mirror of
https://github.com/luau-lang/luau.git
synced 2025-01-07 11:59:11 +00:00
caee04d82d
### What's new * Added lint warning for using redundant `@native` attributes on functions inside a `--!native` module * Improved typechecking speed in old solver for modules with large types ### New Solver * Fixed the length type function sealing the table prematurely * Fixed crashes caused by general table indexing expressions ### VM * Added support for a specialized 3-argument fast-call instruction to improve performance of `vector` constructor, `buffer` writes and a few `bit32` methods --- ### Internal Contributors Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: Vighnesh Vijay <vvijay@roblox.com> Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com> --------- Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Vighnesh <vvijay@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: David Cope <dcope@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com>
920 lines
27 KiB
C++
920 lines
27 KiB
C++
// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
|
|
|
#include "Luau/Unifier2.h"
|
|
|
|
#include "Luau/Instantiation.h"
|
|
#include "Luau/Scope.h"
|
|
#include "Luau/Simplify.h"
|
|
#include "Luau/Type.h"
|
|
#include "Luau/TypeArena.h"
|
|
#include "Luau/TypeCheckLimits.h"
|
|
#include "Luau/TypeFamily.h"
|
|
#include "Luau/TypeFwd.h"
|
|
#include "Luau/TypePack.h"
|
|
#include "Luau/TypeUtils.h"
|
|
#include "Luau/VisitType.h"
|
|
|
|
#include <algorithm>
|
|
#include <optional>
|
|
|
|
LUAU_FASTINT(LuauTypeInferRecursionLimit)
|
|
|
|
namespace Luau
|
|
{
|
|
|
|
static bool areCompatible(TypeId left, TypeId right)
|
|
{
|
|
auto p = get2<TableType, TableType>(follow(left), follow(right));
|
|
if (!p)
|
|
return true;
|
|
|
|
const TableType* leftTable = p.first;
|
|
LUAU_ASSERT(leftTable);
|
|
const TableType* rightTable = p.second;
|
|
LUAU_ASSERT(rightTable);
|
|
|
|
const auto missingPropIsCompatible = [](const Property& leftProp, const TableType* rightTable) {
|
|
// Two tables may be compatible even if their shapes aren't exactly the
|
|
// same if the extra property is optional, free (and therefore
|
|
// potentially optional), or if the right table has an indexer. Or if
|
|
// the right table is free (and therefore potentially has an indexer or
|
|
// a compatible property)
|
|
|
|
LUAU_ASSERT(leftProp.isReadOnly() || leftProp.isShared());
|
|
|
|
const TypeId leftType = follow(leftProp.isReadOnly() ? *leftProp.readTy : leftProp.type());
|
|
|
|
if (isOptional(leftType) || get<FreeType>(leftType) || rightTable->state == TableState::Free || rightTable->indexer.has_value())
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
for (const auto& [name, leftProp] : leftTable->props)
|
|
{
|
|
auto it = rightTable->props.find(name);
|
|
if (it == rightTable->props.end())
|
|
{
|
|
if (!missingPropIsCompatible(leftProp, rightTable))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (const auto& [name, rightProp] : rightTable->props)
|
|
{
|
|
auto it = leftTable->props.find(name);
|
|
if (it == leftTable->props.end())
|
|
{
|
|
if (!missingPropIsCompatible(rightProp, leftTable))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// returns `true` if `ty` is irressolvable and should be added to `incompleteSubtypes`.
|
|
static bool isIrresolvable(TypeId ty)
|
|
{
|
|
return get<BlockedType>(ty) || get<TypeFamilyInstanceType>(ty);
|
|
}
|
|
|
|
// returns `true` if `tp` is irressolvable and should be added to `incompleteSubtypes`.
|
|
static bool isIrresolvable(TypePackId tp)
|
|
{
|
|
return get<BlockedTypePack>(tp) || get<TypeFamilyInstanceTypePack>(tp);
|
|
}
|
|
|
|
Unifier2::Unifier2(NotNull<TypeArena> arena, NotNull<BuiltinTypes> builtinTypes, NotNull<Scope> scope, NotNull<InternalErrorReporter> ice)
|
|
: arena(arena)
|
|
, builtinTypes(builtinTypes)
|
|
, scope(scope)
|
|
, ice(ice)
|
|
, limits(TypeCheckLimits{}) // TODO: typecheck limits in unifier2
|
|
, recursionLimit(FInt::LuauTypeInferRecursionLimit)
|
|
, uninhabitedTypeFamilies(nullptr)
|
|
{
|
|
}
|
|
|
|
Unifier2::Unifier2(NotNull<TypeArena> arena, NotNull<BuiltinTypes> builtinTypes, NotNull<Scope> scope, NotNull<InternalErrorReporter> ice,
|
|
DenseHashSet<const void*>* uninhabitedTypeFamilies)
|
|
: arena(arena)
|
|
, builtinTypes(builtinTypes)
|
|
, scope(scope)
|
|
, ice(ice)
|
|
, limits(TypeCheckLimits{}) // TODO: typecheck limits in unifier2
|
|
, recursionLimit(FInt::LuauTypeInferRecursionLimit)
|
|
, uninhabitedTypeFamilies(uninhabitedTypeFamilies)
|
|
{
|
|
}
|
|
|
|
bool Unifier2::unify(TypeId subTy, TypeId superTy)
|
|
{
|
|
subTy = follow(subTy);
|
|
superTy = follow(superTy);
|
|
|
|
if (auto subGen = genericSubstitutions.find(subTy))
|
|
return unify(*subGen, superTy);
|
|
|
|
if (auto superGen = genericSubstitutions.find(superTy))
|
|
return unify(subTy, *superGen);
|
|
|
|
if (seenTypePairings.contains({subTy, superTy}))
|
|
return true;
|
|
seenTypePairings.insert({subTy, superTy});
|
|
|
|
if (subTy == superTy)
|
|
return true;
|
|
|
|
// We have potentially done some unifications while dispatching either `SubtypeConstraint` or `PackSubtypeConstraint`,
|
|
// so rather than implementing backtracking or traversing the entire type graph multiple times, we could push
|
|
// additional constraints as we discover blocked types along with their proper bounds.
|
|
//
|
|
// But we exclude these two subtyping patterns, they are tautological:
|
|
// - never <: *blocked*
|
|
// - *blocked* <: unknown
|
|
if ((isIrresolvable(subTy) || isIrresolvable(superTy)) && !get<NeverType>(subTy) && !get<UnknownType>(superTy))
|
|
{
|
|
if (uninhabitedTypeFamilies && (uninhabitedTypeFamilies->contains(subTy) || uninhabitedTypeFamilies->contains(superTy)))
|
|
return true;
|
|
|
|
incompleteSubtypes.push_back(SubtypeConstraint{subTy, superTy});
|
|
return true;
|
|
}
|
|
|
|
FreeType* subFree = getMutable<FreeType>(subTy);
|
|
FreeType* superFree = getMutable<FreeType>(superTy);
|
|
|
|
if (superFree)
|
|
{
|
|
superFree->lowerBound = mkUnion(superFree->lowerBound, subTy);
|
|
}
|
|
|
|
if (subFree)
|
|
{
|
|
return unifyFreeWithType(subTy, superTy);
|
|
}
|
|
|
|
if (subFree || superFree)
|
|
return true;
|
|
|
|
auto subFn = get<FunctionType>(subTy);
|
|
auto superFn = get<FunctionType>(superTy);
|
|
if (subFn && superFn)
|
|
return unify(subTy, superFn);
|
|
|
|
auto subUnion = get<UnionType>(subTy);
|
|
auto superUnion = get<UnionType>(superTy);
|
|
if (subUnion)
|
|
return unify(subUnion, superTy);
|
|
else if (superUnion)
|
|
return unify(subTy, superUnion);
|
|
|
|
auto subIntersection = get<IntersectionType>(subTy);
|
|
auto superIntersection = get<IntersectionType>(superTy);
|
|
if (subIntersection)
|
|
return unify(subIntersection, superTy);
|
|
else if (superIntersection)
|
|
return unify(subTy, superIntersection);
|
|
|
|
auto subNever = get<NeverType>(subTy);
|
|
auto superNever = get<NeverType>(superTy);
|
|
if (subNever && superNever)
|
|
return true;
|
|
else if (subNever && superFn)
|
|
{
|
|
// If `never` is the subtype, then we can propagate that inward.
|
|
bool argResult = unify(superFn->argTypes, builtinTypes->neverTypePack);
|
|
bool retResult = unify(builtinTypes->neverTypePack, superFn->retTypes);
|
|
return argResult && retResult;
|
|
}
|
|
else if (subFn && superNever)
|
|
{
|
|
// If `never` is the supertype, then we can propagate that inward.
|
|
bool argResult = unify(builtinTypes->neverTypePack, subFn->argTypes);
|
|
bool retResult = unify(subFn->retTypes, builtinTypes->neverTypePack);
|
|
return argResult && retResult;
|
|
}
|
|
|
|
auto subAny = get<AnyType>(subTy);
|
|
auto superAny = get<AnyType>(superTy);
|
|
|
|
auto subTable = getMutable<TableType>(subTy);
|
|
auto superTable = get<TableType>(superTy);
|
|
|
|
if (subAny && superAny)
|
|
return true;
|
|
else if (subAny && superFn)
|
|
return unify(subAny, superFn);
|
|
else if (subFn && superAny)
|
|
return unify(subFn, superAny);
|
|
else if (subAny && superTable)
|
|
return unify(subAny, superTable);
|
|
else if (subTable && superAny)
|
|
return unify(subTable, superAny);
|
|
|
|
if (subTable && superTable)
|
|
{
|
|
// `boundTo` works like a bound type, and therefore we'd replace it
|
|
// with the `boundTo` and try unification again.
|
|
//
|
|
// However, these pointers should have been chased already by follow().
|
|
LUAU_ASSERT(!subTable->boundTo);
|
|
LUAU_ASSERT(!superTable->boundTo);
|
|
|
|
return unify(subTable, superTable);
|
|
}
|
|
|
|
auto subMetatable = get<MetatableType>(subTy);
|
|
auto superMetatable = get<MetatableType>(superTy);
|
|
if (subMetatable && superMetatable)
|
|
return unify(subMetatable, superMetatable);
|
|
else if (subMetatable) // if we only have one metatable, unify with the inner table
|
|
return unify(subMetatable->table, superTy);
|
|
else if (superMetatable) // if we only have one metatable, unify with the inner table
|
|
return unify(subTy, superMetatable->table);
|
|
|
|
auto [subNegation, superNegation] = get2<NegationType, NegationType>(subTy, superTy);
|
|
if (subNegation && superNegation)
|
|
return unify(subNegation->ty, superNegation->ty);
|
|
|
|
// The unification failed, but we're not doing type checking.
|
|
return true;
|
|
}
|
|
|
|
// If superTy is a function and subTy already has a
|
|
// potentially-compatible function in its upper bound, we assume that
|
|
// the function is not overloaded and attempt to combine superTy into
|
|
// subTy's existing function bound.
|
|
bool Unifier2::unifyFreeWithType(TypeId subTy, TypeId superTy)
|
|
{
|
|
FreeType* subFree = getMutable<FreeType>(subTy);
|
|
LUAU_ASSERT(subFree);
|
|
|
|
auto doDefault = [&]() {
|
|
subFree->upperBound = mkIntersection(subFree->upperBound, superTy);
|
|
expandedFreeTypes[subTy].push_back(superTy);
|
|
return true;
|
|
};
|
|
|
|
TypeId upperBound = follow(subFree->upperBound);
|
|
|
|
if (get<FunctionType>(upperBound))
|
|
return unify(subFree->upperBound, superTy);
|
|
|
|
const FunctionType* superFunction = get<FunctionType>(superTy);
|
|
if (!superFunction)
|
|
return doDefault();
|
|
|
|
const auto [superArgHead, superArgTail] = flatten(superFunction->argTypes);
|
|
if (superArgTail)
|
|
return doDefault();
|
|
|
|
const IntersectionType* upperBoundIntersection = get<IntersectionType>(subFree->upperBound);
|
|
if (!upperBoundIntersection)
|
|
return doDefault();
|
|
|
|
bool ok = true;
|
|
bool foundOne = false;
|
|
|
|
for (TypeId part : upperBoundIntersection->parts)
|
|
{
|
|
const FunctionType* ft = get<FunctionType>(follow(part));
|
|
if (!ft)
|
|
continue;
|
|
|
|
const auto [subArgHead, subArgTail] = flatten(ft->argTypes);
|
|
|
|
if (!subArgTail && subArgHead.size() == superArgHead.size())
|
|
{
|
|
foundOne = true;
|
|
ok &= unify(part, superTy);
|
|
}
|
|
}
|
|
|
|
if (foundOne)
|
|
return ok;
|
|
else
|
|
return doDefault();
|
|
}
|
|
|
|
bool Unifier2::unify(TypeId subTy, const FunctionType* superFn)
|
|
{
|
|
const FunctionType* subFn = get<FunctionType>(subTy);
|
|
|
|
bool shouldInstantiate =
|
|
(superFn->generics.empty() && !subFn->generics.empty()) || (superFn->genericPacks.empty() && !subFn->genericPacks.empty());
|
|
|
|
if (shouldInstantiate)
|
|
{
|
|
for (auto generic : subFn->generics)
|
|
genericSubstitutions[generic] = freshType(arena, builtinTypes, scope);
|
|
|
|
for (auto genericPack : subFn->genericPacks)
|
|
genericPackSubstitutions[genericPack] = arena->freshTypePack(scope);
|
|
}
|
|
|
|
bool argResult = unify(superFn->argTypes, subFn->argTypes);
|
|
bool retResult = unify(subFn->retTypes, superFn->retTypes);
|
|
return argResult && retResult;
|
|
}
|
|
|
|
bool Unifier2::unify(const UnionType* subUnion, TypeId superTy)
|
|
{
|
|
bool result = true;
|
|
|
|
// if the occurs check fails for any option, it fails overall
|
|
for (auto subOption : subUnion->options)
|
|
{
|
|
if (areCompatible(subOption, superTy))
|
|
result &= unify(subOption, superTy);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool Unifier2::unify(TypeId subTy, const UnionType* superUnion)
|
|
{
|
|
bool result = true;
|
|
|
|
// if the occurs check fails for any option, it fails overall
|
|
for (auto superOption : superUnion->options)
|
|
{
|
|
if (areCompatible(subTy, superOption))
|
|
result &= unify(subTy, superOption);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool Unifier2::unify(const IntersectionType* subIntersection, TypeId superTy)
|
|
{
|
|
bool result = true;
|
|
|
|
// if the occurs check fails for any part, it fails overall
|
|
for (auto subPart : subIntersection->parts)
|
|
result &= unify(subPart, superTy);
|
|
|
|
return result;
|
|
}
|
|
|
|
bool Unifier2::unify(TypeId subTy, const IntersectionType* superIntersection)
|
|
{
|
|
bool result = true;
|
|
|
|
// if the occurs check fails for any part, it fails overall
|
|
for (auto superPart : superIntersection->parts)
|
|
result &= unify(subTy, superPart);
|
|
|
|
return result;
|
|
}
|
|
|
|
bool Unifier2::unify(TableType* subTable, const TableType* superTable)
|
|
{
|
|
bool result = true;
|
|
|
|
// It suffices to only check one direction of properties since we'll only ever have work to do during unification
|
|
// if the property is present in both table types.
|
|
for (const auto& [propName, subProp] : subTable->props)
|
|
{
|
|
auto superPropOpt = superTable->props.find(propName);
|
|
|
|
if (superPropOpt != superTable->props.end())
|
|
{
|
|
const Property& superProp = superPropOpt->second;
|
|
|
|
if (subProp.isReadOnly() && superProp.isReadOnly())
|
|
result &= unify(*subProp.readTy, *superPropOpt->second.readTy);
|
|
else if (subProp.isReadOnly())
|
|
result &= unify(*subProp.readTy, superProp.type());
|
|
else if (superProp.isReadOnly())
|
|
result &= unify(subProp.type(), *superProp.readTy);
|
|
else
|
|
{
|
|
result &= unify(subProp.type(), superProp.type());
|
|
result &= unify(superProp.type(), subProp.type());
|
|
}
|
|
}
|
|
}
|
|
|
|
auto subTypeParamsIter = subTable->instantiatedTypeParams.begin();
|
|
auto superTypeParamsIter = superTable->instantiatedTypeParams.begin();
|
|
|
|
while (subTypeParamsIter != subTable->instantiatedTypeParams.end() && superTypeParamsIter != superTable->instantiatedTypeParams.end())
|
|
{
|
|
result &= unify(*subTypeParamsIter, *superTypeParamsIter);
|
|
|
|
subTypeParamsIter++;
|
|
superTypeParamsIter++;
|
|
}
|
|
|
|
auto subTypePackParamsIter = subTable->instantiatedTypePackParams.begin();
|
|
auto superTypePackParamsIter = superTable->instantiatedTypePackParams.begin();
|
|
|
|
while (subTypePackParamsIter != subTable->instantiatedTypePackParams.end() &&
|
|
superTypePackParamsIter != superTable->instantiatedTypePackParams.end())
|
|
{
|
|
result &= unify(*subTypePackParamsIter, *superTypePackParamsIter);
|
|
|
|
subTypePackParamsIter++;
|
|
superTypePackParamsIter++;
|
|
}
|
|
|
|
if (subTable->selfTy && superTable->selfTy)
|
|
result &= unify(*subTable->selfTy, *superTable->selfTy);
|
|
|
|
if (subTable->indexer && superTable->indexer)
|
|
{
|
|
result &= unify(subTable->indexer->indexType, superTable->indexer->indexType);
|
|
result &= unify(subTable->indexer->indexResultType, superTable->indexer->indexResultType);
|
|
}
|
|
|
|
if (!subTable->indexer && subTable->state == TableState::Unsealed && superTable->indexer)
|
|
{
|
|
/*
|
|
* Unsealed tables are always created from literal table expressions. We
|
|
* can't be completely certain whether such a table has an indexer just
|
|
* by the content of the expression itself, so we need to be a bit more
|
|
* flexible here.
|
|
*
|
|
* If we are trying to reconcile an unsealed table with a table that has
|
|
* an indexer, we therefore conclude that the unsealed table has the
|
|
* same indexer.
|
|
*/
|
|
|
|
TypeId indexType = superTable->indexer->indexType;
|
|
if (TypeId* subst = genericSubstitutions.find(indexType))
|
|
indexType = *subst;
|
|
|
|
TypeId indexResultType = superTable->indexer->indexResultType;
|
|
if (TypeId* subst = genericSubstitutions.find(indexResultType))
|
|
indexResultType = *subst;
|
|
|
|
subTable->indexer = TableIndexer{indexType, indexResultType};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
bool Unifier2::unify(const MetatableType* subMetatable, const MetatableType* superMetatable)
|
|
{
|
|
return unify(subMetatable->metatable, superMetatable->metatable) && unify(subMetatable->table, superMetatable->table);
|
|
}
|
|
|
|
bool Unifier2::unify(const AnyType* subAny, const FunctionType* superFn)
|
|
{
|
|
// If `any` is the subtype, then we can propagate that inward.
|
|
bool argResult = unify(superFn->argTypes, builtinTypes->anyTypePack);
|
|
bool retResult = unify(builtinTypes->anyTypePack, superFn->retTypes);
|
|
return argResult && retResult;
|
|
}
|
|
|
|
bool Unifier2::unify(const FunctionType* subFn, const AnyType* superAny)
|
|
{
|
|
// If `any` is the supertype, then we can propagate that inward.
|
|
bool argResult = unify(builtinTypes->anyTypePack, subFn->argTypes);
|
|
bool retResult = unify(subFn->retTypes, builtinTypes->anyTypePack);
|
|
return argResult && retResult;
|
|
}
|
|
|
|
bool Unifier2::unify(const AnyType* subAny, const TableType* superTable)
|
|
{
|
|
for (const auto& [propName, prop] : superTable->props)
|
|
{
|
|
if (prop.readTy)
|
|
unify(builtinTypes->anyType, *prop.readTy);
|
|
|
|
if (prop.writeTy)
|
|
unify(*prop.writeTy, builtinTypes->anyType);
|
|
}
|
|
|
|
if (superTable->indexer)
|
|
{
|
|
unify(builtinTypes->anyType, superTable->indexer->indexType);
|
|
unify(builtinTypes->anyType, superTable->indexer->indexResultType);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Unifier2::unify(const TableType* subTable, const AnyType* superAny)
|
|
{
|
|
for (const auto& [propName, prop] : subTable->props)
|
|
{
|
|
if (prop.readTy)
|
|
unify(*prop.readTy, builtinTypes->anyType);
|
|
|
|
if (prop.writeTy)
|
|
unify(builtinTypes->anyType, *prop.writeTy);
|
|
}
|
|
|
|
if (subTable->indexer)
|
|
{
|
|
unify(subTable->indexer->indexType, builtinTypes->anyType);
|
|
unify(subTable->indexer->indexResultType, builtinTypes->anyType);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// FIXME? This should probably return an ErrorVec or an optional<TypeError>
|
|
// rather than a boolean to signal an occurs check failure.
|
|
bool Unifier2::unify(TypePackId subTp, TypePackId superTp)
|
|
{
|
|
subTp = follow(subTp);
|
|
superTp = follow(superTp);
|
|
|
|
if (auto subGen = genericPackSubstitutions.find(subTp))
|
|
return unify(*subGen, superTp);
|
|
|
|
if (auto superGen = genericPackSubstitutions.find(superTp))
|
|
return unify(subTp, *superGen);
|
|
|
|
if (seenTypePackPairings.contains({subTp, superTp}))
|
|
return true;
|
|
seenTypePackPairings.insert({subTp, superTp});
|
|
|
|
if (subTp == superTp)
|
|
return true;
|
|
|
|
if (isIrresolvable(subTp) || isIrresolvable(superTp))
|
|
{
|
|
if (uninhabitedTypeFamilies && (uninhabitedTypeFamilies->contains(subTp) || uninhabitedTypeFamilies->contains(superTp)))
|
|
return true;
|
|
|
|
incompleteSubtypes.push_back(PackSubtypeConstraint{subTp, superTp});
|
|
return true;
|
|
}
|
|
|
|
const FreeTypePack* subFree = get<FreeTypePack>(subTp);
|
|
const FreeTypePack* superFree = get<FreeTypePack>(superTp);
|
|
|
|
if (subFree)
|
|
{
|
|
DenseHashSet<TypePackId> seen{nullptr};
|
|
if (OccursCheckResult::Fail == occursCheck(seen, subTp, superTp))
|
|
{
|
|
emplaceTypePack<BoundTypePack>(asMutable(subTp), builtinTypes->errorTypePack);
|
|
return false;
|
|
}
|
|
|
|
emplaceTypePack<BoundTypePack>(asMutable(subTp), superTp);
|
|
return true;
|
|
}
|
|
|
|
if (superFree)
|
|
{
|
|
DenseHashSet<TypePackId> seen{nullptr};
|
|
if (OccursCheckResult::Fail == occursCheck(seen, superTp, subTp))
|
|
{
|
|
emplaceTypePack<BoundTypePack>(asMutable(superTp), builtinTypes->errorTypePack);
|
|
return false;
|
|
}
|
|
|
|
emplaceTypePack<BoundTypePack>(asMutable(superTp), subTp);
|
|
return true;
|
|
}
|
|
|
|
size_t maxLength = std::max(flatten(subTp).first.size(), flatten(superTp).first.size());
|
|
|
|
auto [subTypes, subTail] = extendTypePack(*arena, builtinTypes, subTp, maxLength);
|
|
auto [superTypes, superTail] = extendTypePack(*arena, builtinTypes, superTp, maxLength);
|
|
|
|
// right-pad the subpack with nils if `superPack` is larger since that's what a function call does
|
|
if (subTypes.size() < maxLength)
|
|
{
|
|
for (size_t i = 0; i <= maxLength - subTypes.size(); i++)
|
|
subTypes.push_back(builtinTypes->nilType);
|
|
}
|
|
|
|
if (subTypes.size() < maxLength || superTypes.size() < maxLength)
|
|
return true;
|
|
|
|
for (size_t i = 0; i < maxLength; ++i)
|
|
unify(subTypes[i], superTypes[i]);
|
|
|
|
if (subTail && superTail)
|
|
{
|
|
TypePackId followedSubTail = follow(*subTail);
|
|
TypePackId followedSuperTail = follow(*superTail);
|
|
|
|
if (get<FreeTypePack>(followedSubTail) || get<FreeTypePack>(followedSuperTail))
|
|
return unify(followedSubTail, followedSuperTail);
|
|
}
|
|
else if (subTail)
|
|
{
|
|
TypePackId followedSubTail = follow(*subTail);
|
|
if (get<FreeTypePack>(followedSubTail))
|
|
emplaceTypePack<BoundTypePack>(asMutable(followedSubTail), builtinTypes->emptyTypePack);
|
|
}
|
|
else if (superTail)
|
|
{
|
|
TypePackId followedSuperTail = follow(*superTail);
|
|
if (get<FreeTypePack>(followedSuperTail))
|
|
emplaceTypePack<BoundTypePack>(asMutable(followedSuperTail), builtinTypes->emptyTypePack);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
struct FreeTypeSearcher : TypeVisitor
|
|
{
|
|
NotNull<Scope> scope;
|
|
|
|
explicit FreeTypeSearcher(NotNull<Scope> scope)
|
|
: TypeVisitor(/*skipBoundTypes*/ true)
|
|
, scope(scope)
|
|
{
|
|
}
|
|
|
|
enum Polarity
|
|
{
|
|
Positive,
|
|
Negative,
|
|
Both,
|
|
};
|
|
|
|
Polarity polarity = Positive;
|
|
|
|
void flip()
|
|
{
|
|
switch (polarity)
|
|
{
|
|
case Positive:
|
|
polarity = Negative;
|
|
break;
|
|
case Negative:
|
|
polarity = Positive;
|
|
break;
|
|
case Both:
|
|
break;
|
|
}
|
|
}
|
|
|
|
DenseHashSet<const void*> seenPositive{nullptr};
|
|
DenseHashSet<const void*> seenNegative{nullptr};
|
|
|
|
bool seenWithPolarity(const void* ty)
|
|
{
|
|
switch (polarity)
|
|
{
|
|
case Positive:
|
|
{
|
|
if (seenPositive.contains(ty))
|
|
return true;
|
|
|
|
seenPositive.insert(ty);
|
|
return false;
|
|
}
|
|
case Negative:
|
|
{
|
|
if (seenNegative.contains(ty))
|
|
return true;
|
|
|
|
seenNegative.insert(ty);
|
|
return false;
|
|
}
|
|
case Both:
|
|
{
|
|
if (seenPositive.contains(ty) && seenNegative.contains(ty))
|
|
return true;
|
|
|
|
seenPositive.insert(ty);
|
|
seenNegative.insert(ty);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// The keys in these maps are either TypeIds or TypePackIds. It's safe to
|
|
// mix them because we only use these pointers as unique keys. We never
|
|
// indirect them.
|
|
DenseHashMap<const void*, size_t> negativeTypes{0};
|
|
DenseHashMap<const void*, size_t> positiveTypes{0};
|
|
|
|
bool visit(TypeId ty) override
|
|
{
|
|
if (seenWithPolarity(ty))
|
|
return false;
|
|
|
|
LUAU_ASSERT(ty);
|
|
return true;
|
|
}
|
|
|
|
bool visit(TypeId ty, const FreeType& ft) override
|
|
{
|
|
if (seenWithPolarity(ty))
|
|
return false;
|
|
|
|
if (!subsumes(scope, ft.scope))
|
|
return true;
|
|
|
|
switch (polarity)
|
|
{
|
|
case Positive:
|
|
positiveTypes[ty]++;
|
|
break;
|
|
case Negative:
|
|
negativeTypes[ty]++;
|
|
break;
|
|
case Both:
|
|
positiveTypes[ty]++;
|
|
negativeTypes[ty]++;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool visit(TypeId ty, const TableType& tt) override
|
|
{
|
|
if (seenWithPolarity(ty))
|
|
return false;
|
|
|
|
if ((tt.state == TableState::Free || tt.state == TableState::Unsealed) && subsumes(scope, tt.scope))
|
|
{
|
|
switch (polarity)
|
|
{
|
|
case Positive:
|
|
positiveTypes[ty]++;
|
|
break;
|
|
case Negative:
|
|
negativeTypes[ty]++;
|
|
break;
|
|
case Both:
|
|
positiveTypes[ty]++;
|
|
negativeTypes[ty]++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (const auto& [_name, prop] : tt.props)
|
|
{
|
|
if (prop.isReadOnly())
|
|
traverse(*prop.readTy);
|
|
else
|
|
{
|
|
LUAU_ASSERT(prop.isShared());
|
|
|
|
Polarity p = polarity;
|
|
polarity = Both;
|
|
traverse(prop.type());
|
|
polarity = p;
|
|
}
|
|
}
|
|
|
|
if (tt.indexer)
|
|
{
|
|
traverse(tt.indexer->indexType);
|
|
traverse(tt.indexer->indexResultType);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool visit(TypeId ty, const FunctionType& ft) override
|
|
{
|
|
if (seenWithPolarity(ty))
|
|
return false;
|
|
|
|
flip();
|
|
traverse(ft.argTypes);
|
|
flip();
|
|
|
|
traverse(ft.retTypes);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool visit(TypeId, const ClassType&) override
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool visit(TypePackId tp, const FreeTypePack& ftp) override
|
|
{
|
|
if (seenWithPolarity(tp))
|
|
return false;
|
|
|
|
if (!subsumes(scope, ftp.scope))
|
|
return true;
|
|
|
|
switch (polarity)
|
|
{
|
|
case Positive:
|
|
positiveTypes[tp]++;
|
|
break;
|
|
case Negative:
|
|
negativeTypes[tp]++;
|
|
break;
|
|
case Both:
|
|
positiveTypes[tp]++;
|
|
negativeTypes[tp]++;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
TypeId Unifier2::mkUnion(TypeId left, TypeId right)
|
|
{
|
|
left = follow(left);
|
|
right = follow(right);
|
|
|
|
return simplifyUnion(builtinTypes, arena, left, right).result;
|
|
}
|
|
|
|
TypeId Unifier2::mkIntersection(TypeId left, TypeId right)
|
|
{
|
|
left = follow(left);
|
|
right = follow(right);
|
|
|
|
return simplifyIntersection(builtinTypes, arena, left, right).result;
|
|
}
|
|
|
|
OccursCheckResult Unifier2::occursCheck(DenseHashSet<TypeId>& seen, TypeId needle, TypeId haystack)
|
|
{
|
|
RecursionLimiter _ra(&recursionCount, recursionLimit);
|
|
|
|
OccursCheckResult occurrence = OccursCheckResult::Pass;
|
|
|
|
auto check = [&](TypeId ty) {
|
|
if (occursCheck(seen, needle, ty) == OccursCheckResult::Fail)
|
|
occurrence = OccursCheckResult::Fail;
|
|
};
|
|
|
|
needle = follow(needle);
|
|
haystack = follow(haystack);
|
|
|
|
if (seen.find(haystack))
|
|
return OccursCheckResult::Pass;
|
|
|
|
seen.insert(haystack);
|
|
|
|
if (get<ErrorType>(needle))
|
|
return OccursCheckResult::Pass;
|
|
|
|
if (!get<FreeType>(needle))
|
|
ice->ice("Expected needle to be free");
|
|
|
|
if (needle == haystack)
|
|
return OccursCheckResult::Fail;
|
|
|
|
if (auto haystackFree = get<FreeType>(haystack))
|
|
{
|
|
check(haystackFree->lowerBound);
|
|
check(haystackFree->upperBound);
|
|
}
|
|
else if (auto ut = get<UnionType>(haystack))
|
|
{
|
|
for (TypeId ty : ut->options)
|
|
check(ty);
|
|
}
|
|
else if (auto it = get<IntersectionType>(haystack))
|
|
{
|
|
for (TypeId ty : it->parts)
|
|
check(ty);
|
|
}
|
|
|
|
return occurrence;
|
|
}
|
|
|
|
OccursCheckResult Unifier2::occursCheck(DenseHashSet<TypePackId>& seen, TypePackId needle, TypePackId haystack)
|
|
{
|
|
needle = follow(needle);
|
|
haystack = follow(haystack);
|
|
|
|
if (seen.find(haystack))
|
|
return OccursCheckResult::Pass;
|
|
|
|
seen.insert(haystack);
|
|
|
|
if (getMutable<ErrorTypePack>(needle))
|
|
return OccursCheckResult::Pass;
|
|
|
|
if (!getMutable<FreeTypePack>(needle))
|
|
ice->ice("Expected needle pack to be free");
|
|
|
|
RecursionLimiter _ra(&recursionCount, recursionLimit);
|
|
|
|
while (!getMutable<Unifiable::Error>(haystack))
|
|
{
|
|
if (needle == haystack)
|
|
return OccursCheckResult::Fail;
|
|
|
|
if (auto a = get<TypePack>(haystack); a && a->tail)
|
|
{
|
|
haystack = follow(*a->tail);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
return OccursCheckResult::Pass;
|
|
}
|
|
|
|
} // namespace Luau
|