(expr, ValueContext::RValue);
}
void TypeChecker2::visit(AstExprError* expr)
{
// TODO!
for (AstExpr* e : expr->expressions)
visit(e, ValueContext::RValue);
}
TypeId TypeChecker2::flattenPack(TypePackId pack)
{
pack = follow(pack);
if (auto fst = first(pack, /*ignoreHiddenVariadics*/ false))
return *fst;
else if (auto ftp = get<FreeTypePack>(pack))
{
TypeId result = module->internalTypes.addType(FreeType{ftp->scope});
TypePackId freeTail = module->internalTypes.addTypePack(FreeTypePack{ftp->scope});
TypePack* resultPack = emplaceTypePack<TypePack>(asMutable(pack));
resultPack->head.assign(1, result);
resultPack->tail = freeTail;
return result;
}
else if (get<ErrorTypePack>(pack))
return builtinTypes->errorRecoveryType();
else if (finite(pack) && size(pack) == 0)
return builtinTypes->nilType; // `(f())` where `f()` returns no values is coerced into `nil`
else
ice->ice("flattenPack got a weird pack!");
}
void TypeChecker2::visitGenerics(AstArray<AstGenericType> generics, AstArray<AstGenericTypePack> genericPacks)
{
DenseHashSet<AstName> seen{AstName{}};
for (const auto& g : generics)
{
if (seen.contains(g.name))
reportError(DuplicateGenericParameter{g.name.value}, g.location);
else
seen.insert(g.name);
if (g.defaultValue)
visit(g.defaultValue);
}
for (const auto& g : genericPacks)
{
if (seen.contains(g.name))
reportError(DuplicateGenericParameter{g.name.value}, g.location);
else
seen.insert(g.name);
if (g.defaultValue)
visit(g.defaultValue);
}
}
void TypeChecker2::visit(AstType* ty)
{
TypeId* resolvedTy = module->astResolvedTypes.find(ty);
if (resolvedTy)
checkForTypeFunctionInhabitance(follow(*resolvedTy), ty->location);
if (auto t = ty->as<AstTypeReference>())
return visit(t);
else if (auto t = ty->as<AstTypeTable>())
return visit(t);
else if (auto t = ty->as<AstTypeFunction>())
return visit(t);
else if (auto t = ty->as<AstTypeTypeof>())
return visit(t);
else if (auto t = ty->as<AstTypeUnion>())
return visit(t);
else if (auto t = ty->as<AstTypeIntersection>())
return visit(t);
}
void TypeChecker2::visit(AstTypeReference* ty)
{
// No further validation is necessary in this case. The main logic for
// _luau_print is contained in lookupAnnotation.
if (FFlag::DebugLuauMagicTypes && ty->name == "_luau_print")
return;
for (const AstTypeOrPack& param : ty->parameters)
{
if (param.type)
visit(param.type);
else
visit(param.typePack);
}
Scope* scope = findInnermostScope(ty->location);
LUAU_ASSERT(scope);
std::optional<TypeFun> alias = (ty->prefix) ? scope->lookupImportedType(ty->prefix->value, ty->name.value) : scope->lookupType(ty->name.value);
if (alias.has_value())
{
size_t typesRequired = alias->typeParams.size();
size_t packsRequired = alias->typePackParams.size();
bool hasDefaultTypes = std::any_of(
alias->typeParams.begin(),
alias->typeParams.end(),
[](auto&& el)
{
return el.defaultValue.has_value();
}
);
bool hasDefaultPacks = std::any_of(
alias->typePackParams.begin(),
alias->typePackParams.end(),
[](auto&& el)
{
return el.defaultValue.has_value();
}
);
if (!ty->hasParameterList)
{
if ((!alias->typeParams.empty() && !hasDefaultTypes) || (!alias->typePackParams.empty() && !hasDefaultPacks))
{
reportError(GenericError{"Type parameter list is required"}, ty->location);
}
}
size_t typesProvided = 0;
size_t extraTypes = 0;
size_t packsProvided = 0;
for (const AstTypeOrPack& p : ty->parameters)
{
if (p.type)
{
if (packsProvided != 0)
{
reportError(GenericError{"Type parameters must come before type pack parameters"}, ty->location);
continue;
}
if (typesProvided < typesRequired)
{
typesProvided += 1;
}
else
{
extraTypes += 1;
}
}
else if (p.typePack)
{
std::optional<TypePackId> tp = lookupPackAnnotation(p.typePack);
if (!tp.has_value())
continue;
if (typesProvided < typesRequired && size(*tp) == 1 && finite(*tp) && first(*tp))
{
typesProvided += 1;
}
else
{
packsProvided += 1;
}
}
}
if (extraTypes != 0 && packsProvided == 0)
{
// Extra types are only collected into a pack if a pack is expected
if (packsRequired != 0)
packsProvided += 1;
else
typesProvided += extraTypes;
}
for (size_t i = typesProvided; i < typesRequired; ++i)
{
if (alias->typeParams[i].defaultValue)
{
typesProvided += 1;
}
}
for (size_t i = packsProvided; i < packsRequired; ++i)
{
if (alias->typePackParams[i].defaultValue)
{
packsProvided += 1;
}
}
if (extraTypes == 0 && packsProvided + 1 == packsRequired)
{
packsProvided += 1;
}
if (typesProvided != typesRequired || packsProvided != packsRequired)
{
reportError(
IncorrectGenericParameterCount{
/* name */ ty->name.value,
/* typeFun */ *alias,
/* actualParameters */ typesProvided,
/* actualPackParameters */ packsProvided,
},
ty->location
);
}
}
else
{
if (scope->lookupPack(ty->name.value))
{
reportError(
SwappedGenericTypeParameter{
ty->name.value,
SwappedGenericTypeParameter::Kind::Type,
},
ty->location
);
}
else
{
std::string symbol = "";
if (ty->prefix)
{
symbol += (*(ty->prefix)).value;
symbol += ".";
}
symbol += ty->name.value;
reportError(UnknownSymbol{symbol, UnknownSymbol::Context::Type}, ty->location);
}
}
}
void TypeChecker2::visit(AstTypeTable* table)
{
// TODO!
for (const AstTableProp& prop : table->props)
visit(prop.type);
if (table->indexer)
{
visit(table->indexer->indexType);
visit(table->indexer->resultType);
}
}
void TypeChecker2::visit(AstTypeFunction* ty)
{
visitGenerics(ty->generics, ty->genericPacks);
visit(ty->argTypes);
visit(ty->returnTypes);
}
void TypeChecker2::visit(AstTypeTypeof* ty)
{
visit(ty->expr, ValueContext::RValue);
}
void TypeChecker2::visit(AstTypeUnion* ty)
{
// TODO!
for (AstType* type : ty->types)
visit(type);
}
void TypeChecker2::visit(AstTypeIntersection* ty)
{
// TODO!
for (AstType* type : ty->types)
visit(type);
}
void TypeChecker2::visit(AstTypePack* pack)
{
if (auto p = pack->as<AstTypePackExplicit>())
return visit(p);
else if (auto p = pack->as<AstTypePackVariadic>())
return visit(p);
else if (auto p = pack->as<AstTypePackGeneric>())
return visit(p);
}
void TypeChecker2::visit(AstTypePackExplicit* tp)
{
// TODO!
for (AstType* type : tp->typeList.types)
visit(type);
if (tp->typeList.tailType)
visit(tp->typeList.tailType);
}
void TypeChecker2::visit(AstTypePackVariadic* tp)
{
// TODO!
visit(tp->variadicType);
}
void TypeChecker2::visit(AstTypePackGeneric* tp)
{
Scope* scope = findInnermostScope(tp->location);
LUAU_ASSERT(scope);
std::optional<TypePackId> alias = scope->lookupPack(tp->genericName.value);
if (!alias.has_value())
{
if (scope->lookupType(tp->genericName.value))
{
reportError(
SwappedGenericTypeParameter{
tp->genericName.value,
SwappedGenericTypeParameter::Kind::Pack,
},
tp->location
);
}
else
{
reportError(UnknownSymbol{tp->genericName.value, UnknownSymbol::Context::Type}, tp->location);
}
}
}
template<typename TID>
Reasonings TypeChecker2::explainReasonings_(TID subTy, TID superTy, Location location, const SubtypingResult& r)
{
if (r.reasoning.empty())
return {};
std::vector<std::string> reasons;
bool suppressed = true;
for (const SubtypingReasoning& reasoning : r.reasoning)
{
if (reasoning.subPath.empty() && reasoning.superPath.empty())
continue;
std::optional<TypeOrPack> optSubLeaf = traverse(subTy, reasoning.subPath, builtinTypes);
std::optional<TypeOrPack> optSuperLeaf = traverse(superTy, reasoning.superPath, builtinTypes);
if (!optSubLeaf || !optSuperLeaf)
ice->ice("Subtyping test returned a reasoning with an invalid path", location);
const TypeOrPack& subLeaf = *optSubLeaf;
const TypeOrPack& superLeaf = *optSuperLeaf;
auto subLeafTy = get<TypeId>(subLeaf);
auto superLeafTy = get<TypeId>(superLeaf);
auto subLeafTp = get<TypePackId>(subLeaf);
auto superLeafTp = get<TypePackId>(superLeaf);
if (!subLeafTy && !superLeafTy && !subLeafTp && !superLeafTp)
ice->ice("Subtyping test returned a reasoning where one path ends at a type and the other ends at a pack.", location);
std::string relation = "a subtype of";
if (reasoning.variance == SubtypingVariance::Invariant)
relation = "exactly";
else if (reasoning.variance == SubtypingVariance::Contravariant)
relation = "a supertype of";
std::string reason;
if (reasoning.subPath == reasoning.superPath)
reason = "at " + toString(reasoning.subPath) + ", " + toString(subLeaf) + " is not " + relation + " " + toString(superLeaf);
else
reason = "type " + toString(subTy) + toString(reasoning.subPath, /* prefixDot */ true) + " (" + toString(subLeaf) + ") is not " +
relation + " " + toString(superTy) + toString(reasoning.superPath, /* prefixDot */ true) + " (" + toString(superLeaf) + ")";
reasons.push_back(reason);
// if we haven't already proved this isn't suppressing, we have to keep checking.
if (suppressed)
{
if (subLeafTy && superLeafTy)
suppressed &= isErrorSuppressing(location, *subLeafTy) || isErrorSuppressing(location, *superLeafTy);
else
suppressed &= isErrorSuppressing(location, *subLeafTp) || isErrorSuppressing(location, *superLeafTp);
}
}
return {std::move(reasons), suppressed};
}
Reasonings TypeChecker2::explainReasonings(TypeId subTy, TypeId superTy, Location location, const SubtypingResult& r)
{
return explainReasonings_(subTy, superTy, location, r);
}
Reasonings TypeChecker2::explainReasonings(TypePackId subTp, TypePackId superTp, Location location, const SubtypingResult& r)
{
return explainReasonings_(subTp, superTp, location, r);
}
void TypeChecker2::explainError(TypeId subTy, TypeId superTy, Location location, const SubtypingResult& result)
{
switch (shouldSuppressErrors(NotNull{&normalizer}, subTy).orElse(shouldSuppressErrors(NotNull{&normalizer}, superTy)))
{
case ErrorSuppression::Suppress:
return;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, location);
break;
case ErrorSuppression::DoNotSuppress:
break;
}
Reasonings reasonings = explainReasonings(subTy, superTy, location, result);
if (!reasonings.suppressed)
reportError(TypeMismatch{superTy, subTy, reasonings.toString()}, location);
}
void TypeChecker2::explainError(TypePackId subTy, TypePackId superTy, Location location, const SubtypingResult& result)
{
switch (shouldSuppressErrors(NotNull{&normalizer}, subTy).orElse(shouldSuppressErrors(NotNull{&normalizer}, superTy)))
{
case ErrorSuppression::Suppress:
return;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, location);
break;
case ErrorSuppression::DoNotSuppress:
break;
}
Reasonings reasonings = explainReasonings(subTy, superTy, location, result);
if (!reasonings.suppressed)
reportError(TypePackMismatch{superTy, subTy, reasonings.toString()}, location);
}
bool TypeChecker2::testIsSubtype(TypeId subTy, TypeId superTy, Location location)
{
NotNull<Scope> scope{findInnermostScope(location)};
SubtypingResult r = subtyping->isSubtype(subTy, superTy, scope);
if (r.normalizationTooComplex)
reportError(NormalizationTooComplex{}, location);
if (!r.isSubtype)
explainError(subTy, superTy, location, r);
return r.isSubtype;
}
bool TypeChecker2::testIsSubtype(TypePackId subTy, TypePackId superTy, Location location)
{
NotNull<Scope> scope{findInnermostScope(location)};
SubtypingResult r = subtyping->isSubtype(subTy, superTy, scope);
if (r.normalizationTooComplex)
reportError(NormalizationTooComplex{}, location);
if (!r.isSubtype)
explainError(subTy, superTy, location, r);
return r.isSubtype;
}
void TypeChecker2::reportError(TypeErrorData data, const Location& location)
{
if (auto utk = get_if<UnknownProperty>(&data))
diagnoseMissingTableKey(utk, data);
module->errors.emplace_back(location, module->name, std::move(data));
if (logger)
logger->captureTypeCheckError(module->errors.back());
}
void TypeChecker2::reportError(TypeError e)
{
reportError(std::move(e.data), e.location);
}
void TypeChecker2::reportErrors(ErrorVec errors)
{
for (TypeError e : errors)
reportError(std::move(e));
}
/* A helper for checkIndexTypeFromType.
*
* Returns a pair:
* * A boolean indicating that at least one of the constituent types
* contains the prop, and
* * A vector of types that do not contain the prop.
*/
PropertyTypes TypeChecker2::lookupProp(
const NormalizedType* norm,
const std::string& prop,
ValueContext context,
const Location& location,
TypeId astIndexExprType,
std::vector<TypeError>& errors
)
{
std::vector<TypeId> typesOfProp;
std::vector<TypeId> typesMissingTheProp;
// this is `false` if we ever hit the resource limits during any of our uses of `fetch`.
bool normValid = true;
auto fetch = [&](TypeId ty)
{
NormalizationResult result = normalizer.isInhabited(ty);
if (result == NormalizationResult::HitLimits)
normValid = false;
if (result != NormalizationResult::True)
return;
DenseHashSet<TypeId> seen{nullptr};
PropertyType res = hasIndexTypeFromType(ty, prop, context, location, seen, astIndexExprType, errors);
if (res.present == NormalizationResult::HitLimits)
{
normValid = false;
return;
}
if (res.present == NormalizationResult::True && res.result)
typesOfProp.emplace_back(*res.result);
if (res.present == NormalizationResult::False)
typesMissingTheProp.push_back(ty);
};
if (normValid)
fetch(norm->tops);
if (normValid)
fetch(norm->booleans);
if (normValid)
{
for (const auto& [ty, _negations] : norm->classes.classes)
{
fetch(ty);
if (!normValid)
break;
}
}
if (normValid)
fetch(norm->errors);
if (normValid)
fetch(norm->nils);
if (normValid)
fetch(norm->numbers);
if (normValid && !norm->strings.isNever())
fetch(builtinTypes->stringType);
if (normValid)
fetch(norm->threads);
if (normValid)
fetch(norm->buffers);
if (normValid)
{
for (TypeId ty : norm->tables)
{
fetch(ty);
if (!normValid)
break;
}
}
if (normValid && norm->functions.isTop)
fetch(builtinTypes->functionType);
else if (normValid && !norm->functions.isNever())
{
if (norm->functions.parts.size() == 1)
fetch(norm->functions.parts.front());
else
{
std::vector<TypeId> parts;
parts.insert(parts.end(), norm->functions.parts.begin(), norm->functions.parts.end());
fetch(module->internalTypes.addType(IntersectionType{std::move(parts)}));
}
}
if (normValid)
{
for (const auto& [tyvar, intersect] : norm->tyvars)
{
if (get<NeverType>(intersect->tops))
{
TypeId ty = normalizer.typeFromNormal(*intersect);
fetch(module->internalTypes.addType(IntersectionType{{tyvar, ty}}));
}
else
fetch(follow(tyvar));
if (!normValid)
break;
}
}
return {typesOfProp, typesMissingTheProp};
}
void TypeChecker2::checkIndexTypeFromType(
TypeId tableTy,
const std::string& prop,
ValueContext context,
const Location& location,
TypeId astIndexExprType
)
{
std::shared_ptr<const NormalizedType> norm = normalizer.normalize(tableTy);
if (!norm)
{
reportError(NormalizationTooComplex{}, location);
return;
}
// if the type is error suppressing, we don't actually have any work left to do.
if (norm->shouldSuppressErrors())
return;
std::vector<TypeError> dummy;
const auto propTypes = lookupProp(norm.get(), prop, context, location, astIndexExprType, module->errors);
if (propTypes.foundMissingProp())
{
if (propTypes.foundOneProp())
reportError(MissingUnionProperty{tableTy, propTypes.missingProp, prop}, location);
// For class LValues, we don't want to report an extension error,
// because classes come into being with full knowledge of their
// shape. We instead want to report the unknown property error of
// the `else` branch.
else if (context == ValueContext::LValue && !get<ClassType>(tableTy))
{
const auto lvPropTypes = lookupProp(norm.get(), prop, ValueContext::RValue, location, astIndexExprType, dummy);
if (lvPropTypes.foundOneProp() && lvPropTypes.noneMissingProp())
reportError(PropertyAccessViolation{tableTy, prop, PropertyAccessViolation::CannotWrite}, location);
else if (get<PrimitiveType>(tableTy) || get<FunctionType>(tableTy))
reportError(NotATable{tableTy}, location);
else
reportError(CannotExtendTable{tableTy, CannotExtendTable::Property, prop}, location);
}
else if (context == ValueContext::RValue && !get<ClassType>(tableTy))
{
const auto rvPropTypes = lookupProp(norm.get(), prop, ValueContext::LValue, location, astIndexExprType, dummy);
if (rvPropTypes.foundOneProp() && rvPropTypes.noneMissingProp())
reportError(PropertyAccessViolation{tableTy, prop, PropertyAccessViolation::CannotRead}, location);
else
reportError(UnknownProperty{tableTy, prop}, location);
}
else
reportError(UnknownProperty{tableTy, prop}, location);
}
}
PropertyType TypeChecker2::hasIndexTypeFromType(
TypeId ty,
const std::string& prop,
ValueContext context,
const Location& location,
DenseHashSet<TypeId>& seen,
TypeId astIndexExprType,
std::vector<TypeError>& errors
)
{
// If we have already encountered this type, we must assume that some
// other codepath will do the right thing and signal false if the
// property is not present.
if (seen.contains(ty))
return {NormalizationResult::True, {}};
seen.insert(ty);
if (get<ErrorType>(ty) || get<AnyType>(ty) || get<NeverType>(ty))
return {NormalizationResult::True, {ty}};
if (isString(ty))
{
std::optional<TypeId> mtIndex = Luau::findMetatableEntry(builtinTypes, errors, builtinTypes->stringType, "__index", location);
LUAU_ASSERT(mtIndex);
ty = *mtIndex;
}
if (auto tt = getTableType(ty))
{
if (auto resTy = findTablePropertyRespectingMeta(builtinTypes, errors, ty, prop, context, location))
return {NormalizationResult::True, resTy};
if (tt->indexer)
{
TypeId indexType = follow(tt->indexer->indexType);
TypeId givenType = module->internalTypes.addType(SingletonType{StringSingleton{prop}});
if (isSubtype(givenType, indexType, NotNull{module->getModuleScope().get()}, builtinTypes, simplifier, *ice))
return {NormalizationResult::True, {tt->indexer->indexResultType}};
}
// if we are in a conditional context, we treat the property as present and `unknown` because
// we may be _refining_ `tableTy` to include that property. we will want to revisit this a bit
// in the future once luau has support for exact tables since this only applies when inexact.
return {inConditional(typeContext) ? NormalizationResult::True : NormalizationResult::False, {builtinTypes->unknownType}};
}
else if (const ClassType* cls = get<ClassType>(ty))
{
// If the property doesn't exist on the class, we consult the indexer
// We need to check if the type of the index expression foo (x[foo])
// is compatible with the indexer's indexType
// Construct the intersection and test inhabitedness!
if (auto property = lookupClassProp(cls, prop))
return {NormalizationResult::True, context == ValueContext::LValue ? property->writeTy : property->readTy};
if (cls->indexer)
{
TypeId inhabitatedTestType = module->internalTypes.addType(IntersectionType{{cls->indexer->indexType, astIndexExprType}});
return {normalizer.isInhabited(inhabitatedTestType), {cls->indexer->indexResultType}};
}
return {NormalizationResult::False, {}};
}
else if (const UnionType* utv = get<UnionType>(ty))
{
std::vector<TypeId> parts;
parts.reserve(utv->options.size());
for (TypeId part : utv)
{
PropertyType result = hasIndexTypeFromType(part, prop, context, location, seen, astIndexExprType, errors);
if (result.present != NormalizationResult::True)
return {result.present, {}};
if (result.result)
parts.emplace_back(*result.result);
}
if (parts.size() == 0)
return {NormalizationResult::False, {}};
if (parts.size() == 1)
return {NormalizationResult::True, {parts[0]}};
TypeId propTy;
if (context == ValueContext::LValue)
propTy = module->internalTypes.addType(IntersectionType{parts});
else
propTy = module->internalTypes.addType(UnionType{parts});
return {NormalizationResult::True, propTy};
}
else if (const IntersectionType* itv = get<IntersectionType>(ty))
{
for (TypeId part : itv)
{
PropertyType result = hasIndexTypeFromType(part, prop, context, location, seen, astIndexExprType, errors);
if (result.present != NormalizationResult::False)
return result;
}
return {NormalizationResult::False, {}};
}
else if (const PrimitiveType* pt = get<PrimitiveType>(ty))
return {(inConditional(typeContext) && pt->type == PrimitiveType::Table) ? NormalizationResult::True : NormalizationResult::False, {ty}};
else
return {NormalizationResult::False, {}};
}
void TypeChecker2::diagnoseMissingTableKey(UnknownProperty* utk, TypeErrorData& data) const
{
std::string_view sv(utk->key);
std::set<Name> candidates;
auto accumulate = [&](const TableType::Props& props)
{
for (const auto& [name, ty] : props)
{
if (sv != name && equalsLower(sv, name))
candidates.insert(name);
}
};
if (auto ttv = getTableType(utk->table))
accumulate(ttv->props);
else if (auto ctv = get<ClassType>(follow(utk->table)))
{
while (ctv)
{
accumulate(ctv->props);
if (!ctv->parent)
break;
ctv = get<ClassType>(*ctv->parent);
LUAU_ASSERT(ctv);
}
}
if (!candidates.empty())
data = TypeErrorData(UnknownPropButFoundLikeProp{utk->table, utk->key, candidates});
}
bool TypeChecker2::isErrorSuppressing(Location loc, TypeId ty)
{
switch (shouldSuppressErrors(NotNull{&normalizer}, ty))
{
case ErrorSuppression::DoNotSuppress:
return false;
case ErrorSuppression::Suppress:
return true;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, loc);
return false;
};
LUAU_ASSERT(false);
return false; // UNREACHABLE
}
bool TypeChecker2::isErrorSuppressing(Location loc1, TypeId ty1, Location loc2, TypeId ty2)
{
return isErrorSuppressing(loc1, ty1) || isErrorSuppressing(loc2, ty2);
}
bool TypeChecker2::isErrorSuppressing(Location loc, TypePackId tp)
{
switch (shouldSuppressErrors(NotNull{&normalizer}, tp))
{
case ErrorSuppression::DoNotSuppress:
return false;
case ErrorSuppression::Suppress:
return true;
case ErrorSuppression::NormalizationFailed:
reportError(NormalizationTooComplex{}, loc);
return false;
};
LUAU_ASSERT(false);
return false; // UNREACHABLE
}
bool TypeChecker2::isErrorSuppressing(Location loc1, TypePackId tp1, Location loc2, TypePackId tp2)
{
return isErrorSuppressing(loc1, tp1) || isErrorSuppressing(loc2, tp2);
}
} // namespace Luau