luau/CodeGen/include/Luau/CodeGen.h
2024-06-07 10:09:03 -07:00

394 lines
13 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include <algorithm>
#include <array>
#include <memory>
#include <string>
#include <vector>
#include <stddef.h>
#include <stdint.h>
struct lua_State;
#if defined(__x86_64__) || defined(_M_X64)
#define CODEGEN_TARGET_X64
#elif defined(__aarch64__) || defined(_M_ARM64)
#define CODEGEN_TARGET_A64
#endif
namespace Luau
{
namespace CodeGen
{
enum CodeGenFlags
{
// Only run native codegen for modules that have been marked with --!native
CodeGen_OnlyNativeModules = 1 << 0,
// Run native codegen for functions that the compiler considers not profitable
CodeGen_ColdFunctions = 1 << 1,
};
// These enum values can be reported through telemetry.
// To ensure consistency, changes should be additive.
enum class CodeGenCompilationResult
{
Success = 0, // Successfully generated code for at least one function
NothingToCompile = 1, // There were no new functions to compile
NotNativeModule = 2, // Module does not have `--!native` comment
CodeGenNotInitialized = 3, // Native codegen system is not initialized
CodeGenOverflowInstructionLimit = 4, // Instruction limit overflow
CodeGenOverflowBlockLimit = 5, // Block limit overflow
CodeGenOverflowBlockInstructionLimit = 6, // Block instruction limit overflow
CodeGenAssemblerFinalizationFailure = 7, // Failure during assembler finalization
CodeGenLoweringFailure = 8, // Lowering failed
AllocationFailed = 9, // Native codegen failed due to an allocation error
Count = 10,
};
std::string toString(const CodeGenCompilationResult& result);
struct ProtoCompilationFailure
{
CodeGenCompilationResult result = CodeGenCompilationResult::Success;
std::string debugname;
int line = -1;
};
struct CompilationResult
{
CodeGenCompilationResult result = CodeGenCompilationResult::Success;
std::vector<ProtoCompilationFailure> protoFailures;
[[nodiscard]] bool hasErrors() const
{
return result != CodeGenCompilationResult::Success || !protoFailures.empty();
}
};
struct IrBuilder;
struct IrOp;
using HostVectorOperationBytecodeType = uint8_t (*)(const char* member, size_t memberLength);
using HostVectorAccessHandler = bool (*)(IrBuilder& builder, const char* member, size_t memberLength, int resultReg, int sourceReg, int pcpos);
using HostVectorNamecallHandler = bool (*)(
IrBuilder& builder, const char* member, size_t memberLength, int argResReg, int sourceReg, int params, int results, int pcpos);
enum class HostMetamethod
{
Add,
Sub,
Mul,
Div,
Idiv,
Mod,
Pow,
Minus,
Equal,
LessThan,
LessEqual,
Length,
Concat,
};
using HostUserdataOperationBytecodeType = uint8_t (*)(uint8_t type, const char* member, size_t memberLength);
using HostUserdataMetamethodBytecodeType = uint8_t (*)(uint8_t lhsTy, uint8_t rhsTy, HostMetamethod method);
using HostUserdataAccessHandler = bool (*)(
IrBuilder& builder, uint8_t type, const char* member, size_t memberLength, int resultReg, int sourceReg, int pcpos);
using HostUserdataMetamethodHandler = bool (*)(
IrBuilder& builder, uint8_t lhsTy, uint8_t rhsTy, int resultReg, IrOp lhs, IrOp rhs, HostMetamethod method, int pcpos);
using HostUserdataNamecallHandler = bool (*)(
IrBuilder& builder, uint8_t type, const char* member, size_t memberLength, int argResReg, int sourceReg, int params, int results, int pcpos);
struct HostIrHooks
{
// Suggest result type of a vector field access
HostVectorOperationBytecodeType vectorAccessBytecodeType = nullptr;
// Suggest result type of a vector function namecall
HostVectorOperationBytecodeType vectorNamecallBytecodeType = nullptr;
// Handle vector value field access
// 'sourceReg' is guaranteed to be a vector
// Guards should take a VM exit to 'pcpos'
HostVectorAccessHandler vectorAccess = nullptr;
// Handle namecall performed on a vector value
// 'sourceReg' (self argument) is guaranteed to be a vector
// All other arguments can be of any type
// Guards should take a VM exit to 'pcpos'
HostVectorNamecallHandler vectorNamecall = nullptr;
// Suggest result type of a userdata field access
HostUserdataOperationBytecodeType userdataAccessBytecodeType = nullptr;
// Suggest result type of a metamethod call
HostUserdataMetamethodBytecodeType userdataMetamethodBytecodeType = nullptr;
// Suggest result type of a userdata namecall
HostUserdataOperationBytecodeType userdataNamecallBytecodeType = nullptr;
// Handle userdata value field access
// 'sourceReg' is guaranteed to be a userdata, but tag has to be checked
// Write to 'resultReg' might invalidate 'sourceReg'
// Guards should take a VM exit to 'pcpos'
HostUserdataAccessHandler userdataAccess = nullptr;
// Handle metamethod operation on a userdata value
// 'lhs' and 'rhs' operands can be VM registers of constants
// Operand types have to be checked and userdata operand tags have to be checked
// Write to 'resultReg' might invalidate source operands
// Guards should take a VM exit to 'pcpos'
HostUserdataMetamethodHandler userdataMetamethod = nullptr;
// Handle namecall performed on a userdata value
// 'sourceReg' (self argument) is guaranteed to be a userdata, but tag has to be checked
// All other arguments can be of any type
// Guards should take a VM exit to 'pcpos'
HostUserdataNamecallHandler userdataNamecall = nullptr;
};
struct CompilationOptions
{
unsigned int flags = 0;
HostIrHooks hooks;
// null-terminated array of userdata types names that might have custom lowering
const char* const* userdataTypes = nullptr;
};
struct CompilationStats
{
size_t bytecodeSizeBytes = 0;
size_t nativeCodeSizeBytes = 0;
size_t nativeDataSizeBytes = 0;
size_t nativeMetadataSizeBytes = 0;
uint32_t functionsTotal = 0;
uint32_t functionsCompiled = 0;
uint32_t functionsBound = 0;
};
using AllocationCallback = void(void* context, void* oldPointer, size_t oldSize, void* newPointer, size_t newSize);
bool isSupported();
class SharedCodeGenContext;
struct SharedCodeGenContextDeleter
{
void operator()(const SharedCodeGenContext* context) const noexcept;
};
using UniqueSharedCodeGenContext = std::unique_ptr<SharedCodeGenContext, SharedCodeGenContextDeleter>;
// Creates a new SharedCodeGenContext that can be used by multiple Luau VMs
// concurrently, using either the default allocator parameters or custom
// allocator parameters.
[[nodiscard]] UniqueSharedCodeGenContext createSharedCodeGenContext();
[[nodiscard]] UniqueSharedCodeGenContext createSharedCodeGenContext(AllocationCallback* allocationCallback, void* allocationCallbackContext);
[[nodiscard]] UniqueSharedCodeGenContext createSharedCodeGenContext(
size_t blockSize, size_t maxTotalSize, AllocationCallback* allocationCallback, void* allocationCallbackContext);
// Destroys the provided SharedCodeGenContext. All Luau VMs using the
// SharedCodeGenContext must be destroyed before this function is called.
void destroySharedCodeGenContext(const SharedCodeGenContext* codeGenContext) noexcept;
// Initializes native code-gen on the provided Luau VM, using a VM-specific
// code-gen context and either the default allocator parameters or custom
// allocator parameters.
void create(lua_State* L);
void create(lua_State* L, AllocationCallback* allocationCallback, void* allocationCallbackContext);
void create(lua_State* L, size_t blockSize, size_t maxTotalSize, AllocationCallback* allocationCallback, void* allocationCallbackContext);
// Initializes native code-gen on the provided Luau VM, using the provided
// SharedCodeGenContext. Note that after this function is called, the
// SharedCodeGenContext must not be destroyed until after the Luau VM L is
// destroyed via lua_close.
void create(lua_State* L, SharedCodeGenContext* codeGenContext);
// Check if native execution is enabled
[[nodiscard]] bool isNativeExecutionEnabled(lua_State* L);
// Enable or disable native execution according to `enabled` argument
void setNativeExecutionEnabled(lua_State* L, bool enabled);
// Given a name, this function must return the index of the type which matches the type array used all CompilationOptions and AssemblyOptions
// If the type is unknown, 0xff has to be returned
using UserdataRemapperCallback = uint8_t(void* context, const char* name, size_t nameLength);
void setUserdataRemapper(lua_State* L, void* context, UserdataRemapperCallback cb);
using ModuleId = std::array<uint8_t, 16>;
// Builds target function and all inner functions
CompilationResult compile(lua_State* L, int idx, unsigned int flags, CompilationStats* stats = nullptr);
CompilationResult compile(const ModuleId& moduleId, lua_State* L, int idx, unsigned int flags, CompilationStats* stats = nullptr);
CompilationResult compile(lua_State* L, int idx, const CompilationOptions& options, CompilationStats* stats = nullptr);
CompilationResult compile(const ModuleId& moduleId, lua_State* L, int idx, const CompilationOptions& options, CompilationStats* stats = nullptr);
using AnnotatorFn = void (*)(void* context, std::string& result, int fid, int instpos);
// Output "#" before IR blocks and instructions
enum class IncludeIrPrefix
{
No,
Yes
};
// Output user count and last use information of blocks and instructions
enum class IncludeUseInfo
{
No,
Yes
};
// Output CFG informations like block predecessors, successors and etc
enum class IncludeCfgInfo
{
No,
Yes
};
// Output VM register live in/out information for blocks
enum class IncludeRegFlowInfo
{
No,
Yes
};
struct AssemblyOptions
{
enum Target
{
Host,
A64,
A64_NoFeatures,
X64_Windows,
X64_SystemV,
};
Target target = Host;
CompilationOptions compilationOptions;
bool outputBinary = false;
bool includeAssembly = false;
bool includeIr = false;
bool includeOutlinedCode = false;
bool includeIrTypes = false;
IncludeIrPrefix includeIrPrefix = IncludeIrPrefix::Yes;
IncludeUseInfo includeUseInfo = IncludeUseInfo::Yes;
IncludeCfgInfo includeCfgInfo = IncludeCfgInfo::Yes;
IncludeRegFlowInfo includeRegFlowInfo = IncludeRegFlowInfo::Yes;
// Optional annotator function can be provided to describe each instruction, it takes function id and sequential instruction id
AnnotatorFn annotator = nullptr;
void* annotatorContext = nullptr;
};
struct BlockLinearizationStats
{
unsigned int constPropInstructionCount = 0;
double timeSeconds = 0.0;
BlockLinearizationStats& operator+=(const BlockLinearizationStats& that)
{
this->constPropInstructionCount += that.constPropInstructionCount;
this->timeSeconds += that.timeSeconds;
return *this;
}
BlockLinearizationStats operator+(const BlockLinearizationStats& other) const
{
BlockLinearizationStats result(*this);
result += other;
return result;
}
};
enum FunctionStatsFlags
{
// Enable stats collection per function
FunctionStats_Enable = 1 << 0,
// Compute function bytecode summary
FunctionStats_BytecodeSummary = 1 << 1,
};
struct FunctionStats
{
std::string name;
int line = -1;
unsigned bcodeCount = 0;
unsigned irCount = 0;
unsigned asmCount = 0;
unsigned asmSize = 0;
std::vector<std::vector<unsigned>> bytecodeSummary;
};
struct LoweringStats
{
unsigned totalFunctions = 0;
unsigned skippedFunctions = 0;
int spillsToSlot = 0;
int spillsToRestore = 0;
unsigned maxSpillSlotsUsed = 0;
unsigned blocksPreOpt = 0;
unsigned blocksPostOpt = 0;
unsigned maxBlockInstructions = 0;
int regAllocErrors = 0;
int loweringErrors = 0;
BlockLinearizationStats blockLinearizationStats;
unsigned functionStatsFlags = 0;
std::vector<FunctionStats> functions;
LoweringStats operator+(const LoweringStats& other) const
{
LoweringStats result(*this);
result += other;
return result;
}
LoweringStats& operator+=(const LoweringStats& that)
{
this->totalFunctions += that.totalFunctions;
this->skippedFunctions += that.skippedFunctions;
this->spillsToSlot += that.spillsToSlot;
this->spillsToRestore += that.spillsToRestore;
this->maxSpillSlotsUsed = std::max(this->maxSpillSlotsUsed, that.maxSpillSlotsUsed);
this->blocksPreOpt += that.blocksPreOpt;
this->blocksPostOpt += that.blocksPostOpt;
this->maxBlockInstructions = std::max(this->maxBlockInstructions, that.maxBlockInstructions);
this->regAllocErrors += that.regAllocErrors;
this->loweringErrors += that.loweringErrors;
this->blockLinearizationStats += that.blockLinearizationStats;
if (this->functionStatsFlags & FunctionStats_Enable)
this->functions.insert(this->functions.end(), that.functions.begin(), that.functions.end());
return *this;
}
};
// Generates assembly for target function and all inner functions
std::string getAssembly(lua_State* L, int idx, AssemblyOptions options = {}, LoweringStats* stats = nullptr);
using PerfLogFn = void (*)(void* context, uintptr_t addr, unsigned size, const char* symbol);
void setPerfLog(void* context, PerfLogFn logFn);
} // namespace CodeGen
} // namespace Luau