luau/VM/src/lfunc.cpp
vegorov-rbx 76f67e0733
Sync to upstream/release/588 (#992)
Type checker/autocomplete:
* `Luau::autocomplete` no longer performs typechecking internally, make
sure to run `Frontend::check` before performing autocomplete requests
* Autocomplete string suggestions without "" are now only suggested
inside the ""
* Autocomplete suggestions now include `function (anonymous autofilled)`
key with a full suggestion for the function expression (with arguments
included) stored in `AutocompleteEntry::insertText`
* `AutocompleteEntry::indexedWithSelf` is provided for function call
suggestions made with `:`
* Cyclic modules now see each other type exports as `any` to prevent
memory use-after-free (similar to module return type)

Runtime:
* Updated inline/loop unroll cost model to better handle assignments
(Fixes https://github.com/Roblox/luau/issues/978)
* `math.noise` speed was improved by ~30%
* `table.concat` speed was improved by ~5-7%
* `tonumber` and `tostring` now have fastcall paths that execute ~1.5x
and ~2.5x faster respectively (fixes #777)
* Fixed crash in `luaL_typename` when index refers to a non-existing
value
* Fixed potential out of memory scenario when using `string.sub` or
`string.char` in a loop
* Fixed behavior of some fastcall builtins when called without arguments
under -O2 to match original functions
* Support for native code execution in VM is now enabled by default
(note: native code still has to be generated explicitly)
* `Codegen::compile` now accepts `CodeGen_OnlyNativeModules` flag. When
set, only modules that have a `--!native` hot-comment at the top will be
compiled to native code

In our new typechecker:
* Generic type packs are no longer considered to be variadic during
unification
* Timeout and cancellation now works in new solver
* Fixed false positive errors around 'table' and 'function' type
refinements
* Table literals now use covariant unification rules. This is sound
since literal has no type specified and has no aliases
* Fixed issues with blocked types escaping the constraint solver
* Fixed more places where error messages that should've been suppressed
were still reported
* Fixed errors when iterating over a top table type

In our native code generation (jit):
* 'DebugLuauAbortingChecks' flag is now supported on A64
* LOP_NEWCLOSURE has been translated to IR
2023-07-28 08:13:53 -07:00

197 lines
5.7 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
// This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details
#include "lfunc.h"
#include "lstate.h"
#include "lmem.h"
#include "lgc.h"
Proto* luaF_newproto(lua_State* L)
{
Proto* f = luaM_newgco(L, Proto, sizeof(Proto), L->activememcat);
luaC_init(L, f, LUA_TPROTO);
f->k = NULL;
f->sizek = 0;
f->p = NULL;
f->sizep = 0;
f->code = NULL;
f->sizecode = 0;
f->sizeupvalues = 0;
f->nups = 0;
f->upvalues = NULL;
f->numparams = 0;
f->is_vararg = 0;
f->maxstacksize = 0;
f->flags = 0;
f->sizelineinfo = 0;
f->linegaplog2 = 0;
f->lineinfo = NULL;
f->abslineinfo = NULL;
f->sizelocvars = 0;
f->locvars = NULL;
f->source = NULL;
f->debugname = NULL;
f->debuginsn = NULL;
f->codeentry = NULL;
f->execdata = NULL;
f->exectarget = 0;
f->typeinfo = NULL;
f->userdata = NULL;
return f;
}
Closure* luaF_newLclosure(lua_State* L, int nelems, Table* e, Proto* p)
{
Closure* c = luaM_newgco(L, Closure, sizeLclosure(nelems), L->activememcat);
luaC_init(L, c, LUA_TFUNCTION);
c->isC = 0;
c->env = e;
c->nupvalues = cast_byte(nelems);
c->stacksize = p->maxstacksize;
c->preload = 0;
c->l.p = p;
for (int i = 0; i < nelems; ++i)
setnilvalue(&c->l.uprefs[i]);
return c;
}
Closure* luaF_newCclosure(lua_State* L, int nelems, Table* e)
{
Closure* c = luaM_newgco(L, Closure, sizeCclosure(nelems), L->activememcat);
luaC_init(L, c, LUA_TFUNCTION);
c->isC = 1;
c->env = e;
c->nupvalues = cast_byte(nelems);
c->stacksize = LUA_MINSTACK;
c->preload = 0;
c->c.f = NULL;
c->c.cont = NULL;
c->c.debugname = NULL;
return c;
}
UpVal* luaF_findupval(lua_State* L, StkId level)
{
global_State* g = L->global;
UpVal** pp = &L->openupval;
UpVal* p;
while (*pp != NULL && (p = *pp)->v >= level)
{
LUAU_ASSERT(!isdead(g, obj2gco(p)));
LUAU_ASSERT(upisopen(p));
if (p->v == level)
return p;
pp = &p->u.open.threadnext;
}
LUAU_ASSERT(L->isactive);
LUAU_ASSERT(!isblack(obj2gco(L))); // we don't use luaC_threadbarrier because active threads never turn black
UpVal* uv = luaM_newgco(L, UpVal, sizeof(UpVal), L->activememcat); // not found: create a new one
luaC_init(L, uv, LUA_TUPVAL);
uv->markedopen = 0;
uv->v = level; // current value lives in the stack
// chain the upvalue in the threads open upvalue list at the proper position
uv->u.open.threadnext = *pp;
*pp = uv;
// double link the upvalue in the global open upvalue list
uv->u.open.prev = &g->uvhead;
uv->u.open.next = g->uvhead.u.open.next;
uv->u.open.next->u.open.prev = uv;
g->uvhead.u.open.next = uv;
LUAU_ASSERT(uv->u.open.next->u.open.prev == uv && uv->u.open.prev->u.open.next == uv);
return uv;
}
void luaF_freeupval(lua_State* L, UpVal* uv, lua_Page* page)
{
luaM_freegco(L, uv, sizeof(UpVal), uv->memcat, page); // free upvalue
}
void luaF_close(lua_State* L, StkId level)
{
global_State* g = L->global;
UpVal* uv;
while (L->openupval != NULL && (uv = L->openupval)->v >= level)
{
GCObject* o = obj2gco(uv);
LUAU_ASSERT(!isblack(o) && upisopen(uv));
LUAU_ASSERT(!isdead(g, o));
// unlink value *before* closing it since value storage overlaps
L->openupval = uv->u.open.threadnext;
luaF_closeupval(L, uv, /* dead= */ false);
}
}
void luaF_closeupval(lua_State* L, UpVal* uv, bool dead)
{
// unlink value from all lists *before* closing it since value storage overlaps
LUAU_ASSERT(uv->u.open.next->u.open.prev == uv && uv->u.open.prev->u.open.next == uv);
uv->u.open.next->u.open.prev = uv->u.open.prev;
uv->u.open.prev->u.open.next = uv->u.open.next;
if (dead)
return;
setobj(L, &uv->u.value, uv->v);
uv->v = &uv->u.value;
luaC_upvalclosed(L, uv);
}
void luaF_freeproto(lua_State* L, Proto* f, lua_Page* page)
{
luaM_freearray(L, f->code, f->sizecode, Instruction, f->memcat);
luaM_freearray(L, f->p, f->sizep, Proto*, f->memcat);
luaM_freearray(L, f->k, f->sizek, TValue, f->memcat);
if (f->lineinfo)
luaM_freearray(L, f->lineinfo, f->sizelineinfo, uint8_t, f->memcat);
luaM_freearray(L, f->locvars, f->sizelocvars, struct LocVar, f->memcat);
luaM_freearray(L, f->upvalues, f->sizeupvalues, TString*, f->memcat);
if (f->debuginsn)
luaM_freearray(L, f->debuginsn, f->sizecode, uint8_t, f->memcat);
if (f->execdata)
L->global->ecb.destroy(L, f);
if (f->typeinfo)
luaM_freearray(L, f->typeinfo, f->numparams + 2, uint8_t, f->memcat);
luaM_freegco(L, f, sizeof(Proto), f->memcat, page);
}
void luaF_freeclosure(lua_State* L, Closure* c, lua_Page* page)
{
int size = c->isC ? sizeCclosure(c->nupvalues) : sizeLclosure(c->nupvalues);
luaM_freegco(L, c, size, c->memcat, page);
}
const LocVar* luaF_getlocal(const Proto* f, int local_number, int pc)
{
for (int i = 0; i < f->sizelocvars; i++)
{
if (pc >= f->locvars[i].startpc && pc < f->locvars[i].endpc)
{ // is variable active?
local_number--;
if (local_number == 0)
return &f->locvars[i];
}
}
return NULL; // not found
}
const LocVar* luaF_findlocal(const Proto* f, int local_reg, int pc)
{
for (int i = 0; i < f->sizelocvars; i++)
if (local_reg == f->locvars[i].reg && pc >= f->locvars[i].startpc && pc < f->locvars[i].endpc)
return &f->locvars[i];
return NULL; // not found
}