mirror of
https://github.com/luau-lang/luau.git
synced 2025-01-23 19:18:11 +00:00
d141a5c48d
* Fixed exported types not being suggested in autocomplete * `T...` is now convertible to `...any` (Fixes https://github.com/Roblox/luau/issues/767) * Fixed issue with `T?` not being convertible to `T | T` or `T?` (sometimes when internal pointer identity is different) * Fixed potential crash in missing table key error suggestion to use a similar existing key * `lua_topointer` now returns a pointer for strings C++ API Changes: * `prepareModuleScope` callback has moved from TypeChecker to Frontend * For LSPs, AstQuery functions (and `isWithinComment`) can be used without full Frontend data A lot of changes in our two experimental components as well. In our work on the new type-solver, the following issues were fixed: * Fixed table union and intersection indexing * Correct custom type environments are now used * Fixed issue with values of `free & number` type not accepted in numeric operations And these are the changes in native code generation (JIT): * arm64 lowering is almost complete with support for 99% of IR commands and all fastcalls * Fixed x64 assembly encoding for extended byte registers * More external x64 calls are aware of register allocator * `math.min`/`math.max` with more than 2 arguments are now lowered to IR as well * Fixed correctness issues with `math` library calls with multiple results in variadic context and with x64 register conflicts * x64 register allocator learnt to restore values from VM memory instead of always using stack spills * x64 exception unwind information now supports multiple functions and fixes function start offset in Dwarf2 info
859 lines
26 KiB
C++
859 lines
26 KiB
C++
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
|
// This code is based on Lua 5.x implementation licensed under MIT License; see lua_LICENSE.txt for details
|
|
|
|
/*
|
|
* Implementation of tables (aka arrays, objects, or hash tables).
|
|
*
|
|
* Tables keep the elements in two parts: an array part and a hash part.
|
|
* Integer keys >=1 are all candidates to be kept in the array part. The actual size of the array is the
|
|
* largest n such that at least half the slots between 0 and n are in use.
|
|
* Hash uses a mix of chained scatter table with Brent's variation.
|
|
*
|
|
* A main invariant of these tables is that, if an element is not in its main position (i.e. the original
|
|
* position that its hash gives to it), then the colliding element is in its own main position.
|
|
* Hence even when the load factor reaches 100%, performance remains good.
|
|
*
|
|
* Table keys can be arbitrary values unless they contain NaN. Keys are hashed and compared using raw equality,
|
|
* so even if the key is a userdata with an overridden __eq, it's not used during hash lookups.
|
|
*
|
|
* Each table has a "boundary", defined as the index k where t[k] ~= nil and t[k+1] == nil. The boundary can be
|
|
* computed using a binary search and can be adjusted when the table is modified; crucially, Luau enforces an
|
|
* invariant where the boundary must be in the array part - this enforces a consistent iteration order through the
|
|
* prefix of the table when using pairs(), and allows to implement algorithms that access elements in 1..#t range
|
|
* more efficiently.
|
|
*/
|
|
|
|
#include "ltable.h"
|
|
|
|
#include "lstate.h"
|
|
#include "ldebug.h"
|
|
#include "lgc.h"
|
|
#include "lmem.h"
|
|
#include "lnumutils.h"
|
|
|
|
#include <string.h>
|
|
|
|
// max size of both array and hash part is 2^MAXBITS
|
|
#define MAXBITS 26
|
|
#define MAXSIZE (1 << MAXBITS)
|
|
|
|
static_assert(offsetof(LuaNode, val) == 0, "Unexpected Node memory layout, pointer cast in gval2slot is incorrect");
|
|
|
|
// TKey is bitpacked for memory efficiency so we need to validate bit counts for worst case
|
|
static_assert(TKey{{NULL}, {0}, LUA_TDEADKEY, 0}.tt == LUA_TDEADKEY, "not enough bits for tt");
|
|
static_assert(TKey{{NULL}, {0}, LUA_TNIL, MAXSIZE - 1}.next == MAXSIZE - 1, "not enough bits for next");
|
|
static_assert(TKey{{NULL}, {0}, LUA_TNIL, -(MAXSIZE - 1)}.next == -(MAXSIZE - 1), "not enough bits for next");
|
|
|
|
// empty hash data points to dummynode so that we can always dereference it
|
|
const LuaNode luaH_dummynode = {
|
|
{{NULL}, {0}, LUA_TNIL}, // value
|
|
{{NULL}, {0}, LUA_TNIL, 0} // key
|
|
};
|
|
|
|
#define dummynode (&luaH_dummynode)
|
|
|
|
// hash is always reduced mod 2^k
|
|
#define hashpow2(t, n) (gnode(t, lmod((n), sizenode(t))))
|
|
|
|
#define hashstr(t, str) hashpow2(t, (str)->hash)
|
|
#define hashboolean(t, p) hashpow2(t, p)
|
|
|
|
static LuaNode* hashpointer(const Table* t, const void* p)
|
|
{
|
|
// we discard the high 32-bit portion of the pointer on 64-bit platforms as it doesn't carry much entropy anyway
|
|
unsigned int h = unsigned(uintptr_t(p));
|
|
|
|
// MurmurHash3 32-bit finalizer
|
|
h ^= h >> 16;
|
|
h *= 0x85ebca6bu;
|
|
h ^= h >> 13;
|
|
h *= 0xc2b2ae35u;
|
|
h ^= h >> 16;
|
|
|
|
return hashpow2(t, h);
|
|
}
|
|
|
|
static LuaNode* hashnum(const Table* t, double n)
|
|
{
|
|
static_assert(sizeof(double) == sizeof(unsigned int) * 2, "expected a 8-byte double");
|
|
unsigned int i[2];
|
|
memcpy(i, &n, sizeof(i));
|
|
|
|
// mask out sign bit to make sure -0 and 0 hash to the same value
|
|
uint32_t h1 = i[0];
|
|
uint32_t h2 = i[1] & 0x7fffffff;
|
|
|
|
// finalizer from MurmurHash64B
|
|
const uint32_t m = 0x5bd1e995;
|
|
|
|
h1 ^= h2 >> 18;
|
|
h1 *= m;
|
|
h2 ^= h1 >> 22;
|
|
h2 *= m;
|
|
h1 ^= h2 >> 17;
|
|
h1 *= m;
|
|
h2 ^= h1 >> 19;
|
|
h2 *= m;
|
|
|
|
// ... truncated to 32-bit output (normally hash is equal to (uint64_t(h1) << 32) | h2, but we only really need the lower 32-bit half)
|
|
return hashpow2(t, h2);
|
|
}
|
|
|
|
static LuaNode* hashvec(const Table* t, const float* v)
|
|
{
|
|
unsigned int i[LUA_VECTOR_SIZE];
|
|
memcpy(i, v, sizeof(i));
|
|
|
|
// convert -0 to 0 to make sure they hash to the same value
|
|
i[0] = (i[0] == 0x80000000) ? 0 : i[0];
|
|
i[1] = (i[1] == 0x80000000) ? 0 : i[1];
|
|
i[2] = (i[2] == 0x80000000) ? 0 : i[2];
|
|
|
|
// scramble bits to make sure that integer coordinates have entropy in lower bits
|
|
i[0] ^= i[0] >> 17;
|
|
i[1] ^= i[1] >> 17;
|
|
i[2] ^= i[2] >> 17;
|
|
|
|
// Optimized Spatial Hashing for Collision Detection of Deformable Objects
|
|
unsigned int h = (i[0] * 73856093) ^ (i[1] * 19349663) ^ (i[2] * 83492791);
|
|
|
|
#if LUA_VECTOR_SIZE == 4
|
|
i[3] = (i[3] == 0x80000000) ? 0 : i[3];
|
|
i[3] ^= i[3] >> 17;
|
|
h ^= i[3] * 39916801;
|
|
#endif
|
|
|
|
return hashpow2(t, h);
|
|
}
|
|
|
|
/*
|
|
** returns the `main' position of an element in a table (that is, the index
|
|
** of its hash value)
|
|
*/
|
|
static LuaNode* mainposition(const Table* t, const TValue* key)
|
|
{
|
|
switch (ttype(key))
|
|
{
|
|
case LUA_TNUMBER:
|
|
return hashnum(t, nvalue(key));
|
|
case LUA_TVECTOR:
|
|
return hashvec(t, vvalue(key));
|
|
case LUA_TSTRING:
|
|
return hashstr(t, tsvalue(key));
|
|
case LUA_TBOOLEAN:
|
|
return hashboolean(t, bvalue(key));
|
|
case LUA_TLIGHTUSERDATA:
|
|
return hashpointer(t, pvalue(key));
|
|
default:
|
|
return hashpointer(t, gcvalue(key));
|
|
}
|
|
}
|
|
|
|
/*
|
|
** returns the index for `key' if `key' is an appropriate key to live in
|
|
** the array part of the table, -1 otherwise.
|
|
*/
|
|
static int arrayindex(double key)
|
|
{
|
|
int i;
|
|
luai_num2int(i, key);
|
|
|
|
return luai_numeq(cast_num(i), key) ? i : -1;
|
|
}
|
|
|
|
/*
|
|
** returns the index of a `key' for table traversals. First goes all
|
|
** elements in the array part, then elements in the hash part. The
|
|
** beginning of a traversal is signalled by -1.
|
|
*/
|
|
static int findindex(lua_State* L, Table* t, StkId key)
|
|
{
|
|
int i;
|
|
if (ttisnil(key))
|
|
return -1; // first iteration
|
|
i = ttisnumber(key) ? arrayindex(nvalue(key)) : -1;
|
|
if (0 < i && i <= t->sizearray) // is `key' inside array part?
|
|
return i - 1; // yes; that's the index (corrected to C)
|
|
else
|
|
{
|
|
LuaNode* n = mainposition(t, key);
|
|
for (;;)
|
|
{ // check whether `key' is somewhere in the chain
|
|
// key may be dead already, but it is ok to use it in `next'
|
|
if (luaO_rawequalKey(gkey(n), key) || (ttype(gkey(n)) == LUA_TDEADKEY && iscollectable(key) && gcvalue(gkey(n)) == gcvalue(key)))
|
|
{
|
|
i = cast_int(n - gnode(t, 0)); // key index in hash table
|
|
// hash elements are numbered after array ones
|
|
return i + t->sizearray;
|
|
}
|
|
if (gnext(n) == 0)
|
|
break;
|
|
n += gnext(n);
|
|
}
|
|
luaG_runerror(L, "invalid key to 'next'"); // key not found
|
|
}
|
|
}
|
|
|
|
int luaH_next(lua_State* L, Table* t, StkId key)
|
|
{
|
|
int i = findindex(L, t, key); // find original element
|
|
for (i++; i < t->sizearray; i++)
|
|
{ // try first array part
|
|
if (!ttisnil(&t->array[i]))
|
|
{ // a non-nil value?
|
|
setnvalue(key, cast_num(i + 1));
|
|
setobj2s(L, key + 1, &t->array[i]);
|
|
return 1;
|
|
}
|
|
}
|
|
for (i -= t->sizearray; i < sizenode(t); i++)
|
|
{ // then hash part
|
|
if (!ttisnil(gval(gnode(t, i))))
|
|
{ // a non-nil value?
|
|
getnodekey(L, key, gnode(t, i));
|
|
setobj2s(L, key + 1, gval(gnode(t, i)));
|
|
return 1;
|
|
}
|
|
}
|
|
return 0; // no more elements
|
|
}
|
|
|
|
/*
|
|
** {=============================================================
|
|
** Rehash
|
|
** ==============================================================
|
|
*/
|
|
|
|
#define maybesetaboundary(t, boundary) \
|
|
{ \
|
|
if (t->aboundary <= 0) \
|
|
t->aboundary = -int(boundary); \
|
|
}
|
|
|
|
#define getaboundary(t) (t->aboundary < 0 ? -t->aboundary : t->sizearray)
|
|
|
|
static int computesizes(int nums[], int* narray)
|
|
{
|
|
int i;
|
|
int twotoi; // 2^i
|
|
int a = 0; // number of elements smaller than 2^i
|
|
int na = 0; // number of elements to go to array part
|
|
int n = 0; // optimal size for array part
|
|
for (i = 0, twotoi = 1; twotoi / 2 < *narray; i++, twotoi *= 2)
|
|
{
|
|
if (nums[i] > 0)
|
|
{
|
|
a += nums[i];
|
|
if (a > twotoi / 2)
|
|
{ // more than half elements present?
|
|
n = twotoi; // optimal size (till now)
|
|
na = a; // all elements smaller than n will go to array part
|
|
}
|
|
}
|
|
if (a == *narray)
|
|
break; // all elements already counted
|
|
}
|
|
*narray = n;
|
|
LUAU_ASSERT(*narray / 2 <= na && na <= *narray);
|
|
return na;
|
|
}
|
|
|
|
static int countint(double key, int* nums)
|
|
{
|
|
int k = arrayindex(key);
|
|
if (0 < k && k <= MAXSIZE)
|
|
{ // is `key' an appropriate array index?
|
|
nums[ceillog2(k)]++; // count as such
|
|
return 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int numusearray(const Table* t, int* nums)
|
|
{
|
|
int lg;
|
|
int ttlg; // 2^lg
|
|
int ause = 0; // summation of `nums'
|
|
int i = 1; // count to traverse all array keys
|
|
for (lg = 0, ttlg = 1; lg <= MAXBITS; lg++, ttlg *= 2)
|
|
{ // for each slice
|
|
int lc = 0; // counter
|
|
int lim = ttlg;
|
|
if (lim > t->sizearray)
|
|
{
|
|
lim = t->sizearray; // adjust upper limit
|
|
if (i > lim)
|
|
break; // no more elements to count
|
|
}
|
|
// count elements in range (2^(lg-1), 2^lg]
|
|
for (; i <= lim; i++)
|
|
{
|
|
if (!ttisnil(&t->array[i - 1]))
|
|
lc++;
|
|
}
|
|
nums[lg] += lc;
|
|
ause += lc;
|
|
}
|
|
return ause;
|
|
}
|
|
|
|
static int numusehash(const Table* t, int* nums, int* pnasize)
|
|
{
|
|
int totaluse = 0; // total number of elements
|
|
int ause = 0; // summation of `nums'
|
|
int i = sizenode(t);
|
|
while (i--)
|
|
{
|
|
LuaNode* n = &t->node[i];
|
|
if (!ttisnil(gval(n)))
|
|
{
|
|
if (ttisnumber(gkey(n)))
|
|
ause += countint(nvalue(gkey(n)), nums);
|
|
totaluse++;
|
|
}
|
|
}
|
|
*pnasize += ause;
|
|
return totaluse;
|
|
}
|
|
|
|
static void setarrayvector(lua_State* L, Table* t, int size)
|
|
{
|
|
if (size > MAXSIZE)
|
|
luaG_runerror(L, "table overflow");
|
|
luaM_reallocarray(L, t->array, t->sizearray, size, TValue, t->memcat);
|
|
TValue* array = t->array;
|
|
for (int i = t->sizearray; i < size; i++)
|
|
setnilvalue(&array[i]);
|
|
t->sizearray = size;
|
|
}
|
|
|
|
static void setnodevector(lua_State* L, Table* t, int size)
|
|
{
|
|
int lsize;
|
|
if (size == 0)
|
|
{ // no elements to hash part?
|
|
t->node = cast_to(LuaNode*, dummynode); // use common `dummynode'
|
|
lsize = 0;
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
lsize = ceillog2(size);
|
|
if (lsize > MAXBITS)
|
|
luaG_runerror(L, "table overflow");
|
|
size = twoto(lsize);
|
|
t->node = luaM_newarray(L, size, LuaNode, t->memcat);
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
LuaNode* n = gnode(t, i);
|
|
gnext(n) = 0;
|
|
setnilvalue(gkey(n));
|
|
setnilvalue(gval(n));
|
|
}
|
|
}
|
|
t->lsizenode = cast_byte(lsize);
|
|
t->nodemask8 = cast_byte((1 << lsize) - 1);
|
|
t->lastfree = size; // all positions are free
|
|
}
|
|
|
|
static TValue* newkey(lua_State* L, Table* t, const TValue* key);
|
|
|
|
static TValue* arrayornewkey(lua_State* L, Table* t, const TValue* key)
|
|
{
|
|
if (ttisnumber(key))
|
|
{
|
|
int k;
|
|
double n = nvalue(key);
|
|
luai_num2int(k, n);
|
|
if (luai_numeq(cast_num(k), n) && cast_to(unsigned int, k - 1) < cast_to(unsigned int, t->sizearray))
|
|
return &t->array[k - 1];
|
|
}
|
|
|
|
return newkey(L, t, key);
|
|
}
|
|
|
|
static void resize(lua_State* L, Table* t, int nasize, int nhsize)
|
|
{
|
|
if (nasize > MAXSIZE || nhsize > MAXSIZE)
|
|
luaG_runerror(L, "table overflow");
|
|
int oldasize = t->sizearray;
|
|
int oldhsize = t->lsizenode;
|
|
LuaNode* nold = t->node; // save old hash ...
|
|
if (nasize > oldasize) // array part must grow?
|
|
setarrayvector(L, t, nasize);
|
|
// create new hash part with appropriate size
|
|
setnodevector(L, t, nhsize);
|
|
// used for the migration check at the end
|
|
LuaNode* nnew = t->node;
|
|
if (nasize < oldasize)
|
|
{ // array part must shrink?
|
|
t->sizearray = nasize;
|
|
// re-insert elements from vanishing slice
|
|
for (int i = nasize; i < oldasize; i++)
|
|
{
|
|
if (!ttisnil(&t->array[i]))
|
|
{
|
|
TValue ok;
|
|
setnvalue(&ok, cast_num(i + 1));
|
|
setobjt2t(L, newkey(L, t, &ok), &t->array[i]);
|
|
}
|
|
}
|
|
// shrink array
|
|
luaM_reallocarray(L, t->array, oldasize, nasize, TValue, t->memcat);
|
|
}
|
|
// used for the migration check at the end
|
|
TValue* anew = t->array;
|
|
// re-insert elements from hash part
|
|
for (int i = twoto(oldhsize) - 1; i >= 0; i--)
|
|
{
|
|
LuaNode* old = nold + i;
|
|
if (!ttisnil(gval(old)))
|
|
{
|
|
TValue ok;
|
|
getnodekey(L, &ok, old);
|
|
setobjt2t(L, arrayornewkey(L, t, &ok), gval(old));
|
|
}
|
|
}
|
|
|
|
// make sure we haven't recursively rehashed during element migration
|
|
LUAU_ASSERT(nnew == t->node);
|
|
LUAU_ASSERT(anew == t->array);
|
|
|
|
if (nold != dummynode)
|
|
luaM_freearray(L, nold, twoto(oldhsize), LuaNode, t->memcat); // free old array
|
|
}
|
|
|
|
static int adjustasize(Table* t, int size, const TValue* ek)
|
|
{
|
|
bool tbound = t->node != dummynode || size < t->sizearray;
|
|
int ekindex = ek && ttisnumber(ek) ? arrayindex(nvalue(ek)) : -1;
|
|
// move the array size up until the boundary is guaranteed to be inside the array part
|
|
while (size + 1 == ekindex || (tbound && !ttisnil(luaH_getnum(t, size + 1))))
|
|
size++;
|
|
return size;
|
|
}
|
|
|
|
void luaH_resizearray(lua_State* L, Table* t, int nasize)
|
|
{
|
|
int nsize = (t->node == dummynode) ? 0 : sizenode(t);
|
|
int asize = adjustasize(t, nasize, NULL);
|
|
resize(L, t, asize, nsize);
|
|
}
|
|
|
|
void luaH_resizehash(lua_State* L, Table* t, int nhsize)
|
|
{
|
|
resize(L, t, t->sizearray, nhsize);
|
|
}
|
|
|
|
static void rehash(lua_State* L, Table* t, const TValue* ek)
|
|
{
|
|
int nums[MAXBITS + 1]; // nums[i] = number of keys between 2^(i-1) and 2^i
|
|
for (int i = 0; i <= MAXBITS; i++)
|
|
nums[i] = 0; // reset counts
|
|
int nasize = numusearray(t, nums); // count keys in array part
|
|
int totaluse = nasize; // all those keys are integer keys
|
|
totaluse += numusehash(t, nums, &nasize); // count keys in hash part
|
|
|
|
// count extra key
|
|
if (ttisnumber(ek))
|
|
nasize += countint(nvalue(ek), nums);
|
|
totaluse++;
|
|
|
|
// compute new size for array part
|
|
int na = computesizes(nums, &nasize);
|
|
int nh = totaluse - na;
|
|
|
|
// enforce the boundary invariant; for performance, only do hash lookups if we must
|
|
int nadjusted = adjustasize(t, nasize, ek);
|
|
|
|
// count how many extra elements belong to array part instead of hash part
|
|
int aextra = nadjusted - nasize;
|
|
|
|
if (aextra != 0)
|
|
{
|
|
// we no longer need to store those extra array elements in hash part
|
|
nh -= aextra;
|
|
|
|
// because hash nodes are twice as large as array nodes, the memory we saved for hash parts can be used by array part
|
|
// this follows the general sparse array part optimization where array is allocated when 50% occupation is reached
|
|
nasize = nadjusted + aextra;
|
|
|
|
// since the size was changed, it's again important to enforce the boundary invariant at the new size
|
|
nasize = adjustasize(t, nasize, ek);
|
|
}
|
|
|
|
// resize the table to new computed sizes
|
|
resize(L, t, nasize, nh);
|
|
}
|
|
|
|
/*
|
|
** }=============================================================
|
|
*/
|
|
|
|
Table* luaH_new(lua_State* L, int narray, int nhash)
|
|
{
|
|
Table* t = luaM_newgco(L, Table, sizeof(Table), L->activememcat);
|
|
luaC_init(L, t, LUA_TTABLE);
|
|
t->metatable = NULL;
|
|
t->tmcache = cast_byte(~0);
|
|
t->array = NULL;
|
|
t->sizearray = 0;
|
|
t->lastfree = 0;
|
|
t->lsizenode = 0;
|
|
t->readonly = 0;
|
|
t->safeenv = 0;
|
|
t->nodemask8 = 0;
|
|
t->node = cast_to(LuaNode*, dummynode);
|
|
if (narray > 0)
|
|
setarrayvector(L, t, narray);
|
|
if (nhash > 0)
|
|
setnodevector(L, t, nhash);
|
|
return t;
|
|
}
|
|
|
|
void luaH_free(lua_State* L, Table* t, lua_Page* page)
|
|
{
|
|
if (t->node != dummynode)
|
|
luaM_freearray(L, t->node, sizenode(t), LuaNode, t->memcat);
|
|
if (t->array)
|
|
luaM_freearray(L, t->array, t->sizearray, TValue, t->memcat);
|
|
luaM_freegco(L, t, sizeof(Table), t->memcat, page);
|
|
}
|
|
|
|
static LuaNode* getfreepos(Table* t)
|
|
{
|
|
while (t->lastfree > 0)
|
|
{
|
|
t->lastfree--;
|
|
|
|
LuaNode* n = gnode(t, t->lastfree);
|
|
if (ttisnil(gkey(n)))
|
|
return n;
|
|
}
|
|
return NULL; // could not find a free place
|
|
}
|
|
|
|
/*
|
|
** inserts a new key into a hash table; first, check whether key's main
|
|
** position is free. If not, check whether colliding node is in its main
|
|
** position or not: if it is not, move colliding node to an empty place and
|
|
** put new key in its main position; otherwise (colliding node is in its main
|
|
** position), new key goes to an empty position.
|
|
*/
|
|
static TValue* newkey(lua_State* L, Table* t, const TValue* key)
|
|
{
|
|
// enforce boundary invariant
|
|
if (ttisnumber(key) && nvalue(key) == t->sizearray + 1)
|
|
{
|
|
rehash(L, t, key); // grow table
|
|
|
|
// after rehash, numeric keys might be located in the new array part, but won't be found in the node part
|
|
return arrayornewkey(L, t, key);
|
|
}
|
|
|
|
LuaNode* mp = mainposition(t, key);
|
|
if (!ttisnil(gval(mp)) || mp == dummynode)
|
|
{
|
|
LuaNode* n = getfreepos(t); // get a free place
|
|
if (n == NULL)
|
|
{ // cannot find a free place?
|
|
rehash(L, t, key); // grow table
|
|
|
|
// after rehash, numeric keys might be located in the new array part, but won't be found in the node part
|
|
return arrayornewkey(L, t, key);
|
|
}
|
|
LUAU_ASSERT(n != dummynode);
|
|
TValue mk;
|
|
getnodekey(L, &mk, mp);
|
|
LuaNode* othern = mainposition(t, &mk);
|
|
if (othern != mp)
|
|
{ // is colliding node out of its main position?
|
|
// yes; move colliding node into free position
|
|
while (othern + gnext(othern) != mp)
|
|
othern += gnext(othern); // find previous
|
|
gnext(othern) = cast_int(n - othern); // redo the chain with `n' in place of `mp'
|
|
*n = *mp; // copy colliding node into free pos. (mp->next also goes)
|
|
if (gnext(mp) != 0)
|
|
{
|
|
gnext(n) += cast_int(mp - n); // correct 'next'
|
|
gnext(mp) = 0; // now 'mp' is free
|
|
}
|
|
setnilvalue(gval(mp));
|
|
}
|
|
else
|
|
{ // colliding node is in its own main position
|
|
// new node will go into free position
|
|
if (gnext(mp) != 0)
|
|
gnext(n) = cast_int((mp + gnext(mp)) - n); // chain new position
|
|
else
|
|
LUAU_ASSERT(gnext(n) == 0);
|
|
gnext(mp) = cast_int(n - mp);
|
|
mp = n;
|
|
}
|
|
}
|
|
setnodekey(L, mp, key);
|
|
luaC_barriert(L, t, key);
|
|
LUAU_ASSERT(ttisnil(gval(mp)));
|
|
return gval(mp);
|
|
}
|
|
|
|
/*
|
|
** search function for integers
|
|
*/
|
|
const TValue* luaH_getnum(Table* t, int key)
|
|
{
|
|
// (1 <= key && key <= t->sizearray)
|
|
if (cast_to(unsigned int, key - 1) < cast_to(unsigned int, t->sizearray))
|
|
return &t->array[key - 1];
|
|
else if (t->node != dummynode)
|
|
{
|
|
double nk = cast_num(key);
|
|
LuaNode* n = hashnum(t, nk);
|
|
for (;;)
|
|
{ // check whether `key' is somewhere in the chain
|
|
if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk))
|
|
return gval(n); // that's it
|
|
if (gnext(n) == 0)
|
|
break;
|
|
n += gnext(n);
|
|
}
|
|
return luaO_nilobject;
|
|
}
|
|
else
|
|
return luaO_nilobject;
|
|
}
|
|
|
|
/*
|
|
** search function for strings
|
|
*/
|
|
const TValue* luaH_getstr(Table* t, TString* key)
|
|
{
|
|
LuaNode* n = hashstr(t, key);
|
|
for (;;)
|
|
{ // check whether `key' is somewhere in the chain
|
|
if (ttisstring(gkey(n)) && tsvalue(gkey(n)) == key)
|
|
return gval(n); // that's it
|
|
if (gnext(n) == 0)
|
|
break;
|
|
n += gnext(n);
|
|
}
|
|
return luaO_nilobject;
|
|
}
|
|
|
|
/*
|
|
** main search function
|
|
*/
|
|
const TValue* luaH_get(Table* t, const TValue* key)
|
|
{
|
|
switch (ttype(key))
|
|
{
|
|
case LUA_TNIL:
|
|
return luaO_nilobject;
|
|
case LUA_TSTRING:
|
|
return luaH_getstr(t, tsvalue(key));
|
|
case LUA_TNUMBER:
|
|
{
|
|
int k;
|
|
double n = nvalue(key);
|
|
luai_num2int(k, n);
|
|
if (luai_numeq(cast_num(k), nvalue(key))) // index is int?
|
|
return luaH_getnum(t, k); // use specialized version
|
|
// else go through
|
|
}
|
|
default:
|
|
{
|
|
LuaNode* n = mainposition(t, key);
|
|
for (;;)
|
|
{ // check whether `key' is somewhere in the chain
|
|
if (luaO_rawequalKey(gkey(n), key))
|
|
return gval(n); // that's it
|
|
if (gnext(n) == 0)
|
|
break;
|
|
n += gnext(n);
|
|
}
|
|
return luaO_nilobject;
|
|
}
|
|
}
|
|
}
|
|
|
|
TValue* luaH_set(lua_State* L, Table* t, const TValue* key)
|
|
{
|
|
const TValue* p = luaH_get(t, key);
|
|
invalidateTMcache(t);
|
|
if (p != luaO_nilobject)
|
|
return cast_to(TValue*, p);
|
|
else
|
|
return luaH_newkey(L, t, key);
|
|
}
|
|
|
|
TValue* luaH_newkey(lua_State* L, Table* t, const TValue* key)
|
|
{
|
|
if (ttisnil(key))
|
|
luaG_runerror(L, "table index is nil");
|
|
else if (ttisnumber(key) && luai_numisnan(nvalue(key)))
|
|
luaG_runerror(L, "table index is NaN");
|
|
else if (ttisvector(key) && luai_vecisnan(vvalue(key)))
|
|
luaG_runerror(L, "table index contains NaN");
|
|
return newkey(L, t, key);
|
|
}
|
|
|
|
TValue* luaH_setnum(lua_State* L, Table* t, int key)
|
|
{
|
|
// (1 <= key && key <= t->sizearray)
|
|
if (cast_to(unsigned int, key - 1) < cast_to(unsigned int, t->sizearray))
|
|
return &t->array[key - 1];
|
|
// hash fallback
|
|
const TValue* p = luaH_getnum(t, key);
|
|
if (p != luaO_nilobject)
|
|
return cast_to(TValue*, p);
|
|
else
|
|
{
|
|
TValue k;
|
|
setnvalue(&k, cast_num(key));
|
|
return newkey(L, t, &k);
|
|
}
|
|
}
|
|
|
|
TValue* luaH_setstr(lua_State* L, Table* t, TString* key)
|
|
{
|
|
const TValue* p = luaH_getstr(t, key);
|
|
invalidateTMcache(t);
|
|
if (p != luaO_nilobject)
|
|
return cast_to(TValue*, p);
|
|
else
|
|
{
|
|
TValue k;
|
|
setsvalue(L, &k, key);
|
|
return newkey(L, t, &k);
|
|
}
|
|
}
|
|
|
|
static int updateaboundary(Table* t, int boundary)
|
|
{
|
|
if (boundary < t->sizearray && ttisnil(&t->array[boundary - 1]))
|
|
{
|
|
if (boundary >= 2 && !ttisnil(&t->array[boundary - 2]))
|
|
{
|
|
maybesetaboundary(t, boundary - 1);
|
|
return boundary - 1;
|
|
}
|
|
}
|
|
else if (boundary + 1 < t->sizearray && !ttisnil(&t->array[boundary]) && ttisnil(&t->array[boundary + 1]))
|
|
{
|
|
maybesetaboundary(t, boundary + 1);
|
|
return boundary + 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Try to find a boundary in table `t'. A `boundary' is an integer index
|
|
** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
|
|
*/
|
|
int luaH_getn(Table* t)
|
|
{
|
|
int boundary = getaboundary(t);
|
|
|
|
if (boundary > 0)
|
|
{
|
|
if (!ttisnil(&t->array[t->sizearray - 1]) && t->node == dummynode)
|
|
return t->sizearray; // fast-path: the end of the array in `t' already refers to a boundary
|
|
if (boundary < t->sizearray && !ttisnil(&t->array[boundary - 1]) && ttisnil(&t->array[boundary]))
|
|
return boundary; // fast-path: boundary already refers to a boundary in `t'
|
|
|
|
int foundboundary = updateaboundary(t, boundary);
|
|
if (foundboundary > 0)
|
|
return foundboundary;
|
|
}
|
|
|
|
int j = t->sizearray;
|
|
|
|
if (j > 0 && ttisnil(&t->array[j - 1]))
|
|
{
|
|
// "branchless" binary search from Array Layouts for Comparison-Based Searching, Paul Khuong, Pat Morin, 2017.
|
|
// note that clang is cmov-shy on cmovs around memory operands, so it will compile this to a branchy loop.
|
|
TValue* base = t->array;
|
|
int rest = j;
|
|
while (int half = rest >> 1)
|
|
{
|
|
base = ttisnil(&base[half]) ? base : base + half;
|
|
rest -= half;
|
|
}
|
|
int boundary = !ttisnil(base) + int(base - t->array);
|
|
maybesetaboundary(t, boundary);
|
|
return boundary;
|
|
}
|
|
else
|
|
{
|
|
// validate boundary invariant
|
|
LUAU_ASSERT(t->node == dummynode || ttisnil(luaH_getnum(t, j + 1)));
|
|
return j;
|
|
}
|
|
}
|
|
|
|
Table* luaH_clone(lua_State* L, Table* tt)
|
|
{
|
|
Table* t = luaM_newgco(L, Table, sizeof(Table), L->activememcat);
|
|
luaC_init(L, t, LUA_TTABLE);
|
|
t->metatable = tt->metatable;
|
|
t->tmcache = tt->tmcache;
|
|
t->array = NULL;
|
|
t->sizearray = 0;
|
|
t->lsizenode = 0;
|
|
t->nodemask8 = 0;
|
|
t->readonly = 0;
|
|
t->safeenv = 0;
|
|
t->node = cast_to(LuaNode*, dummynode);
|
|
t->lastfree = 0;
|
|
|
|
if (tt->sizearray)
|
|
{
|
|
t->array = luaM_newarray(L, tt->sizearray, TValue, t->memcat);
|
|
maybesetaboundary(t, getaboundary(tt));
|
|
t->sizearray = tt->sizearray;
|
|
|
|
memcpy(t->array, tt->array, t->sizearray * sizeof(TValue));
|
|
}
|
|
|
|
if (tt->node != dummynode)
|
|
{
|
|
int size = 1 << tt->lsizenode;
|
|
t->node = luaM_newarray(L, size, LuaNode, t->memcat);
|
|
t->lsizenode = tt->lsizenode;
|
|
t->nodemask8 = tt->nodemask8;
|
|
memcpy(t->node, tt->node, size * sizeof(LuaNode));
|
|
t->lastfree = tt->lastfree;
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
void luaH_clear(Table* tt)
|
|
{
|
|
// clear array part
|
|
for (int i = 0; i < tt->sizearray; ++i)
|
|
{
|
|
setnilvalue(&tt->array[i]);
|
|
}
|
|
|
|
maybesetaboundary(tt, 0);
|
|
|
|
// clear hash part
|
|
if (tt->node != dummynode)
|
|
{
|
|
int size = sizenode(tt);
|
|
tt->lastfree = size;
|
|
for (int i = 0; i < size; ++i)
|
|
{
|
|
LuaNode* n = gnode(tt, i);
|
|
setnilvalue(gkey(n));
|
|
setnilvalue(gval(n));
|
|
gnext(n) = 0;
|
|
}
|
|
}
|
|
|
|
// back to empty -> no tag methods present
|
|
tt->tmcache = cast_byte(~0);
|
|
}
|