luau/bench/bench.py
vegorov-rbx e491128f95
Sync to upstream/release/648 (#1477)
## What's new

* Added `math.map` function to the standard library, based on
https://rfcs.luau-lang.org/function-math-map.html
* `FileResolver` can provide an implementation of
`getRequireSuggestions` to provide auto-complete suggestions for
require-by-string

## New Solver

* In user-defined type functions, `readproperty` and `writeproperty`
will return `nil` instead of erroring if property is not found
* Fixed incorrect scope of variadic arguments in the data-flow graph
* Fixed multiple assertion failures

---

Internal Contributors:

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-10-18 10:27:15 -07:00

939 lines
32 KiB
Python

#!/usr/bin/python3
# This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
import argparse
import os
import subprocess
import math
import sys
import re
import json
# Taken from rotest
from color import colored, Color
from tabulate import TablePrinter, Alignment
try:
import matplotlib
import matplotlib.pyplot as plt
except ModuleNotFoundError:
matplotlib = None
try:
import scipy
from scipy import stats
except ModuleNotFoundError:
print("Warning: scipy package is not installed, confidence values will not be available")
stats = None
scriptdir = os.path.dirname(os.path.realpath(__file__))
defaultVm = 'luau.exe' if os.name == "nt" else './luau'
argumentParser = argparse.ArgumentParser(description='Benchmark Lua script execution with an option to compare different VMs')
argumentParser.add_argument('--vm', dest='vm',default=defaultVm,help='Lua executable to test (' + defaultVm + ' by default)')
argumentParser.add_argument('--folder', dest='folder',default=os.path.join(scriptdir, 'tests'),help='Folder with tests (tests by default)')
argumentParser.add_argument('--compare', dest='vmNext',type=str,nargs='*',help='List of Lua executables to compare against')
argumentParser.add_argument('--results', dest='results',type=str,nargs='*',help='List of json result files to compare and graph')
argumentParser.add_argument('--run-test', action='store', default=None, help='Regex test filter')
argumentParser.add_argument('--extra-loops', action='store',type=int,default=0, help='Amount of times to loop over one test (one test already performs multiple runs)')
argumentParser.add_argument('--filename', action='store',type=str,default='bench', help='File name for graph and results file')
argumentParser.add_argument('--callgrind', dest='callgrind',action='store_const',const=1,default=0,help='Use callgrind to run benchmarks')
argumentParser.add_argument('--show-commands', dest='show_commands',action='store_const',const=1,default=0,help='Show the command line used to launch the VM and tests')
if matplotlib != None:
argumentParser.add_argument('--absolute', dest='absolute',action='store_const',const=1,default=0,help='Display absolute values instead of relative (enabled by default when benchmarking a single VM)')
argumentParser.add_argument('--speedup', dest='speedup',action='store_const',const=1,default=0,help='Draw a speedup graph')
argumentParser.add_argument('--sort', dest='sort',action='store_const',const=1,default=0,help='Sort values from worst to best improvements, ignoring conf. int. (disabled by default)')
argumentParser.add_argument('--window', dest='window',action='store_const',const=1,default=0,help='Display window with resulting plot (disabled by default)')
argumentParser.add_argument('--graph-vertical', action='store_true',dest='graph_vertical', help="Draw graph with vertical bars instead of horizontal")
argumentParser.add_argument('--report-metrics', dest='report_metrics', help="Send metrics about this session to InfluxDB URL upon completion.")
argumentParser.add_argument('--print-influx-debugging', action='store_true', dest='print_influx_debugging', help="Print output to aid in debugging of influx metrics reporting.")
argumentParser.add_argument('--no-print-influx-debugging', action='store_false', dest='print_influx_debugging', help="Don't print output to aid in debugging of influx metrics reporting.")
argumentParser.add_argument('--no-print-final-summary', action='store_false', dest='print_final_summary', help="Don't print a table summarizing the results after all tests are run")
# Assume 2.5 IPC on a 4 GHz CPU; this is obviously incorrect but it allows us to display simulated instruction counts using regular time units
CALLGRIND_INSN_PER_SEC = 2.5 * 4e9
def arrayRange(count):
result = []
for i in range(count):
result.append(i)
return result
def arrayRangeOffset(count, offset):
result = []
for i in range(count):
result.append(i + offset)
return result
def getCallgrindOutput(stdout, lines):
result = []
name = None
for l in lines:
if l.startswith("desc: Trigger: Client Request: "):
name = l[31:].strip()
elif l.startswith("summary: ") and name != None:
insn = int(l[9:])
# Note: we only run each bench once under callgrind so we only report a single time per run; callgrind instruction count variance is ~0.01% so it might as well be zero
result += "|><|" + name + "|><|" + str(insn / CALLGRIND_INSN_PER_SEC * 1000.0) + "||_||"
name = None
# If no results were found above, this may indicate the native executable running
# the benchmark doesn't have support for callgrind builtin. In that case just
# report the "totals" from the output file.
if len(result) == 0:
elements = stdout.decode('utf8').split("|><|")
if len(elements) >= 2:
name = elements[1]
for l in lines:
if l.startswith("totals: "):
insn = int(l[8:])
# Note: we only run each bench once under callgrind so we only report a single time per run; callgrind instruction count variance is ~0.01% so it might as well be zero
result += "|><|" + name + "|><|" + str(insn / CALLGRIND_INSN_PER_SEC * 1000.0) + "||_||"
return "".join(result)
def conditionallyShowCommand(cmd):
if arguments.show_commands:
print(f'{colored(Color.BLUE, "EXECUTING")}: {cmd}')
def checkValgrindExecutable():
"""Return true if valgrind can be successfully spawned"""
try:
subprocess.check_call("valgrind --version", shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
except:
print(f"{colored(Color.YELLOW, 'WARNING')}: Unable to spawn 'valgrind'. Please ensure valgrind is installed when using '--callgrind'.")
return False
return True
def getVmOutput(cmd):
if os.name == "nt":
try:
fullCmd = "start /realtime /affinity 1 /b /wait cmd /C \"" + cmd + "\""
conditionallyShowCommand(fullCmd)
return subprocess.check_output(fullCmd, shell=True, cwd=scriptdir).decode()
except KeyboardInterrupt:
exit(1)
except:
return ""
elif arguments.callgrind:
if not checkValgrindExecutable():
return ""
output_path = os.path.join(scriptdir, "callgrind.out")
try:
os.unlink(output_path) # Remove stale output
except:
pass
fullCmd = "valgrind --tool=callgrind --callgrind-out-file=callgrind.out --combine-dumps=yes --dump-line=no " + cmd
conditionallyShowCommand(fullCmd)
try:
output = subprocess.check_output(fullCmd, shell=True, stderr=subprocess.DEVNULL, cwd=scriptdir)
except subprocess.CalledProcessError as e:
print(f"{colored(Color.YELLOW, 'WARNING')}: Valgrind returned error code {e.returncode}")
output = e.output
with open(output_path, "r") as file:
lines = file.readlines()
os.unlink(output_path)
return getCallgrindOutput(output, lines)
else:
conditionallyShowCommand(cmd)
with subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, cwd=scriptdir) as p:
# Try to lock to a single processor
if sys.platform != "darwin":
os.sched_setaffinity(p.pid, { 0 })
# Try to set high priority (requires sudo)
try:
os.nice(-10)
except:
pass
return p.communicate()[0]
def getShortVmName(name):
# Hope that the path to executable doesn't contain spaces
argumentPos = name.find(" ")
if argumentPos != -1:
executableName = name[0:argumentPos]
arguments = name[argumentPos+1:]
pathPos = executableName.rfind("\\")
if pathPos == -1:
pathPos = executableName.rfind("/")
if pathPos != -1:
executableName = executableName[pathPos+1:]
return executableName + " " + arguments
pathPos = name.rfind("\\")
if pathPos == -1:
pathPos = name.rfind("/")
if pathPos != -1:
return name[pathPos+1:]
return name
class TestResult:
filename = ""
vm = ""
shortVm = ""
name = ""
values = []
count = 0
min = None
avg = 0
max = None
sampleStdDev = 0
unbiasedEst = 0
sampleConfidenceInterval = 0
def extractResult(filename, vm, output):
elements = output.split("|><|")
# Remove test output
elements.remove(elements[0])
result = TestResult()
result.filename = filename
result.vm = vm
result.shortVm = getShortVmName(vm)
result.name = elements[0]
elements.remove(elements[0])
timeTable = []
for el in elements:
timeTable.append(float(el))
result.values = timeTable
result.count = len(timeTable)
return result
def mergeResult(lhs, rhs):
for value in rhs.values:
lhs.values.append(value)
lhs.count = len(lhs.values)
def mergeResults(lhs, rhs):
for a, b in zip(lhs, rhs):
mergeResult(a, b)
def finalizeResult(result):
total = 0.0
# Compute basic parameters
for v in result.values:
if result.min == None or v < result.min:
result.min = v
if result.max == None or v > result.max:
result.max = v
total = total + v
if result.count > 0:
result.avg = total / result.count
else:
result.avg = 0
# Compute standard deviation
sumOfSquares = 0
for v in result.values:
sumOfSquares = sumOfSquares + (v - result.avg) ** 2
if result.count > 1:
result.sampleStdDev = math.sqrt(sumOfSquares / (result.count - 1))
result.unbiasedEst = result.sampleStdDev * result.sampleStdDev
if stats:
# Two-tailed distribution with 95% conf.
tValue = stats.t.ppf(1 - 0.05 / 2, result.count - 1)
# Compute confidence interval
result.sampleConfidenceInterval = tValue * result.sampleStdDev / math.sqrt(result.count)
else:
result.sampleConfidenceInterval = result.sampleStdDev
else:
result.sampleStdDev = 0
result.unbiasedEst = 0
result.sampleConfidenceInterval = 0
return result
# Full result set
allResults = []
# Data for the graph
plotLegend = []
plotLabels = []
plotValueLists = []
plotConfIntLists = []
# Totals
vmTotalMin = []
vmTotalAverage = []
vmTotalImprovement = []
vmTotalResults = []
# Data for Telegraf report
mainTotalMin = 0
mainTotalAverage = 0
mainTotalMax = 0
def getExtraArguments(filepath):
try:
with open(filepath) as f:
for i in f.readlines():
pos = i.find("--bench-args:")
if pos != -1:
return i[pos + 13:].strip()
except:
pass
return ""
def substituteArguments(cmd, extra):
if argumentSubstituionCallback != None:
cmd = argumentSubstituionCallback(cmd)
if cmd.find("@EXTRA") != -1:
cmd = cmd.replace("@EXTRA", extra)
else:
cmd = cmd + " " + extra
return cmd
def extractResults(filename, vm, output, allowFailure):
results = []
splitOutput = output.split("||_||")
if len(splitOutput) <= 1:
if allowFailure:
result = TestResult()
result.filename = filename
result.vm = vm
result.shortVm = getShortVmName(vm)
results.append(result)
return results
splitOutput.remove(splitOutput[len(splitOutput) - 1])
for el in splitOutput:
results.append(extractResult(filename, vm, el))
return results
def analyzeResult(subdir, main, comparisons):
# Aggregate statistics
global mainTotalMin, mainTotalAverage, mainTotalMax
mainTotalMin = mainTotalMin + main.min
mainTotalAverage = mainTotalAverage + main.avg
mainTotalMax = mainTotalMax + main.max
if arguments.vmNext != None:
resultPrinter.add_row({
'Test': main.name,
'Min': '{:8.3f}ms'.format(main.min),
'Average': '{:8.3f}ms'.format(main.avg),
'StdDev%': '{:8.3f}%'.format(main.sampleConfidenceInterval / main.avg * 100),
'Driver': main.shortVm,
'Speedup': "",
'Significance': "",
'P(T<=t)': ""
})
else:
resultPrinter.add_row({
'Test': main.name,
'Min': '{:8.3f}ms'.format(main.min),
'Average': '{:8.3f}ms'.format(main.avg),
'StdDev%': '{:8.3f}%'.format(main.sampleConfidenceInterval / main.avg * 100),
'Driver': main.shortVm
})
if influxReporter != None:
influxReporter.report_result(subdir, main.name, main.filename, "SUCCESS", main.min, main.avg, main.max, main.sampleConfidenceInterval, main.shortVm, main.vm)
print(colored(Color.GREEN, 'SUCCESS') + ': {:<40}'.format(main.name) + ": " + '{:8.3f}'.format(main.avg) + "ms +/- " +
'{:6.3f}'.format(main.sampleConfidenceInterval / main.avg * 100) + "% on " + main.shortVm)
plotLabels.append(main.name)
index = 0
if len(plotValueLists) < index + 1:
plotValueLists.append([])
plotConfIntLists.append([])
vmTotalMin.append(0.0)
vmTotalAverage.append(0.0)
vmTotalImprovement.append(0.0)
vmTotalResults.append(0)
if arguments.absolute or arguments.speedup:
scale = 1
else:
scale = 100 / main.avg
plotValueLists[index].append(main.avg * scale)
plotConfIntLists[index].append(main.sampleConfidenceInterval * scale)
vmTotalMin[index] += main.min
vmTotalAverage[index] += main.avg
for compare in comparisons:
index = index + 1
if len(plotValueLists) < index + 1 and not arguments.speedup:
plotValueLists.append([])
plotConfIntLists.append([])
vmTotalMin.append(0.0)
vmTotalAverage.append(0.0)
vmTotalImprovement.append(0.0)
vmTotalResults.append(0)
if compare.min == None:
print(colored(Color.RED, 'FAILED') + ": '" + main.name + "' on '" + compare.vm + "'")
resultPrinter.add_row({ 'Test': main.name, 'Min': "", 'Average': "FAILED", 'StdDev%': "", 'Driver': compare.shortVm, 'Speedup': "", 'Significance': "", 'P(T<=t)': "" })
if influxReporter != None:
influxReporter.report_result(subdir, main.filename, main.filename, "FAILED", 0.0, 0.0, 0.0, 0.0, compare.shortVm, compare.vm)
if arguments.speedup:
plotValueLists[0].pop()
plotValueLists[0].append(0)
plotConfIntLists[0].pop()
plotConfIntLists[0].append(0)
else:
plotValueLists[index].append(0)
plotConfIntLists[index].append(0)
continue
if main.count > 1 and stats:
pooledStdDev = math.sqrt((main.unbiasedEst + compare.unbiasedEst) / 2)
tStat = abs(main.avg - compare.avg) / (pooledStdDev * math.sqrt(2 / main.count))
degreesOfFreedom = 2 * main.count - 2
# Two-tailed distribution with 95% conf.
tCritical = stats.t.ppf(1 - 0.05 / 2, degreesOfFreedom)
noSignificantDifference = tStat < tCritical
pValue = 2 * (1 - stats.t.cdf(tStat, df = degreesOfFreedom))
else:
noSignificantDifference = None
pValue = -1
if noSignificantDifference is None:
verdict = ""
elif noSignificantDifference:
verdict = "likely same"
elif main.avg < compare.avg:
verdict = "likely worse"
else:
verdict = "likely better"
speedup = (plotValueLists[0][-1] / (compare.avg * scale) - 1)
speedupColor = Color.YELLOW if speedup < 0 and noSignificantDifference else Color.RED if speedup < 0 else Color.GREEN if speedup > 0 else Color.YELLOW
resultPrinter.add_row({
'Test': main.name,
'Min': '{:8.3f}ms'.format(compare.min),
'Average': '{:8.3f}ms'.format(compare.avg),
'StdDev%': '{:8.3f}%'.format(compare.sampleConfidenceInterval / compare.avg * 100),
'Driver': compare.shortVm,
'Speedup': colored(speedupColor, '{:8.3f}%'.format(speedup * 100)),
'Significance': verdict,
'P(T<=t)': '---' if pValue < 0 else '{:.0f}%'.format(pValue * 100)
})
print(colored(Color.GREEN, 'SUCCESS') + ': {:<40}'.format(main.name) + ": " + '{:8.3f}'.format(compare.avg) + "ms +/- " +
'{:6.3f}'.format(compare.sampleConfidenceInterval / compare.avg * 100) + "% on " + compare.shortVm +
' ({:+7.3f}%, '.format(speedup * 100) + verdict + ")")
if influxReporter != None:
influxReporter.report_result(subdir, main.name, main.filename, "SUCCESS", compare.min, compare.avg, compare.max, compare.sampleConfidenceInterval, compare.shortVm, compare.vm)
if arguments.speedup:
oldValue = plotValueLists[0].pop()
newValue = compare.avg
plotValueLists[0].append((oldValue / newValue - 1) * 100)
plotConfIntLists[0].pop()
plotConfIntLists[0].append(0)
else:
plotValueLists[index].append(compare.avg * scale)
plotConfIntLists[index].append(compare.sampleConfidenceInterval * scale)
vmTotalMin[index] += compare.min
vmTotalAverage[index] += compare.avg
vmTotalImprovement[index] += math.log(main.avg / compare.avg)
vmTotalResults[index] += 1
def runTest(subdir, filename, filepath):
filepath = os.path.abspath(filepath)
mainVm = os.path.abspath(arguments.vm)
# Process output will contain the test name and execution times
mainOutput = getVmOutput(substituteArguments(mainVm, getExtraArguments(filepath)) + " " + filepath)
mainResultSet = extractResults(filename, mainVm, mainOutput, False)
if len(mainResultSet) == 0:
print(colored(Color.RED, 'FAILED') + ": '" + filepath + "' on '" + mainVm + "'")
if arguments.vmNext != None:
resultPrinter.add_row({ 'Test': filepath, 'Min': "", 'Average': "FAILED", 'StdDev%': "", 'Driver': getShortVmName(mainVm), 'Speedup': "", 'Significance': "", 'P(T<=t)': "" })
else:
resultPrinter.add_row({ 'Test': filepath, 'Min': "", 'Average': "FAILED", 'StdDev%': "", 'Driver': getShortVmName(mainVm) })
if influxReporter != None:
influxReporter.report_result(subdir, filename, filename, "FAILED", 0.0, 0.0, 0.0, 0.0, getShortVmName(mainVm), mainVm)
return
compareResultSets = []
if arguments.vmNext != None:
for compareVm in arguments.vmNext:
compareVm = os.path.abspath(compareVm)
compareOutput = getVmOutput(substituteArguments(compareVm, getExtraArguments(filepath)) + " " + filepath)
compareResultSet = extractResults(filename, compareVm, compareOutput, True)
compareResultSets.append(compareResultSet)
if arguments.extra_loops > 0:
# get more results
for i in range(arguments.extra_loops):
extraMainOutput = getVmOutput(substituteArguments(mainVm, getExtraArguments(filepath)) + " " + filepath)
extraMainResultSet = extractResults(filename, mainVm, extraMainOutput, False)
mergeResults(mainResultSet, extraMainResultSet)
if arguments.vmNext != None:
i = 0
for compareVm in arguments.vmNext:
compareVm = os.path.abspath(compareVm)
extraCompareOutput = getVmOutput(substituteArguments(compareVm, getExtraArguments(filepath)) + " " + filepath)
extraCompareResultSet = extractResults(filename, compareVm, extraCompareOutput, True)
mergeResults(compareResultSets[i], extraCompareResultSet)
i += 1
# finalize results
for result in mainResultSet:
finalizeResult(result)
for compareResultSet in compareResultSets:
for result in compareResultSet:
finalizeResult(result)
# analyze results
for i in range(len(mainResultSet)):
mainResult = mainResultSet[i]
compareResults = []
for el in compareResultSets:
if i < len(el):
compareResults.append(el[i])
else:
noResult = TestResult()
noResult.filename = el[0].filename
noResult.vm = el[0].vm
noResult.shortVm = el[0].shortVm
compareResults.append(noResult)
analyzeResult(subdir, mainResult, compareResults)
mergedResults = []
mergedResults.append(mainResult)
for el in compareResults:
mergedResults.append(el)
allResults.append(mergedResults)
def rearrangeSortKeyForComparison(e):
if plotValueLists[1][e] == 0:
return 1
return plotValueLists[0][e] / plotValueLists[1][e]
def rearrangeSortKeyForSpeedup(e):
return plotValueLists[0][e]
def rearrangeSortKeyDescending(e):
return -plotValueLists[0][e]
# Re-arrange results from worst to best
def rearrange(key):
global plotLabels
index = arrayRange(len(plotLabels))
index = sorted(index, key=key)
# Recreate value lists in sorted order
plotLabelsPrev = plotLabels
plotLabels = []
for i in index:
plotLabels.append(plotLabelsPrev[i])
for group in range(len(plotValueLists)):
plotValueListPrev = plotValueLists[group]
plotValueLists[group] = []
plotConfIntListPrev = plotConfIntLists[group]
plotConfIntLists[group] = []
for i in index:
plotValueLists[group].append(plotValueListPrev[i])
plotConfIntLists[group].append(plotConfIntListPrev[i])
# Graph
def graph():
if len(plotValueLists) == 0:
print("No results")
return
ind = arrayRange(len(plotLabels))
width = 0.8 / len(plotValueLists)
if arguments.graph_vertical:
# Extend graph width when we have a lot of tests to draw
barcount = len(plotValueLists[0])
plt.figure(figsize=(max(8, barcount * 0.3), 8))
else:
# Extend graph height when we have a lot of tests to draw
barcount = len(plotValueLists[0])
plt.figure(figsize=(8, max(8, barcount * 0.3)))
plotBars = []
matplotlib.rc('xtick', labelsize=10)
matplotlib.rc('ytick', labelsize=10)
if arguments.graph_vertical:
# Draw Y grid behind the bars
plt.rc('axes', axisbelow=True)
plt.grid(True, 'major', 'y')
for i in range(len(plotValueLists)):
bar = plt.bar(arrayRangeOffset(len(plotLabels), i * width), plotValueLists[i], width, yerr=plotConfIntLists[i])
plotBars.append(bar[0])
if arguments.absolute:
plt.ylabel('Time (ms)')
elif arguments.speedup:
plt.ylabel('Speedup (%)')
else:
plt.ylabel('Relative time (%)')
plt.title('Benchmark')
plt.xticks(ind, plotLabels, rotation='vertical')
else:
# Draw X grid behind the bars
plt.rc('axes', axisbelow=True)
plt.grid(True, 'major', 'x')
for i in range(len(plotValueLists)):
bar = plt.barh(arrayRangeOffset(len(plotLabels), i * width), plotValueLists[i], width, xerr=plotConfIntLists[i])
plotBars.append(bar[0])
if arguments.absolute:
plt.xlabel('Time (ms)')
elif arguments.speedup:
plt.xlabel('Speedup (%)')
else:
plt.xlabel('Relative time (%)')
plt.title('Benchmark')
plt.yticks(ind, plotLabels)
plt.gca().invert_yaxis()
plt.legend(plotBars, plotLegend)
plt.tight_layout()
plt.savefig(arguments.filename + ".png", dpi=200)
if arguments.window:
plt.show()
def addTotalsToTable():
if len(vmTotalMin) == 0:
return
if arguments.vmNext != None:
index = 0
resultPrinter.add_row({
'Test': 'Total',
'Min': '{:8.3f}ms'.format(vmTotalMin[index]),
'Average': '{:8.3f}ms'.format(vmTotalAverage[index]),
'StdDev%': "---",
'Driver': getShortVmName(os.path.abspath(arguments.vm)),
'Speedup': "",
'Significance': "",
'P(T<=t)': ""
})
for compareVm in arguments.vmNext:
index = index + 1
speedup = vmTotalAverage[0] / vmTotalAverage[index] * 100 - 100
resultPrinter.add_row({
'Test': 'Total',
'Min': '{:8.3f}ms'.format(vmTotalMin[index]),
'Average': '{:8.3f}ms'.format(vmTotalAverage[index]),
'StdDev%': "---",
'Driver': getShortVmName(os.path.abspath(compareVm)),
'Speedup': colored(Color.RED if speedup < 0 else Color.GREEN if speedup > 0 else Color.YELLOW, '{:8.3f}%'.format(speedup)),
'Significance': "",
'P(T<=t)': ""
})
else:
resultPrinter.add_row({
'Test': 'Total',
'Min': '{:8.3f}ms'.format(vmTotalMin[0]),
'Average': '{:8.3f}ms'.format(vmTotalAverage[0]),
'StdDev%': "---",
'Driver': getShortVmName(os.path.abspath(arguments.vm))
})
def writeResultsToFile():
class TestResultEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, TestResult):
return [obj.filename, obj.vm, obj.shortVm, obj.name, obj.values, obj.count]
return json.JSONEncoder.default(self, obj)
try:
with open(arguments.filename + ".json", "w") as allResultsFile:
allResultsFile.write(json.dumps(allResults, cls=TestResultEncoder))
except:
print("Failed to write results to a file")
def run(args, argsubcb):
global arguments, resultPrinter, influxReporter, argumentSubstituionCallback, allResults
arguments = args
argumentSubstituionCallback = argsubcb
if os.name == "nt" and arguments.callgrind:
print(f"{colored(Color.RED, 'ERROR')}: --callgrind is not supported on Windows. Please consider using this option on another OS, or Linux using WSL.")
sys.exit(1)
if arguments.report_metrics or arguments.print_influx_debugging:
import influxbench
influxReporter = influxbench.InfluxReporter(arguments)
else:
influxReporter = None
if matplotlib == None:
arguments.absolute = 0
arguments.speedup = 0
arguments.sort = 0
arguments.window = 0
# Load results from files
if arguments.results != None:
vmList = []
for result in arguments.results:
with open(result) as resultsFile:
resultArray = json.load(resultsFile)
for test in resultArray:
for i in range(len(test)):
arr = test[i]
tr = TestResult()
tr.filename = arr[0]
tr.vm = arr[1]
tr.shortVm = arr[2]
tr.name = arr[3]
tr.values = arr[4]
tr.count = arr[5]
test[i] = tr
for test in resultArray[0]:
if vmList.count(test.vm) > 0:
pointPos = result.rfind(".")
if pointPos != -1:
vmList.append(test.vm + " [" + result[0:pointPos] + "]")
else:
vmList.append(test.vm + " [" + result + "]")
else:
vmList.append(test.vm)
if len(allResults) == 0:
allResults = resultArray
else:
for prevEl in allResults:
found = False
for nextEl in resultArray:
if nextEl[0].filename == prevEl[0].filename and nextEl[0].name == prevEl[0].name:
for run in nextEl:
prevEl.append(run)
found = True
if not found:
el = resultArray[0]
for run in el:
result = TestResult()
result.filename = run.filename
result.vm = run.vm
result.shortVm = run.shortVm
result.name = run.name
prevEl.append(result)
arguments.vmNext = []
for i in range(len(vmList)):
if i == 0:
arguments.vm = vmList[i]
else:
arguments.vmNext.append(vmList[i])
plotLegend.append(getShortVmName(arguments.vm))
if arguments.vmNext != None:
for compareVm in arguments.vmNext:
plotLegend.append(getShortVmName(compareVm))
else:
arguments.absolute = 1 # When looking at one VM, I feel that relative graph doesn't make a lot of sense
# Results table formatting
if arguments.vmNext != None:
resultPrinter = TablePrinter([
{'label': 'Test', 'align': Alignment.LEFT},
{'label': 'Min', 'align': Alignment.RIGHT},
{'label': 'Average', 'align': Alignment.RIGHT},
{'label': 'StdDev%', 'align': Alignment.RIGHT},
{'label': 'Driver', 'align': Alignment.LEFT},
{'label': 'Speedup', 'align': Alignment.RIGHT},
{'label': 'Significance', 'align': Alignment.LEFT},
{'label': 'P(T<=t)', 'align': Alignment.RIGHT}
])
else:
resultPrinter = TablePrinter([
{'label': 'Test', 'align': Alignment.LEFT},
{'label': 'Min', 'align': Alignment.RIGHT},
{'label': 'Average', 'align': Alignment.RIGHT},
{'label': 'StdDev%', 'align': Alignment.RIGHT},
{'label': 'Driver', 'align': Alignment.LEFT}
])
if arguments.results != None:
for resultSet in allResults:
# finalize results
for result in resultSet:
finalizeResult(result)
# analyze results
mainResult = resultSet[0]
compareResults = []
for i in range(len(resultSet)):
if i != 0:
compareResults.append(resultSet[i])
analyzeResult('', mainResult, compareResults)
else:
all_files = [subdir + os.sep + filename for subdir, dirs, files in os.walk(arguments.folder) for filename in files]
for filepath in sorted(all_files):
subdir, filename = os.path.split(filepath)
if filename.endswith(".lua"):
if arguments.run_test == None or re.match(arguments.run_test, filename[:-4]):
runTest(subdir, filename, filepath)
if arguments.sort and len(plotValueLists) > 1:
rearrange(rearrangeSortKeyForComparison)
elif arguments.sort and len(plotValueLists) == 1:
rearrange(rearrangeSortKeyDescending)
elif arguments.speedup:
rearrange(rearrangeSortKeyForSpeedup)
plotLegend[0] = arguments.vm + " vs " + arguments.vmNext[0]
if arguments.print_final_summary:
addTotalsToTable()
print()
print(colored(Color.YELLOW, '==================================================RESULTS=================================================='))
resultPrinter.print(summary=False)
print(colored(Color.YELLOW, '---'))
if len(vmTotalMin) != 0 and arguments.vmNext != None:
index = 0
for compareVm in arguments.vmNext:
index = index + 1
name = getShortVmName(os.path.abspath(compareVm))
deltaGeoMean = math.exp(vmTotalImprovement[index] / vmTotalResults[index]) * 100 - 100
if deltaGeoMean > 0:
print("'{}' change is {:.3f}% positive on average".format(name, deltaGeoMean))
else:
print("'{}' change is {:.3f}% negative on average".format(name, deltaGeoMean))
if matplotlib != None:
graph()
writeResultsToFile()
if influxReporter != None:
influxReporter.report_result(arguments.folder, "Total", "all", "SUCCESS", mainTotalMin, mainTotalAverage, mainTotalMax, 0.0, getShortVmName(arguments.vm), os.path.abspath(arguments.vm))
influxReporter.flush(0)
if __name__ == "__main__":
arguments = argumentParser.parse_args()
run(arguments, None)