luau/Analysis/src/Frontend.cpp
Vighnesh-V a7be4fcc54
Sync to upstream/release/633 (#1318)
# What's Changed?

- Mostly stability and bugfixes with the new solver.

## New Solver

- Typechecking with the new solver should respect the no-check hot
comment.
- Record type alias locations and property locations of table
assignments
- Maintain location information for exported table types
- Stability fixes for normalization
- Report internal constraint solver errors.

---
### Internal Contributors

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

---------

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: David Cope <dcope@roblox.com>
Co-authored-by: Lily Brown <lbrown@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-07-08 14:57:06 -07:00

1695 lines
55 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Frontend.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Clone.h"
#include "Luau/Common.h"
#include "Luau/Config.h"
#include "Luau/ConstraintGenerator.h"
#include "Luau/ConstraintSolver.h"
#include "Luau/DataFlowGraph.h"
#include "Luau/DcrLogger.h"
#include "Luau/FileResolver.h"
#include "Luau/Parser.h"
#include "Luau/Scope.h"
#include "Luau/StringUtils.h"
#include "Luau/TimeTrace.h"
#include "Luau/TypeArena.h"
#include "Luau/TypeChecker2.h"
#include "Luau/NonStrictTypeChecker.h"
#include "Luau/TypeInfer.h"
#include "Luau/Variant.h"
#include "Luau/VisitType.h"
#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <exception>
#include <mutex>
#include <stdexcept>
#include <string>
LUAU_FASTINT(LuauTypeInferIterationLimit)
LUAU_FASTINT(LuauTypeInferRecursionLimit)
LUAU_FASTINT(LuauTarjanChildLimit)
LUAU_FASTFLAG(LuauInferInNoCheckMode)
LUAU_FASTFLAGVARIABLE(LuauKnowsTheDataModel3, false)
LUAU_FASTFLAGVARIABLE(LuauCancelFromProgress, false)
LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution)
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolverToJson, false)
LUAU_FASTFLAGVARIABLE(DebugLuauLogSolverToJsonFile, false)
LUAU_FASTFLAGVARIABLE(DebugLuauForbidInternalTypes, false)
LUAU_FASTFLAGVARIABLE(DebugLuauForceStrictMode, false)
LUAU_FASTFLAGVARIABLE(DebugLuauForceNonStrictMode, false)
LUAU_FASTFLAGVARIABLE(LuauSourceModuleUpdatedWithSelectedMode, false)
namespace Luau
{
struct BuildQueueItem
{
ModuleName name;
ModuleName humanReadableName;
// Parameters
std::shared_ptr<SourceNode> sourceNode;
std::shared_ptr<SourceModule> sourceModule;
Config config;
ScopePtr environmentScope;
std::vector<RequireCycle> requireCycles;
FrontendOptions options;
bool recordJsonLog = false;
// Queue state
std::vector<size_t> reverseDeps;
int dirtyDependencies = 0;
bool processing = false;
// Result
std::exception_ptr exception;
ModulePtr module;
Frontend::Stats stats;
};
std::optional<Mode> parseMode(const std::vector<HotComment>& hotcomments)
{
for (const HotComment& hc : hotcomments)
{
if (!hc.header)
continue;
if (hc.content == "nocheck")
return Mode::NoCheck;
if (hc.content == "nonstrict")
return Mode::Nonstrict;
if (hc.content == "strict")
return Mode::Strict;
}
return std::nullopt;
}
static void generateDocumentationSymbols(TypeId ty, const std::string& rootName)
{
// TODO: What do we do in this situation? This means that the definition
// file is exporting a type that is also a persistent type.
if (ty->persistent)
{
return;
}
asMutable(ty)->documentationSymbol = rootName;
if (TableType* ttv = getMutable<TableType>(ty))
{
for (auto& [name, prop] : ttv->props)
{
prop.documentationSymbol = rootName + "." + name;
}
}
else if (ClassType* ctv = getMutable<ClassType>(ty))
{
for (auto& [name, prop] : ctv->props)
{
prop.documentationSymbol = rootName + "." + name;
}
}
}
static ParseResult parseSourceForModule(std::string_view source, Luau::SourceModule& sourceModule, bool captureComments)
{
ParseOptions options;
options.allowDeclarationSyntax = true;
options.captureComments = captureComments;
Luau::ParseResult parseResult = Luau::Parser::parse(source.data(), source.size(), *sourceModule.names, *sourceModule.allocator, options);
sourceModule.root = parseResult.root;
sourceModule.mode = Mode::Definition;
return parseResult;
}
static void persistCheckedTypes(ModulePtr checkedModule, GlobalTypes& globals, ScopePtr targetScope, const std::string& packageName)
{
CloneState cloneState{globals.builtinTypes};
std::vector<TypeId> typesToPersist;
typesToPersist.reserve(checkedModule->declaredGlobals.size() + checkedModule->exportedTypeBindings.size());
for (const auto& [name, ty] : checkedModule->declaredGlobals)
{
TypeId globalTy = clone(ty, globals.globalTypes, cloneState);
std::string documentationSymbol = packageName + "/global/" + name;
generateDocumentationSymbols(globalTy, documentationSymbol);
targetScope->bindings[globals.globalNames.names->getOrAdd(name.c_str())] = {globalTy, Location(), false, {}, documentationSymbol};
typesToPersist.push_back(globalTy);
}
for (const auto& [name, ty] : checkedModule->exportedTypeBindings)
{
TypeFun globalTy = clone(ty, globals.globalTypes, cloneState);
std::string documentationSymbol = packageName + "/globaltype/" + name;
generateDocumentationSymbols(globalTy.type, documentationSymbol);
targetScope->exportedTypeBindings[name] = globalTy;
typesToPersist.push_back(globalTy.type);
}
for (TypeId ty : typesToPersist)
{
persist(ty);
}
}
LoadDefinitionFileResult Frontend::loadDefinitionFile(GlobalTypes& globals, ScopePtr targetScope, std::string_view source,
const std::string& packageName, bool captureComments, bool typeCheckForAutocomplete)
{
LUAU_TIMETRACE_SCOPE("loadDefinitionFile", "Frontend");
Luau::SourceModule sourceModule;
sourceModule.name = packageName;
sourceModule.humanReadableName = packageName;
Luau::ParseResult parseResult = parseSourceForModule(source, sourceModule, captureComments);
if (parseResult.errors.size() > 0)
return LoadDefinitionFileResult{false, parseResult, sourceModule, nullptr};
ModulePtr checkedModule = check(sourceModule, Mode::Definition, {}, std::nullopt, /*forAutocomplete*/ false, /*recordJsonLog*/ false, {});
if (checkedModule->errors.size() > 0)
return LoadDefinitionFileResult{false, parseResult, sourceModule, checkedModule};
persistCheckedTypes(checkedModule, globals, targetScope, packageName);
return LoadDefinitionFileResult{true, parseResult, sourceModule, checkedModule};
}
std::vector<std::string_view> parsePathExpr(const AstExpr& pathExpr)
{
const AstExprIndexName* indexName = pathExpr.as<AstExprIndexName>();
if (!indexName)
return {};
std::vector<std::string_view> segments{indexName->index.value};
while (true)
{
if (AstExprIndexName* in = indexName->expr->as<AstExprIndexName>())
{
segments.push_back(in->index.value);
indexName = in;
continue;
}
else if (AstExprGlobal* indexNameAsGlobal = indexName->expr->as<AstExprGlobal>())
{
segments.push_back(indexNameAsGlobal->name.value);
break;
}
else if (AstExprLocal* indexNameAsLocal = indexName->expr->as<AstExprLocal>())
{
segments.push_back(indexNameAsLocal->local->name.value);
break;
}
else
return {};
}
std::reverse(segments.begin(), segments.end());
return segments;
}
std::optional<std::string> pathExprToModuleName(const ModuleName& currentModuleName, const std::vector<std::string_view>& segments)
{
if (segments.empty())
return std::nullopt;
std::vector<std::string_view> result;
auto it = segments.begin();
if (*it == "script" && !currentModuleName.empty())
{
result = split(currentModuleName, '/');
++it;
}
for (; it != segments.end(); ++it)
{
if (result.size() > 1 && *it == "Parent")
result.pop_back();
else
result.push_back(*it);
}
return join(result, "/");
}
std::optional<std::string> pathExprToModuleName(const ModuleName& currentModuleName, const AstExpr& pathExpr)
{
std::vector<std::string_view> segments = parsePathExpr(pathExpr);
return pathExprToModuleName(currentModuleName, segments);
}
namespace
{
static ErrorVec accumulateErrors(
const std::unordered_map<ModuleName, std::shared_ptr<SourceNode>>& sourceNodes, ModuleResolver& moduleResolver, const ModuleName& name)
{
DenseHashSet<ModuleName> seen{{}};
std::vector<ModuleName> queue{name};
ErrorVec result;
while (!queue.empty())
{
ModuleName next = std::move(queue.back());
queue.pop_back();
if (seen.contains(next))
continue;
seen.insert(next);
auto it = sourceNodes.find(next);
if (it == sourceNodes.end())
continue;
const SourceNode& sourceNode = *it->second;
queue.insert(queue.end(), sourceNode.requireSet.begin(), sourceNode.requireSet.end());
// FIXME: If a module has a syntax error, we won't be able to re-report it here.
// The solution is probably to move errors from Module to SourceNode
auto modulePtr = moduleResolver.getModule(next);
if (!modulePtr)
continue;
Module& module = *modulePtr;
std::sort(module.errors.begin(), module.errors.end(), [](const TypeError& e1, const TypeError& e2) -> bool {
return e1.location.begin > e2.location.begin;
});
result.insert(result.end(), module.errors.begin(), module.errors.end());
}
std::reverse(result.begin(), result.end());
return result;
}
static void filterLintOptions(LintOptions& lintOptions, const std::vector<HotComment>& hotcomments, Mode mode)
{
uint64_t ignoreLints = LintWarning::parseMask(hotcomments);
lintOptions.warningMask &= ~ignoreLints;
if (mode != Mode::NoCheck)
{
lintOptions.disableWarning(Luau::LintWarning::Code_UnknownGlobal);
}
if (mode == Mode::Strict)
{
lintOptions.disableWarning(Luau::LintWarning::Code_ImplicitReturn);
}
}
// Given a source node (start), find all requires that start a transitive dependency path that ends back at start
// For each such path, record the full path and the location of the require in the starting module.
// Note that this is O(V^2) for a fully connected graph and produces O(V) paths of length O(V)
// However, when the graph is acyclic, this is O(V), as well as when only the first cycle is needed (stopAtFirst=true)
std::vector<RequireCycle> getRequireCycles(const FileResolver* resolver,
const std::unordered_map<ModuleName, std::shared_ptr<SourceNode>>& sourceNodes, const SourceNode* start, bool stopAtFirst = false)
{
std::vector<RequireCycle> result;
DenseHashSet<const SourceNode*> seen(nullptr);
std::vector<const SourceNode*> stack;
std::vector<const SourceNode*> path;
for (const auto& [depName, depLocation] : start->requireLocations)
{
std::vector<ModuleName> cycle;
auto dit = sourceNodes.find(depName);
if (dit == sourceNodes.end())
continue;
stack.push_back(dit->second.get());
while (!stack.empty())
{
const SourceNode* top = stack.back();
stack.pop_back();
if (top == nullptr)
{
// special marker for post-order processing
LUAU_ASSERT(!path.empty());
top = path.back();
path.pop_back();
// we reached the node! path must form a cycle now
if (top == start)
{
for (const SourceNode* node : path)
cycle.push_back(node->name);
cycle.push_back(top->name);
break;
}
}
else if (!seen.contains(top))
{
seen.insert(top);
// push marker for post-order processing
path.push_back(top);
stack.push_back(nullptr);
// note: we push require edges in the opposite order
// because it's a stack, the last edge to be pushed gets processed first
// this ensures that the cyclic path we report is the first one in DFS order
for (size_t i = top->requireLocations.size(); i > 0; --i)
{
const ModuleName& reqName = top->requireLocations[i - 1].first;
auto rit = sourceNodes.find(reqName);
if (rit != sourceNodes.end())
stack.push_back(rit->second.get());
}
}
}
path.clear();
stack.clear();
if (!cycle.empty())
{
result.push_back({depLocation, std::move(cycle)});
if (stopAtFirst)
return result;
// note: if we didn't find a cycle, all nodes that we've seen don't depend [transitively] on start
// so it's safe to *only* clear seen vector when we find a cycle
// if we don't do it, we will not have correct reporting for some cycles
seen.clear();
}
}
return result;
}
double getTimestamp()
{
using namespace std::chrono;
return double(duration_cast<nanoseconds>(high_resolution_clock::now().time_since_epoch()).count()) / 1e9;
}
} // namespace
Frontend::Frontend(FileResolver* fileResolver, ConfigResolver* configResolver, const FrontendOptions& options)
: builtinTypes(NotNull{&builtinTypes_})
, fileResolver(fileResolver)
, moduleResolver(this)
, moduleResolverForAutocomplete(this)
, globals(builtinTypes)
, globalsForAutocomplete(builtinTypes)
, configResolver(configResolver)
, options(options)
{
}
void Frontend::parse(const ModuleName& name)
{
LUAU_TIMETRACE_SCOPE("Frontend::parse", "Frontend");
LUAU_TIMETRACE_ARGUMENT("name", name.c_str());
if (getCheckResult(name, false, false))
return;
std::vector<ModuleName> buildQueue;
parseGraph(buildQueue, name, false);
}
CheckResult Frontend::check(const ModuleName& name, std::optional<FrontendOptions> optionOverride)
{
LUAU_TIMETRACE_SCOPE("Frontend::check", "Frontend");
LUAU_TIMETRACE_ARGUMENT("name", name.c_str());
FrontendOptions frontendOptions = optionOverride.value_or(options);
if (FFlag::DebugLuauDeferredConstraintResolution)
frontendOptions.forAutocomplete = false;
if (std::optional<CheckResult> result = getCheckResult(name, true, frontendOptions.forAutocomplete))
return std::move(*result);
std::vector<ModuleName> buildQueue;
bool cycleDetected = parseGraph(buildQueue, name, frontendOptions.forAutocomplete);
DenseHashSet<Luau::ModuleName> seen{{}};
std::vector<BuildQueueItem> buildQueueItems;
addBuildQueueItems(buildQueueItems, buildQueue, cycleDetected, seen, frontendOptions);
LUAU_ASSERT(!buildQueueItems.empty());
if (FFlag::DebugLuauLogSolverToJson)
{
LUAU_ASSERT(buildQueueItems.back().name == name);
buildQueueItems.back().recordJsonLog = true;
}
checkBuildQueueItems(buildQueueItems);
// Collect results only for checked modules, 'getCheckResult' produces a different result
CheckResult checkResult;
for (const BuildQueueItem& item : buildQueueItems)
{
if (item.module->timeout)
checkResult.timeoutHits.push_back(item.name);
// If check was manually cancelled, do not return partial results
if (item.module->cancelled)
return {};
checkResult.errors.insert(checkResult.errors.end(), item.module->errors.begin(), item.module->errors.end());
if (item.name == name)
checkResult.lintResult = item.module->lintResult;
}
return checkResult;
}
void Frontend::queueModuleCheck(const std::vector<ModuleName>& names)
{
moduleQueue.insert(moduleQueue.end(), names.begin(), names.end());
}
void Frontend::queueModuleCheck(const ModuleName& name)
{
moduleQueue.push_back(name);
}
std::vector<ModuleName> Frontend::checkQueuedModules(std::optional<FrontendOptions> optionOverride,
std::function<void(std::function<void()> task)> executeTask, std::function<bool(size_t done, size_t total)> progress)
{
FrontendOptions frontendOptions = optionOverride.value_or(options);
if (FFlag::DebugLuauDeferredConstraintResolution)
frontendOptions.forAutocomplete = false;
// By taking data into locals, we make sure queue is cleared at the end, even if an ICE or a different exception is thrown
std::vector<ModuleName> currModuleQueue;
std::swap(currModuleQueue, moduleQueue);
DenseHashSet<Luau::ModuleName> seen{{}};
std::vector<BuildQueueItem> buildQueueItems;
for (const ModuleName& name : currModuleQueue)
{
if (seen.contains(name))
continue;
if (!isDirty(name, frontendOptions.forAutocomplete))
{
seen.insert(name);
continue;
}
std::vector<ModuleName> queue;
bool cycleDetected = parseGraph(queue, name, frontendOptions.forAutocomplete, [&seen](const ModuleName& name) {
return seen.contains(name);
});
addBuildQueueItems(buildQueueItems, queue, cycleDetected, seen, frontendOptions);
}
if (buildQueueItems.empty())
return {};
// We need a mapping from modules to build queue slots
std::unordered_map<ModuleName, size_t> moduleNameToQueue;
for (size_t i = 0; i < buildQueueItems.size(); i++)
{
BuildQueueItem& item = buildQueueItems[i];
moduleNameToQueue[item.name] = i;
}
// Default task execution is single-threaded and immediate
if (!executeTask)
{
executeTask = [](std::function<void()> task) {
task();
};
}
std::mutex mtx;
std::condition_variable cv;
std::vector<size_t> readyQueueItems;
size_t processing = 0;
size_t remaining = buildQueueItems.size();
auto itemTask = [&](size_t i) {
BuildQueueItem& item = buildQueueItems[i];
try
{
checkBuildQueueItem(item);
}
catch (...)
{
item.exception = std::current_exception();
}
{
std::unique_lock guard(mtx);
readyQueueItems.push_back(i);
}
cv.notify_one();
};
auto sendItemTask = [&](size_t i) {
BuildQueueItem& item = buildQueueItems[i];
item.processing = true;
processing++;
executeTask([&itemTask, i]() {
itemTask(i);
});
};
auto sendCycleItemTask = [&] {
for (size_t i = 0; i < buildQueueItems.size(); i++)
{
BuildQueueItem& item = buildQueueItems[i];
if (!item.processing)
{
sendItemTask(i);
break;
}
}
};
// In a first pass, check modules that have no dependencies and record info of those modules that wait
for (size_t i = 0; i < buildQueueItems.size(); i++)
{
BuildQueueItem& item = buildQueueItems[i];
for (const ModuleName& dep : item.sourceNode->requireSet)
{
if (auto it = sourceNodes.find(dep); it != sourceNodes.end())
{
if (it->second->hasDirtyModule(frontendOptions.forAutocomplete))
{
item.dirtyDependencies++;
buildQueueItems[moduleNameToQueue[dep]].reverseDeps.push_back(i);
}
}
}
if (item.dirtyDependencies == 0)
sendItemTask(i);
}
// Not a single item was found, a cycle in the graph was hit
if (processing == 0)
sendCycleItemTask();
std::vector<size_t> nextItems;
std::optional<size_t> itemWithException;
bool cancelled = false;
while (remaining != 0)
{
{
std::unique_lock guard(mtx);
// If nothing is ready yet, wait
cv.wait(guard, [&readyQueueItems] {
return !readyQueueItems.empty();
});
// Handle checked items
for (size_t i : readyQueueItems)
{
const BuildQueueItem& item = buildQueueItems[i];
// If exception was thrown, stop adding new items and wait for processing items to complete
if (item.exception)
itemWithException = i;
if (item.module && item.module->cancelled)
cancelled = true;
if (itemWithException || cancelled)
break;
recordItemResult(item);
// Notify items that were waiting for this dependency
for (size_t reverseDep : item.reverseDeps)
{
BuildQueueItem& reverseDepItem = buildQueueItems[reverseDep];
LUAU_ASSERT(reverseDepItem.dirtyDependencies != 0);
reverseDepItem.dirtyDependencies--;
// In case of a module cycle earlier, check if unlocked an item that was already processed
if (!reverseDepItem.processing && reverseDepItem.dirtyDependencies == 0)
nextItems.push_back(reverseDep);
}
}
LUAU_ASSERT(processing >= readyQueueItems.size());
processing -= readyQueueItems.size();
LUAU_ASSERT(remaining >= readyQueueItems.size());
remaining -= readyQueueItems.size();
readyQueueItems.clear();
}
if (progress)
{
if (FFlag::LuauCancelFromProgress)
{
if (!progress(buildQueueItems.size() - remaining, buildQueueItems.size()))
cancelled = true;
}
else
{
progress(buildQueueItems.size() - remaining, buildQueueItems.size());
}
}
// Items cannot be submitted while holding the lock
for (size_t i : nextItems)
sendItemTask(i);
nextItems.clear();
if (processing == 0)
{
// Typechecking might have been cancelled by user, don't return partial results
if (cancelled)
return {};
// We might have stopped because of a pending exception
if (itemWithException)
recordItemResult(buildQueueItems[*itemWithException]);
}
// If we aren't done, but don't have anything processing, we hit a cycle
if (remaining != 0 && processing == 0)
sendCycleItemTask();
}
std::vector<ModuleName> checkedModules;
checkedModules.reserve(buildQueueItems.size());
for (size_t i = 0; i < buildQueueItems.size(); i++)
checkedModules.push_back(std::move(buildQueueItems[i].name));
return checkedModules;
}
std::optional<CheckResult> Frontend::getCheckResult(const ModuleName& name, bool accumulateNested, bool forAutocomplete)
{
if (FFlag::DebugLuauDeferredConstraintResolution)
forAutocomplete = false;
auto it = sourceNodes.find(name);
if (it == sourceNodes.end() || it->second->hasDirtyModule(forAutocomplete))
return std::nullopt;
auto& resolver = forAutocomplete ? moduleResolverForAutocomplete : moduleResolver;
ModulePtr module = resolver.getModule(name);
if (module == nullptr)
throw InternalCompilerError("Frontend does not have module: " + name, name);
CheckResult checkResult;
if (module->timeout)
checkResult.timeoutHits.push_back(name);
if (accumulateNested)
checkResult.errors = accumulateErrors(sourceNodes, resolver, name);
else
checkResult.errors.insert(checkResult.errors.end(), module->errors.begin(), module->errors.end());
// Get lint result only for top checked module
checkResult.lintResult = module->lintResult;
return checkResult;
}
bool Frontend::parseGraph(
std::vector<ModuleName>& buildQueue, const ModuleName& root, bool forAutocomplete, std::function<bool(const ModuleName&)> canSkip)
{
LUAU_TIMETRACE_SCOPE("Frontend::parseGraph", "Frontend");
LUAU_TIMETRACE_ARGUMENT("root", root.c_str());
// https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search
enum Mark
{
None,
Temporary,
Permanent
};
DenseHashMap<SourceNode*, Mark> seen(nullptr);
std::vector<SourceNode*> stack;
std::vector<SourceNode*> path;
bool cyclic = false;
{
auto [sourceNode, _] = getSourceNode(root);
if (sourceNode)
stack.push_back(sourceNode);
}
while (!stack.empty())
{
SourceNode* top = stack.back();
stack.pop_back();
if (top == nullptr)
{
// special marker for post-order processing
LUAU_ASSERT(!path.empty());
top = path.back();
path.pop_back();
// note: topseen ref gets invalidated in any seen[] access, beware - only one seen[] access per iteration!
Mark& topseen = seen[top];
LUAU_ASSERT(topseen == Temporary);
topseen = Permanent;
buildQueue.push_back(top->name);
}
else
{
// note: topseen ref gets invalidated in any seen[] access, beware - only one seen[] access per iteration!
Mark& topseen = seen[top];
if (topseen != None)
{
cyclic |= topseen == Temporary;
continue;
}
topseen = Temporary;
// push marker for post-order processing
stack.push_back(nullptr);
path.push_back(top);
// push children
for (const ModuleName& dep : top->requireSet)
{
auto it = sourceNodes.find(dep);
if (it != sourceNodes.end())
{
// this is a critical optimization: we do *not* traverse non-dirty subtrees.
// this relies on the fact that markDirty marks reverse-dependencies dirty as well
// thus if a node is not dirty, all its transitive deps aren't dirty, which means that they won't ever need
// to be built, *and* can't form a cycle with any nodes we did process.
if (!it->second->hasDirtyModule(forAutocomplete))
continue;
// This module might already be in the outside build queue
if (canSkip && canSkip(dep))
continue;
// note: this check is technically redundant *except* that getSourceNode has somewhat broken memoization
// calling getSourceNode twice in succession will reparse the file, since getSourceNode leaves dirty flag set
if (seen.contains(it->second.get()))
{
stack.push_back(it->second.get());
continue;
}
}
auto [sourceNode, _] = getSourceNode(dep);
if (sourceNode)
{
stack.push_back(sourceNode);
// note: this assignment is paired with .contains() check above and effectively deduplicates getSourceNode()
seen[sourceNode] = None;
}
}
}
}
return cyclic;
}
void Frontend::addBuildQueueItems(std::vector<BuildQueueItem>& items, std::vector<ModuleName>& buildQueue, bool cycleDetected,
DenseHashSet<Luau::ModuleName>& seen, const FrontendOptions& frontendOptions)
{
for (const ModuleName& moduleName : buildQueue)
{
if (seen.contains(moduleName))
continue;
seen.insert(moduleName);
LUAU_ASSERT(sourceNodes.count(moduleName));
std::shared_ptr<SourceNode>& sourceNode = sourceNodes[moduleName];
if (!sourceNode->hasDirtyModule(frontendOptions.forAutocomplete))
continue;
LUAU_ASSERT(sourceModules.count(moduleName));
std::shared_ptr<SourceModule>& sourceModule = sourceModules[moduleName];
BuildQueueItem data{moduleName, fileResolver->getHumanReadableModuleName(moduleName), sourceNode, sourceModule};
data.config = configResolver->getConfig(moduleName);
data.environmentScope = getModuleEnvironment(*sourceModule, data.config, frontendOptions.forAutocomplete);
data.recordJsonLog = FFlag::DebugLuauLogSolverToJson;
Mode mode = sourceModule->mode.value_or(data.config.mode);
// in NoCheck mode we only need to compute the value of .cyclic for typeck
// in the future we could replace toposort with an algorithm that can flag cyclic nodes by itself
// however, for now getRequireCycles isn't expensive in practice on the cases we care about, and long term
// all correct programs must be acyclic so this code triggers rarely
if (cycleDetected)
data.requireCycles = getRequireCycles(fileResolver, sourceNodes, sourceNode.get(), mode == Mode::NoCheck);
data.options = frontendOptions;
// This is used by the type checker to replace the resulting type of cyclic modules with any
sourceModule->cyclic = !data.requireCycles.empty();
items.push_back(std::move(data));
}
}
static void applyInternalLimitScaling(SourceNode& sourceNode, const ModulePtr module, double limit)
{
if (module->timeout)
sourceNode.autocompleteLimitsMult = sourceNode.autocompleteLimitsMult / 2.0;
else if (module->checkDurationSec < limit / 2.0)
sourceNode.autocompleteLimitsMult = std::min(sourceNode.autocompleteLimitsMult * 2.0, 1.0);
}
void Frontend::checkBuildQueueItem(BuildQueueItem& item)
{
SourceNode& sourceNode = *item.sourceNode;
const SourceModule& sourceModule = *item.sourceModule;
const Config& config = item.config;
Mode mode;
if (FFlag::DebugLuauForceStrictMode)
mode = Mode::Strict;
else if (FFlag::DebugLuauForceNonStrictMode)
mode = Mode::Nonstrict;
else
mode = sourceModule.mode.value_or(config.mode);
if (FFlag::LuauSourceModuleUpdatedWithSelectedMode)
item.sourceModule->mode = {mode};
ScopePtr environmentScope = item.environmentScope;
double timestamp = getTimestamp();
const std::vector<RequireCycle>& requireCycles = item.requireCycles;
TypeCheckLimits typeCheckLimits;
if (item.options.moduleTimeLimitSec)
typeCheckLimits.finishTime = TimeTrace::getClock() + *item.options.moduleTimeLimitSec;
else
typeCheckLimits.finishTime = std::nullopt;
// TODO: This is a dirty ad hoc solution for autocomplete timeouts
// We are trying to dynamically adjust our existing limits to lower total typechecking time under the limit
// so that we'll have type information for the whole file at lower quality instead of a full abort in the middle
if (item.options.applyInternalLimitScaling)
{
if (FInt::LuauTarjanChildLimit > 0)
typeCheckLimits.instantiationChildLimit = std::max(1, int(FInt::LuauTarjanChildLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckLimits.instantiationChildLimit = std::nullopt;
if (FInt::LuauTypeInferIterationLimit > 0)
typeCheckLimits.unifierIterationLimit = std::max(1, int(FInt::LuauTypeInferIterationLimit * sourceNode.autocompleteLimitsMult));
else
typeCheckLimits.unifierIterationLimit = std::nullopt;
}
typeCheckLimits.cancellationToken = item.options.cancellationToken;
if (item.options.forAutocomplete)
{
// The autocomplete typecheck is always in strict mode with DM awareness to provide better type information for IDE features
ModulePtr moduleForAutocomplete = check(sourceModule, Mode::Strict, requireCycles, environmentScope, /*forAutocomplete*/ true,
/*recordJsonLog*/ false, typeCheckLimits);
double duration = getTimestamp() - timestamp;
moduleForAutocomplete->checkDurationSec = duration;
if (item.options.moduleTimeLimitSec && item.options.applyInternalLimitScaling)
applyInternalLimitScaling(sourceNode, moduleForAutocomplete, *item.options.moduleTimeLimitSec);
item.stats.timeCheck += duration;
item.stats.filesStrict += 1;
item.module = moduleForAutocomplete;
return;
}
ModulePtr module = check(sourceModule, mode, requireCycles, environmentScope, /*forAutocomplete*/ false, item.recordJsonLog, typeCheckLimits);
double duration = getTimestamp() - timestamp;
module->checkDurationSec = duration;
if (item.options.moduleTimeLimitSec && item.options.applyInternalLimitScaling)
applyInternalLimitScaling(sourceNode, module, *item.options.moduleTimeLimitSec);
item.stats.timeCheck += duration;
item.stats.filesStrict += mode == Mode::Strict;
item.stats.filesNonstrict += mode == Mode::Nonstrict;
if (module == nullptr)
throw InternalCompilerError("Frontend::check produced a nullptr module for " + item.name, item.name);
if (FFlag::DebugLuauDeferredConstraintResolution && mode == Mode::NoCheck)
module->errors.clear();
if (item.options.runLintChecks)
{
LUAU_TIMETRACE_SCOPE("lint", "Frontend");
LintOptions lintOptions = item.options.enabledLintWarnings.value_or(config.enabledLint);
filterLintOptions(lintOptions, sourceModule.hotcomments, mode);
double timestamp = getTimestamp();
std::vector<LintWarning> warnings =
Luau::lint(sourceModule.root, *sourceModule.names, environmentScope, module.get(), sourceModule.hotcomments, lintOptions);
item.stats.timeLint += getTimestamp() - timestamp;
module->lintResult = classifyLints(warnings, config);
}
if (!item.options.retainFullTypeGraphs)
{
// copyErrors needs to allocate into interfaceTypes as it copies
// types out of internalTypes, so we unfreeze it here.
unfreeze(module->interfaceTypes);
copyErrors(module->errors, module->interfaceTypes, builtinTypes);
freeze(module->interfaceTypes);
module->internalTypes.clear();
module->astTypes.clear();
module->astTypePacks.clear();
module->astExpectedTypes.clear();
module->astOriginalCallTypes.clear();
module->astOverloadResolvedTypes.clear();
module->astForInNextTypes.clear();
module->astResolvedTypes.clear();
module->astResolvedTypePacks.clear();
module->astCompoundAssignResultTypes.clear();
module->astScopes.clear();
module->upperBoundContributors.clear();
module->scopes.clear();
}
if (mode != Mode::NoCheck)
{
for (const RequireCycle& cyc : requireCycles)
{
TypeError te{cyc.location, item.name, ModuleHasCyclicDependency{cyc.path}};
module->errors.push_back(te);
}
}
ErrorVec parseErrors;
for (const ParseError& pe : sourceModule.parseErrors)
parseErrors.push_back(TypeError{pe.getLocation(), item.name, SyntaxError{pe.what()}});
module->errors.insert(module->errors.begin(), parseErrors.begin(), parseErrors.end());
item.module = module;
}
void Frontend::checkBuildQueueItems(std::vector<BuildQueueItem>& items)
{
for (BuildQueueItem& item : items)
{
checkBuildQueueItem(item);
if (item.module && item.module->cancelled)
break;
recordItemResult(item);
}
}
void Frontend::recordItemResult(const BuildQueueItem& item)
{
if (item.exception)
std::rethrow_exception(item.exception);
if (item.options.forAutocomplete)
{
moduleResolverForAutocomplete.setModule(item.name, item.module);
item.sourceNode->dirtyModuleForAutocomplete = false;
}
else
{
moduleResolver.setModule(item.name, item.module);
item.sourceNode->dirtyModule = false;
}
stats.timeCheck += item.stats.timeCheck;
stats.timeLint += item.stats.timeLint;
stats.filesStrict += item.stats.filesStrict;
stats.filesNonstrict += item.stats.filesNonstrict;
}
ScopePtr Frontend::getModuleEnvironment(const SourceModule& module, const Config& config, bool forAutocomplete) const
{
ScopePtr result;
if (forAutocomplete)
result = globalsForAutocomplete.globalScope;
else
result = globals.globalScope;
if (module.environmentName)
result = getEnvironmentScope(*module.environmentName);
if (!config.globals.empty())
{
result = std::make_shared<Scope>(result);
for (const std::string& global : config.globals)
{
AstName name = module.names->get(global.c_str());
if (name.value)
result->bindings[name].typeId = builtinTypes->anyType;
}
}
return result;
}
bool Frontend::isDirty(const ModuleName& name, bool forAutocomplete) const
{
auto it = sourceNodes.find(name);
return it == sourceNodes.end() || it->second->hasDirtyModule(forAutocomplete);
}
/*
* Mark a file as requiring rechecking before its type information can be safely used again.
*
* I am not particularly pleased with the way each dirty() operation involves a BFS on reverse dependencies.
* It would be nice for this function to be O(1)
*/
void Frontend::markDirty(const ModuleName& name, std::vector<ModuleName>* markedDirty)
{
if (sourceNodes.count(name) == 0)
return;
std::unordered_map<ModuleName, std::vector<ModuleName>> reverseDeps;
for (const auto& module : sourceNodes)
{
for (const auto& dep : module.second->requireSet)
reverseDeps[dep].push_back(module.first);
}
std::vector<ModuleName> queue{name};
while (!queue.empty())
{
ModuleName next = std::move(queue.back());
queue.pop_back();
LUAU_ASSERT(sourceNodes.count(next) > 0);
SourceNode& sourceNode = *sourceNodes[next];
if (markedDirty)
markedDirty->push_back(next);
if (sourceNode.dirtySourceModule && sourceNode.dirtyModule && sourceNode.dirtyModuleForAutocomplete)
continue;
sourceNode.dirtySourceModule = true;
sourceNode.dirtyModule = true;
sourceNode.dirtyModuleForAutocomplete = true;
if (0 == reverseDeps.count(next))
continue;
sourceModules.erase(next);
const std::vector<ModuleName>& dependents = reverseDeps[next];
queue.insert(queue.end(), dependents.begin(), dependents.end());
}
}
SourceModule* Frontend::getSourceModule(const ModuleName& moduleName)
{
auto it = sourceModules.find(moduleName);
if (it != sourceModules.end())
return it->second.get();
else
return nullptr;
}
const SourceModule* Frontend::getSourceModule(const ModuleName& moduleName) const
{
return const_cast<Frontend*>(this)->getSourceModule(moduleName);
}
ModulePtr check(const SourceModule& sourceModule, Mode mode, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& parentScope, std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, FrontendOptions options,
TypeCheckLimits limits, std::function<void(const ModuleName&, std::string)> writeJsonLog)
{
const bool recordJsonLog = FFlag::DebugLuauLogSolverToJson;
return check(sourceModule, mode, requireCycles, builtinTypes, iceHandler, moduleResolver, fileResolver, parentScope,
std::move(prepareModuleScope), options, limits, recordJsonLog, writeJsonLog);
}
struct InternalTypeFinder : TypeOnceVisitor
{
bool visit(TypeId, const ClassType&) override
{
return false;
}
bool visit(TypeId, const BlockedType&) override
{
LUAU_ASSERT(false);
return false;
}
bool visit(TypeId, const FreeType&) override
{
LUAU_ASSERT(false);
return false;
}
bool visit(TypeId, const PendingExpansionType&) override
{
LUAU_ASSERT(false);
return false;
}
bool visit(TypePackId, const BlockedTypePack&) override
{
LUAU_ASSERT(false);
return false;
}
bool visit(TypePackId, const FreeTypePack&) override
{
LUAU_ASSERT(false);
return false;
}
bool visit(TypePackId, const TypeFamilyInstanceTypePack&) override
{
LUAU_ASSERT(false);
return false;
}
};
ModulePtr check(const SourceModule& sourceModule, Mode mode, const std::vector<RequireCycle>& requireCycles, NotNull<BuiltinTypes> builtinTypes,
NotNull<InternalErrorReporter> iceHandler, NotNull<ModuleResolver> moduleResolver, NotNull<FileResolver> fileResolver,
const ScopePtr& parentScope, std::function<void(const ModuleName&, const ScopePtr&)> prepareModuleScope, FrontendOptions options,
TypeCheckLimits limits, bool recordJsonLog, std::function<void(const ModuleName&, std::string)> writeJsonLog)
{
ModulePtr result = std::make_shared<Module>();
result->name = sourceModule.name;
result->humanReadableName = sourceModule.humanReadableName;
result->mode = mode;
result->internalTypes.owningModule = result.get();
result->interfaceTypes.owningModule = result.get();
iceHandler->moduleName = sourceModule.name;
std::unique_ptr<DcrLogger> logger;
if (recordJsonLog)
{
logger = std::make_unique<DcrLogger>();
std::optional<SourceCode> source = fileResolver->readSource(result->name);
if (source)
{
logger->captureSource(source->source);
}
}
DataFlowGraph dfg = DataFlowGraphBuilder::build(sourceModule.root, iceHandler);
UnifierSharedState unifierState{iceHandler};
unifierState.counters.recursionLimit = FInt::LuauTypeInferRecursionLimit;
unifierState.counters.iterationLimit = limits.unifierIterationLimit.value_or(FInt::LuauTypeInferIterationLimit);
Normalizer normalizer{&result->internalTypes, builtinTypes, NotNull{&unifierState}};
ConstraintGenerator cg{result, NotNull{&normalizer}, moduleResolver, builtinTypes, iceHandler, parentScope, std::move(prepareModuleScope),
logger.get(), NotNull{&dfg}, requireCycles};
cg.visitModuleRoot(sourceModule.root);
result->errors = std::move(cg.errors);
ConstraintSolver cs{NotNull{&normalizer}, NotNull(cg.rootScope), borrowConstraints(cg.constraints), result->name, moduleResolver, requireCycles,
logger.get(), limits};
if (options.randomizeConstraintResolutionSeed)
cs.randomize(*options.randomizeConstraintResolutionSeed);
try
{
cs.run();
}
catch (const TimeLimitError&)
{
result->timeout = true;
}
catch (const UserCancelError&)
{
result->cancelled = true;
}
if (recordJsonLog)
{
std::string output = logger->compileOutput();
if (FFlag::DebugLuauLogSolverToJsonFile && writeJsonLog)
writeJsonLog(sourceModule.name, std::move(output));
else
printf("%s\n", output.c_str());
}
for (TypeError& e : cs.errors)
result->errors.emplace_back(std::move(e));
result->scopes = std::move(cg.scopes);
result->type = sourceModule.type;
result->upperBoundContributors = std::move(cs.upperBoundContributors);
if (result->timeout || result->cancelled)
{
// If solver was interrupted, skip typechecking and replace all module results with error-supressing types to avoid leaking blocked/pending
// types
ScopePtr moduleScope = result->getModuleScope();
moduleScope->returnType = builtinTypes->errorRecoveryTypePack();
for (auto& [name, ty] : result->declaredGlobals)
ty = builtinTypes->errorRecoveryType();
for (auto& [name, tf] : result->exportedTypeBindings)
tf.type = builtinTypes->errorRecoveryType();
}
else
{
switch (mode)
{
case Mode::Nonstrict:
Luau::checkNonStrict(builtinTypes, iceHandler, NotNull{&unifierState}, NotNull{&dfg}, NotNull{&limits}, sourceModule, result.get());
break;
case Mode::Definition:
// fallthrough intentional
case Mode::Strict:
Luau::check(builtinTypes, NotNull{&unifierState}, NotNull{&limits}, logger.get(), sourceModule, result.get());
break;
case Mode::NoCheck:
break;
};
}
unfreeze(result->interfaceTypes);
result->clonePublicInterface(builtinTypes, *iceHandler);
if (FFlag::DebugLuauForbidInternalTypes)
{
InternalTypeFinder finder;
finder.traverse(result->returnType);
for (const auto& [_, binding] : result->exportedTypeBindings)
finder.traverse(binding.type);
for (const auto& [_, ty] : result->astTypes)
finder.traverse(ty);
for (const auto& [_, ty] : result->astExpectedTypes)
finder.traverse(ty);
for (const auto& [_, tp] : result->astTypePacks)
finder.traverse(tp);
for (const auto& [_, ty] : result->astResolvedTypes)
finder.traverse(ty);
for (const auto& [_, ty] : result->astOverloadResolvedTypes)
finder.traverse(ty);
for (const auto& [_, tp] : result->astResolvedTypePacks)
finder.traverse(tp);
}
// It would be nice if we could freeze the arenas before doing type
// checking, but we'll have to do some work to get there.
//
// TypeChecker2 sometimes needs to allocate TypePacks via extendTypePack()
// in order to do its thing. We can rework that code to instead allocate
// into a temporary arena as long as we can prove that the allocated types
// and packs can never find their way into an error.
//
// Notably, we would first need to get to a place where TypeChecker2 is
// never in the position of dealing with a FreeType. They should all be
// bound to something by the time constraints are solved.
freeze(result->internalTypes);
freeze(result->interfaceTypes);
return result;
}
ModulePtr Frontend::check(const SourceModule& sourceModule, Mode mode, std::vector<RequireCycle> requireCycles,
std::optional<ScopePtr> environmentScope, bool forAutocomplete, bool recordJsonLog, TypeCheckLimits typeCheckLimits)
{
if (FFlag::DebugLuauDeferredConstraintResolution)
{
auto prepareModuleScopeWrap = [this, forAutocomplete](const ModuleName& name, const ScopePtr& scope) {
if (prepareModuleScope)
prepareModuleScope(name, scope, forAutocomplete);
};
try
{
return Luau::check(sourceModule, mode, requireCycles, builtinTypes, NotNull{&iceHandler},
NotNull{forAutocomplete ? &moduleResolverForAutocomplete : &moduleResolver}, NotNull{fileResolver},
environmentScope ? *environmentScope : globals.globalScope, prepareModuleScopeWrap, options, typeCheckLimits, recordJsonLog,
writeJsonLog);
}
catch (const InternalCompilerError& err)
{
InternalCompilerError augmented = err.location.has_value() ? InternalCompilerError{err.message, sourceModule.name, *err.location}
: InternalCompilerError{err.message, sourceModule.name};
throw augmented;
}
}
else
{
TypeChecker typeChecker(forAutocomplete ? globalsForAutocomplete.globalScope : globals.globalScope,
forAutocomplete ? &moduleResolverForAutocomplete : &moduleResolver, builtinTypes, &iceHandler);
if (prepareModuleScope)
{
typeChecker.prepareModuleScope = [this, forAutocomplete](const ModuleName& name, const ScopePtr& scope) {
prepareModuleScope(name, scope, forAutocomplete);
};
}
typeChecker.requireCycles = requireCycles;
typeChecker.finishTime = typeCheckLimits.finishTime;
typeChecker.instantiationChildLimit = typeCheckLimits.instantiationChildLimit;
typeChecker.unifierIterationLimit = typeCheckLimits.unifierIterationLimit;
typeChecker.cancellationToken = typeCheckLimits.cancellationToken;
return typeChecker.check(sourceModule, mode, environmentScope);
}
}
// Read AST into sourceModules if necessary. Trace require()s. Report parse errors.
std::pair<SourceNode*, SourceModule*> Frontend::getSourceNode(const ModuleName& name)
{
auto it = sourceNodes.find(name);
if (it != sourceNodes.end() && !it->second->hasDirtySourceModule())
{
auto moduleIt = sourceModules.find(name);
if (moduleIt != sourceModules.end())
return {it->second.get(), moduleIt->second.get()};
else
{
LUAU_ASSERT(!"Everything in sourceNodes should also be in sourceModules");
return {it->second.get(), nullptr};
}
}
LUAU_TIMETRACE_SCOPE("Frontend::getSourceNode", "Frontend");
LUAU_TIMETRACE_ARGUMENT("name", name.c_str());
double timestamp = getTimestamp();
std::optional<SourceCode> source = fileResolver->readSource(name);
std::optional<std::string> environmentName = fileResolver->getEnvironmentForModule(name);
stats.timeRead += getTimestamp() - timestamp;
if (!source)
{
sourceModules.erase(name);
return {nullptr, nullptr};
}
const Config& config = configResolver->getConfig(name);
ParseOptions opts = config.parseOptions;
opts.captureComments = true;
SourceModule result = parse(name, source->source, opts);
result.type = source->type;
RequireTraceResult& require = requireTrace[name];
require = traceRequires(fileResolver, result.root, name);
std::shared_ptr<SourceNode>& sourceNode = sourceNodes[name];
if (!sourceNode)
sourceNode = std::make_shared<SourceNode>();
std::shared_ptr<SourceModule>& sourceModule = sourceModules[name];
if (!sourceModule)
sourceModule = std::make_shared<SourceModule>();
*sourceModule = std::move(result);
sourceModule->environmentName = environmentName;
sourceNode->name = sourceModule->name;
sourceNode->humanReadableName = sourceModule->humanReadableName;
sourceNode->requireSet.clear();
sourceNode->requireLocations.clear();
sourceNode->dirtySourceModule = false;
if (it == sourceNodes.end())
{
sourceNode->dirtyModule = true;
sourceNode->dirtyModuleForAutocomplete = true;
}
for (const auto& [moduleName, location] : require.requireList)
sourceNode->requireSet.insert(moduleName);
sourceNode->requireLocations = require.requireList;
return {sourceNode.get(), sourceModule.get()};
}
/** Try to parse a source file into a SourceModule.
*
* The logic here is a little bit more complicated than we'd like it to be.
*
* If a file does not exist, we return none to prevent the Frontend from creating knowledge that this module exists.
* If the Frontend thinks that the file exists, it will not produce an "Unknown require" error.
*
* If the file has syntax errors, we report them and synthesize an empty AST if it's not available.
* This suppresses the Unknown require error and allows us to make a best effort to typecheck code that require()s
* something that has broken syntax.
* We also translate Luau::ParseError into a Luau::TypeError so that we can use a vector<TypeError> to describe the
* result of the check()
*/
SourceModule Frontend::parse(const ModuleName& name, std::string_view src, const ParseOptions& parseOptions)
{
LUAU_TIMETRACE_SCOPE("Frontend::parse", "Frontend");
LUAU_TIMETRACE_ARGUMENT("name", name.c_str());
SourceModule sourceModule;
double timestamp = getTimestamp();
Luau::ParseResult parseResult = Luau::Parser::parse(src.data(), src.size(), *sourceModule.names, *sourceModule.allocator, parseOptions);
stats.timeParse += getTimestamp() - timestamp;
stats.files++;
stats.lines += parseResult.lines;
if (!parseResult.errors.empty())
sourceModule.parseErrors.insert(sourceModule.parseErrors.end(), parseResult.errors.begin(), parseResult.errors.end());
if (parseResult.errors.empty() || parseResult.root)
{
sourceModule.root = parseResult.root;
sourceModule.mode = parseMode(parseResult.hotcomments);
}
else
{
sourceModule.root = sourceModule.allocator->alloc<AstStatBlock>(Location{}, AstArray<AstStat*>{nullptr, 0});
sourceModule.mode = Mode::NoCheck;
}
sourceModule.name = name;
sourceModule.humanReadableName = fileResolver->getHumanReadableModuleName(name);
if (parseOptions.captureComments)
{
sourceModule.commentLocations = std::move(parseResult.commentLocations);
sourceModule.hotcomments = std::move(parseResult.hotcomments);
}
return sourceModule;
}
FrontendModuleResolver::FrontendModuleResolver(Frontend* frontend)
: frontend(frontend)
{
}
std::optional<ModuleInfo> FrontendModuleResolver::resolveModuleInfo(const ModuleName& currentModuleName, const AstExpr& pathExpr)
{
// FIXME I think this can be pushed into the FileResolver.
auto it = frontend->requireTrace.find(currentModuleName);
if (it == frontend->requireTrace.end())
{
// CLI-43699
// If we can't find the current module name, that's because we bypassed the frontend's initializer
// and called typeChecker.check directly.
// In that case, requires will always fail.
return std::nullopt;
}
const auto& exprs = it->second.exprs;
const ModuleInfo* info = exprs.find(&pathExpr);
if (!info)
return std::nullopt;
return *info;
}
const ModulePtr FrontendModuleResolver::getModule(const ModuleName& moduleName) const
{
std::scoped_lock lock(moduleMutex);
auto it = modules.find(moduleName);
if (it != modules.end())
return it->second;
else
return nullptr;
}
bool FrontendModuleResolver::moduleExists(const ModuleName& moduleName) const
{
return frontend->sourceNodes.count(moduleName) != 0;
}
std::string FrontendModuleResolver::getHumanReadableModuleName(const ModuleName& moduleName) const
{
return frontend->fileResolver->getHumanReadableModuleName(moduleName);
}
void FrontendModuleResolver::setModule(const ModuleName& moduleName, ModulePtr module)
{
std::scoped_lock lock(moduleMutex);
modules[moduleName] = std::move(module);
}
void FrontendModuleResolver::clearModules()
{
std::scoped_lock lock(moduleMutex);
modules.clear();
}
ScopePtr Frontend::addEnvironment(const std::string& environmentName)
{
LUAU_ASSERT(environments.count(environmentName) == 0);
if (environments.count(environmentName) == 0)
{
ScopePtr scope = std::make_shared<Scope>(globals.globalScope);
environments[environmentName] = scope;
return scope;
}
else
return environments[environmentName];
}
ScopePtr Frontend::getEnvironmentScope(const std::string& environmentName) const
{
if (auto it = environments.find(environmentName); it != environments.end())
return it->second;
LUAU_ASSERT(!"environment doesn't exist");
return {};
}
void Frontend::registerBuiltinDefinition(const std::string& name, std::function<void(Frontend&, GlobalTypes&, ScopePtr)> applicator)
{
LUAU_ASSERT(builtinDefinitions.count(name) == 0);
if (builtinDefinitions.count(name) == 0)
builtinDefinitions[name] = applicator;
}
void Frontend::applyBuiltinDefinitionToEnvironment(const std::string& environmentName, const std::string& definitionName)
{
LUAU_ASSERT(builtinDefinitions.count(definitionName) > 0);
if (builtinDefinitions.count(definitionName) > 0)
builtinDefinitions[definitionName](*this, globals, getEnvironmentScope(environmentName));
}
LintResult Frontend::classifyLints(const std::vector<LintWarning>& warnings, const Config& config)
{
LintResult result;
for (const auto& w : warnings)
{
if (config.lintErrors || config.fatalLint.isEnabled(w.code))
result.errors.push_back(w);
else
result.warnings.push_back(w);
}
return result;
}
void Frontend::clearStats()
{
stats = {};
}
void Frontend::clear()
{
sourceNodes.clear();
sourceModules.clear();
moduleResolver.clearModules();
moduleResolverForAutocomplete.clearModules();
requireTrace.clear();
}
} // namespace Luau