1
0
Fork 0
mirror of https://github.com/luau-lang/luau.git synced 2025-04-13 07:10:54 +01:00
luau/tests/TypeInfer.operators.test.cpp
vegorov-rbx f5dabc2998
Sync to upstream/release/644 ()
In this update we improve overall stability of the new type solver and
address some type inference issues with it.

If you use the new solver and want to use all new fixes included in this
release, you have to reference an additional Luau flag:
```c++
LUAU_DYNAMIC_FASTINT(LuauTypeSolverRelease)
```
And set its value to `644`:
```c++
DFInt::LuauTypeSolverRelease.value = 644; // Or a higher value for future updates
```

## New Solver
* Fixed a debug assertion failure in autocomplete (Fixes )
* Fixed type function distribution issue which transformed `len<>` and
`unm<>` into `not<>` (Fixes )
* Placed a limit on the possible normalized table intersection size as a
temporary measure to avoid hangs and out-of-memory issues for complex
type refinements
* Internal recursion limits are now respected in the subtyping
operations and in autocomplete, to avoid stack overflow crashes
* Fixed false positive errors on assignments to tables whose indexers
are unions of strings
* Fixed memory corruption crashes in subtyping of generic types
containing other generic types in their bounds

---

Internal Contributors:

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-09-20 09:53:26 -07:00

1618 lines
42 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/AstQuery.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Scope.h"
#include "Luau/TypeInfer.h"
#include "Luau/Type.h"
#include "Luau/VisitType.h"
#include "Fixture.h"
#include "ClassFixture.h"
#include "doctest.h"
#include "ScopedFlags.h"
using namespace Luau;
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAG(LuauRemoveBadRelationalOperatorWarning)
TEST_SUITE_BEGIN("TypeInferOperators");
TEST_CASE_FIXTURE(Fixture, "or_joins_types")
{
CheckResult result = check(R"(
local s = "a" or 10
local x:string|number = s
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(toString(*requireType("s")), "number | string");
CHECK_EQ(toString(*requireType("x")), "number | string");
}
TEST_CASE_FIXTURE(Fixture, "or_joins_types_with_no_extras")
{
CheckResult result = check(R"(
local s = "a" or 10
local x:number|string = s
local y = x or "s"
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(toString(*requireType("s")), "number | string");
CHECK_EQ(toString(*requireType("y")), "number | string");
}
TEST_CASE_FIXTURE(Fixture, "or_joins_types_with_no_superfluous_union")
{
CheckResult result = check(R"(
local s = "a" or "b"
local x:string = s
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*requireType("s"), *builtinTypes->stringType);
}
TEST_CASE_FIXTURE(Fixture, "and_does_not_always_add_boolean")
{
CheckResult result = check(R"(
local s = "a" and 10
local x:boolean|number = s
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(toString(*requireType("s")), "number");
}
TEST_CASE_FIXTURE(Fixture, "and_adds_boolean_no_superfluous_union")
{
CheckResult result = check(R"(
local s = "a" and true
local x:boolean = s
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(*requireType("x"), *builtinTypes->booleanType);
}
TEST_CASE_FIXTURE(Fixture, "and_or_ternary")
{
CheckResult result = check(R"(
local s = (1/2) > 0.5 and "a" or 10
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(toString(*requireType("s")), "number | string");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "primitive_arith_no_metatable")
{
CheckResult result = check(R"(
function add(a: number, b: string)
return a + (tonumber(b) :: number), tostring(a) .. b
end
local n, s = add(2,"3")
)");
LUAU_REQUIRE_NO_ERRORS(result);
const FunctionType* functionType = get<FunctionType>(requireType("add"));
std::optional<TypeId> retType = first(functionType->retTypes);
REQUIRE(retType.has_value());
CHECK_EQ(builtinTypes->numberType, follow(*retType));
CHECK_EQ(requireType("n"), builtinTypes->numberType);
CHECK_EQ(requireType("s"), builtinTypes->stringType);
}
TEST_CASE_FIXTURE(Fixture, "primitive_arith_no_metatable_with_follows")
{
CheckResult result = check(R"(
local PI=3.1415926535897931
local SOLAR_MASS=4*PI * PI
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(requireType("SOLAR_MASS"), builtinTypes->numberType);
}
TEST_CASE_FIXTURE(Fixture, "primitive_arith_possible_metatable")
{
CheckResult result = check(R"(
function add(a: number, b: any)
return a + b
end
local t = add(1,2)
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("any", toString(requireType("t")));
}
TEST_CASE_FIXTURE(Fixture, "some_primitive_binary_ops")
{
CheckResult result = check(R"(
local a = 4 + 8
local b = a + 9
local s = 'hotdogs'
local t = s .. s
local c = b - a
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number", toString(requireType("a")));
CHECK_EQ("number", toString(requireType("b")));
CHECK_EQ("string", toString(requireType("s")));
CHECK_EQ("string", toString(requireType("t")));
CHECK_EQ("number", toString(requireType("c")));
}
TEST_CASE_FIXTURE(Fixture, "floor_division_binary_op")
{
CheckResult result = check(R"(
local a = 4 // 8
local b = -4 // 9
local c = 9
c //= -6.5
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number", toString(requireType("a")));
CHECK_EQ("number", toString(requireType("b")));
CHECK_EQ("number", toString(requireType("c")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "typecheck_overloaded_multiply_that_is_an_intersection")
{
CheckResult result = check(R"(
--!strict
local Vec3 = {}
Vec3.__index = Vec3
function Vec3.new()
return setmetatable({x=0, y=0, z=0}, Vec3)
end
export type Vec3 = typeof(Vec3.new())
local thefun: any = function(self, o) return self end
local multiply: ((Vec3, Vec3) -> Vec3) & ((Vec3, number) -> Vec3) = thefun
Vec3.__mul = multiply
local a = Vec3.new()
local b = Vec3.new()
local c = a * b
local d = a * 2
local e = a * 'cabbage'
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("Vec3" == toString(requireType("a")));
CHECK("Vec3" == toString(requireType("b")));
CHECK("Vec3" == toString(requireType("c")));
CHECK("Vec3" == toString(requireType("d")));
if (FFlag::LuauSolverV2)
CHECK("mul<Vec3, string>" == toString(requireType("e")));
else
CHECK_EQ("Vec3", toString(requireType("e")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "typecheck_overloaded_multiply_that_is_an_intersection_on_rhs")
{
CheckResult result = check(R"(
--!strict
local Vec3 = {}
Vec3.__index = Vec3
function Vec3.new()
return setmetatable({x=0, y=0, z=0}, Vec3)
end
export type Vec3 = typeof(Vec3.new())
local thefun: any = function(self, o) return self end
local multiply: ((Vec3, Vec3) -> Vec3) & ((Vec3, number) -> Vec3) = thefun
Vec3.__mul = multiply
local a = Vec3.new()
local b = Vec3.new()
local c = b * a
local d = 2 * a
local e = 'cabbage' * a
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("Vec3" == toString(requireType("a")));
CHECK("Vec3" == toString(requireType("b")));
CHECK("Vec3" == toString(requireType("c")));
CHECK("Vec3" == toString(requireType("d")));
if (FFlag::LuauSolverV2)
CHECK("mul<string, Vec3>" == toString(requireType("e")));
else
CHECK_EQ("Vec3", toString(requireType("e")));
}
TEST_CASE_FIXTURE(Fixture, "compare_numbers")
{
CheckResult result = check(R"(
local a = 441
local b = 0
local c = a < b
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "compare_strings")
{
CheckResult result = check(R"(
local a = '441'
local b = '0'
local c = a < b
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "cannot_indirectly_compare_types_that_do_not_have_a_metatable")
{
CheckResult result = check(R"(
local a = {}
local b = {}
local c = a < b
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
UninhabitedTypeFunction* utf = get<UninhabitedTypeFunction>(result.errors[0]);
REQUIRE(utf);
REQUIRE_EQ(toString(utf->ty), "lt<a, b>");
}
else
{
GenericError* gen = get<GenericError>(result.errors[0]);
REQUIRE(gen != nullptr);
REQUIRE_EQ(gen->message, "Type a cannot be compared with < because it has no metatable");
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "cannot_indirectly_compare_types_that_do_not_offer_overloaded_ordering_operators")
{
CheckResult result = check(R"(
local M = {}
function M.new()
return setmetatable({}, M)
end
type M = typeof(M.new())
local a = M.new()
local b = M.new()
local c = a < b
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
UninhabitedTypeFunction* utf = get<UninhabitedTypeFunction>(result.errors[0]);
REQUIRE(utf);
REQUIRE_EQ(toString(utf->ty), "lt<M, M>");
}
else
{
GenericError* gen = get<GenericError>(result.errors[0]);
REQUIRE(gen != nullptr);
REQUIRE_EQ(gen->message, "Table M does not offer metamethod __lt");
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "cannot_compare_tables_that_do_not_have_the_same_metatable")
{
CheckResult result = check(R"(
--!strict
local M = {}
function M.new()
return setmetatable({}, M)
end
function M.__lt(left, right) return true end
local a = M.new()
local b = {}
local c = a < b -- line 10
local d = b < a -- line 11
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
REQUIRE_EQ((Location{{10, 18}, {10, 23}}), result.errors[0].location);
REQUIRE_EQ((Location{{11, 18}, {11, 23}}), result.errors[1].location);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "produce_the_correct_error_message_when_comparing_a_table_with_a_metatable_with_one_that_does_not")
{
CheckResult result = check(R"(
--!strict
local M = {}
function M.new()
return setmetatable({}, M)
end
function M.__lt(left, right) return true end
type M = typeof(M.new())
local a = M.new()
local b = {}
local c = a < b -- line 10
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto err = get<GenericError>(result.errors[0]);
REQUIRE(err != nullptr);
// Frail. :|
REQUIRE_EQ("Types M and b cannot be compared with < because they do not have the same metatable", err->message);
}
TEST_CASE_FIXTURE(Fixture, "in_nonstrict_mode_strip_nil_from_intersections_when_considering_relational_operators")
{
CheckResult result = check(R"(
--!nonstrict
function maybe_a_number(): number?
return 50
end
local a = maybe_a_number() < maybe_a_number()
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "compound_assign_basic")
{
CheckResult result = check(R"(
local s = 10
s += 20
)");
CHECK_EQ(0, result.errors.size());
CHECK_EQ(toString(*requireType("s")), "number");
}
TEST_CASE_FIXTURE(Fixture, "compound_assign_mismatch_op")
{
CheckResult result = check(R"(
local s = 10
s += true
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(result.errors[0], (TypeError{Location{{2, 13}, {2, 17}}, TypeMismatch{builtinTypes->numberType, builtinTypes->booleanType}}));
}
TEST_CASE_FIXTURE(Fixture, "compound_assign_mismatch_result")
{
CheckResult result = check(R"(
local s = 'hello'
s += 10
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(result.errors[0], (TypeError{Location{{2, 8}, {2, 9}}, TypeMismatch{builtinTypes->numberType, builtinTypes->stringType}}));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ(result.errors[0], (TypeError{Location{{2, 8}, {2, 9}}, TypeMismatch{builtinTypes->numberType, builtinTypes->stringType}}));
CHECK_EQ(result.errors[1], (TypeError{Location{{2, 8}, {2, 15}}, TypeMismatch{builtinTypes->stringType, builtinTypes->numberType}}));
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "compound_assign_metatable")
{
CheckResult result = check(R"(
--!strict
type V2B = { x: number, y: number }
local v2b: V2B = { x = 0, y = 0 }
local VMT = {}
VMT.__add = function(a: V2, b: V2): V2
return setmetatable({ x = a.x + b.x, y = a.y + b.y }, VMT)
end
type V2 = typeof(setmetatable(v2b, VMT))
local v1: V2 = setmetatable({ x = 1, y = 2 }, VMT)
local v2: V2 = setmetatable({ x = 3, y = 4 }, VMT)
v1 += v2
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "compound_assign_metatable_with_changing_return_type")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
CheckResult result = check(R"(
--!strict
type T = { x: number }
local MT = {}
function MT:__add(other): number
return 112
end
local t = setmetatable({x = 2}, MT)
local u = t + 3
t += 3
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK("t" == toString(tm->wantedType));
CHECK("number" == toString(tm->givenType));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "compound_assign_result_must_be_compatible_with_var")
{
CheckResult result = check(R"(
function __add(left, right)
return 123
end
local mt = {
__add = __add,
}
local x = setmetatable({}, mt)
local v: number
v += x -- okay: number + x -> number
x += v -- not okay: x </: number
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(Location{{13, 8}, {13, 14}} == result.errors[0].location);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK("x" == toString(tm->wantedType));
CHECK("number" == toString(tm->givenType));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "compound_assign_mismatch_metatable")
{
CheckResult result = check(R"(
--!strict
type V2B = { x: number, y: number }
local v2b: V2B = { x = 0, y = 0 }
local VMT = {}
type V2 = typeof(setmetatable(v2b, VMT))
function VMT.__mod(a: V2, b: V2): number
return a.x * b.x + a.y * b.y
end
local v1: V2 = setmetatable({ x = 1, y = 2 }, VMT)
local v2: V2 = setmetatable({ x = 3, y = 4 }, VMT)
v1 %= v2
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("Type 'number' could not be converted into 'V2'" == toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "CallOrOfFunctions")
{
CheckResult result = check(R"(
function f() return 1; end
function g() return 2; end
(f or g)()
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "CallAndOrOfFunctions")
{
CheckResult result = check(R"(
function f() return 1; end
function g() return 2; end
local x = false
(x and f or g)()
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "typecheck_unary_minus")
{
CheckResult result = check(R"(
--!strict
local foo
local mt = {}
mt.__unm = function(val): string
return tostring(val.value) .. "test"
end
foo = setmetatable({
value = 10
}, mt)
local a = -foo
local b = 1+-1
local bar = {
value = 10
}
local c = -bar -- disallowed
)");
CHECK_EQ("string", toString(requireType("a")));
CHECK_EQ("number", toString(requireType("b")));
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(2, result);
UninhabitedTypeFunction* utf = get<UninhabitedTypeFunction>(result.errors[0]);
REQUIRE(utf);
CHECK_EQ(toString(utf->ty), "unm<bar>");
TypeMismatch* tm = get<TypeMismatch>(result.errors[1]);
REQUIRE(tm);
CHECK_EQ(toString(tm->givenType), "bar");
CHECK_EQ(*tm->wantedType, *builtinTypes->numberType);
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
GenericError* gen = get<GenericError>(result.errors[0]);
REQUIRE(gen);
REQUIRE_EQ(gen->message, "Unary operator '-' not supported by type 'bar'");
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "typecheck_unary_minus_error")
{
CheckResult result = check(R"(
--!strict
local mt = {}
mt.__unm = function(val: boolean): string
return "test"
end
local foo = setmetatable({
value = 10
}, mt)
local a = -foo
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(get<UninhabitedTypeFunction>(result.errors[0]));
// This second error is spurious. We should not be reporting it.
CHECK(get<TypeMismatch>(result.errors[1]));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("string", toString(requireType("a")));
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE_EQ(*tm->wantedType, *builtinTypes->booleanType);
// given type is the typeof(foo) which is complex to compare against
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "typecheck_unary_len_error")
{
// CLI-116463
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!strict
local mt = {}
mt.__len = function(val): string
return "test"
end
local foo = setmetatable({
value = 10,
}, mt)
local a = #foo
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("number", toString(requireType("a")));
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE_MESSAGE(tm, "Expected a TypeMismatch but got " << result.errors[0]);
REQUIRE_EQ(*tm->wantedType, *builtinTypes->numberType);
REQUIRE_EQ(*tm->givenType, *builtinTypes->stringType);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "unary_not_is_boolean")
{
CheckResult result = check(R"(
local b = not "string"
local c = not (math.random() > 0.5 and "string" or 7)
)");
LUAU_REQUIRE_NO_ERRORS(result);
REQUIRE_EQ("boolean", toString(requireType("b")));
REQUIRE_EQ("boolean", toString(requireType("c")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "disallow_string_and_types_without_metatables_from_arithmetic_binary_ops")
{
CheckResult result = check(R"(
--!strict
local a = "1.24" + 123 -- not allowed
local foo = {
value = 10
}
local b = foo + 1 -- not allowed
local bar = {
value = 1
}
local mt = {}
setmetatable(bar, mt)
mt.__add = function(a: typeof(bar), b: number): number
return a.value + b
end
local c = bar + 1 -- allowed
local d = bar + foo -- not allowed
)");
LUAU_REQUIRE_ERROR_COUNT(3, result);
if (FFlag::LuauSolverV2)
{
CHECK(get<UninhabitedTypeFunction>(result.errors[0]));
CHECK(Location{{2, 18}, {2, 30}} == result.errors[0].location);
CHECK(get<UninhabitedTypeFunction>(result.errors[1]));
CHECK(Location{{8, 18}, {8, 25}} == result.errors[1].location);
CHECK(get<UninhabitedTypeFunction>(result.errors[2]));
CHECK(Location{{24, 18}, {24, 27}} == result.errors[2].location);
}
else
{
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE_MESSAGE(tm, "Expected a TypeMismatch but got " << result.errors[0]);
CHECK_EQ(*tm->wantedType, *builtinTypes->numberType);
CHECK_EQ(*tm->givenType, *builtinTypes->stringType);
GenericError* gen1 = get<GenericError>(result.errors[1]);
REQUIRE(gen1);
if (FFlag::LuauSolverV2)
CHECK_EQ(gen1->message, "Operator + is not applicable for '{ value: number }' and 'number' because neither type has a metatable");
else
CHECK_EQ(gen1->message, "Binary operator '+' not supported by types 'foo' and 'number'");
TypeMismatch* tm2 = get<TypeMismatch>(result.errors[2]);
REQUIRE(tm2);
CHECK_EQ(*tm2->wantedType, *builtinTypes->numberType);
CHECK_EQ(*tm2->givenType, *requireType("foo"));
}
}
// CLI-29033
TEST_CASE_FIXTURE(Fixture, "unknown_type_in_comparison")
{
CheckResult result = check(R"(
function merge(lower, greater)
if lower.y == greater.y then
end
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "concat_op_on_free_lhs_and_string_rhs")
{
CheckResult result = check(R"(
local function f(x)
return x .. "y"
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("<a>(a) -> concat<a, string>" == toString(requireType("f")));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
REQUIRE(get<CannotInferBinaryOperation>(result.errors[0]));
}
}
TEST_CASE_FIXTURE(Fixture, "concat_op_on_string_lhs_and_free_rhs")
{
CheckResult result = check(R"(
local function f(x)
return "foo" .. x
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::LuauSolverV2)
CHECK("<a>(a) -> concat<string, a>" == toString(requireType("f")));
else
CHECK_EQ("(string) -> string", toString(requireType("f")));
}
TEST_CASE_FIXTURE(Fixture, "strict_binary_op_where_lhs_unknown")
{
std::vector<std::string> ops = {"+", "-", "*", "/", "%", "^", ".."};
std::string src = "function foo(a, b)\n";
for (const auto& op : ops)
src += "local _ = a " + op + " b\n";
src += "end";
CheckResult result = check(src);
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_ERROR_COUNT(ops.size(), result);
CHECK_EQ(
"Operator '+' could not be applied to operands of types unknown and unknown; there is no corresponding overload for __add",
toString(result.errors[0])
);
CHECK_EQ("Operator '-' could not be applied to operands of types unknown and unknown; there is no corresponding overload for __sub", toString(result.errors[1]));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(ops.size(), result);
CHECK_EQ("Unknown type used in + operation; consider adding a type annotation to 'a'", toString(result.errors[0]));
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "and_binexps_dont_unify")
{
CheckResult result = check(R"(
--!strict
local t = {}
while true and t[1] do
print(t[1].test)
end
)");
// This infers a type for `t` of `{unknown}`, and so it makes sense that `t[1].test` would error.
if (FFlag::LuauSolverV2)
LUAU_REQUIRE_ERROR_COUNT(1, result);
else
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "error_on_invalid_operand_types_to_relational_operators")
{
CheckResult result = check(R"(
local a: boolean = true
local b: boolean = false
local foo = a < b
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
UninhabitedTypeFunction* utf = get<UninhabitedTypeFunction>(result.errors[0]);
REQUIRE(utf);
REQUIRE_EQ(toString(utf->ty), "lt<boolean, boolean>");
}
else
{
GenericError* ge = get<GenericError>(result.errors[0]);
REQUIRE(ge);
CHECK_EQ("Type 'boolean' cannot be compared with relational operator <", ge->message);
}
}
TEST_CASE_FIXTURE(Fixture, "error_on_invalid_operand_types_to_relational_operators2")
{
CheckResult result = check(R"(
local a: number | string = ""
local b: number | string = 1
local foo = a < b
)");
// If DCR is off and the flag to remove this check in the old solver is on, the expected behavior is no errors.
if (!FFlag::LuauSolverV2 && FFlag::LuauRemoveBadRelationalOperatorWarning)
{
LUAU_REQUIRE_NO_ERRORS(result);
return;
}
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
UninhabitedTypeFunction* utf = get<UninhabitedTypeFunction>(result.errors[0]);
REQUIRE(utf);
REQUIRE_EQ(toString(utf->ty), "lt<number | string, number | string>");
}
else
{
GenericError* ge = get<GenericError>(result.errors[0]);
REQUIRE(ge);
CHECK_EQ("Type 'number | string' cannot be compared with relational operator <", ge->message);
}
}
TEST_CASE_FIXTURE(Fixture, "cli_38355_recursive_union")
{
// There's an extra spurious warning here when the new solver is enabled.
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!strict
local _
_ += _ and _ or _ and _ or _ and _
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("Unknown type used in + operation; consider adding a type annotation to '_'", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "UnknownGlobalCompoundAssign")
{
// In non-strict mode, global definition is still allowed
{
if (!FFlag::LuauSolverV2)
{
CheckResult result = check(R"(
--!nonstrict
a = a + 1
print(a)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown global 'a'");
}
}
// In strict mode we no longer generate two errors from lhs
{
CheckResult result = check(R"(
--!strict
a += 1
print(a)
)");
LUAU_REQUIRE_ERRORS(result);
CHECK_EQ(toString(result.errors[0]), "Unknown global 'a'");
}
// In non-strict mode, compound assignment is not a definition, it's a modification
{
if (!FFlag::LuauSolverV2)
{
CheckResult result = check(R"(
--!nonstrict
a += 1
print(a)
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK_EQ(toString(result.errors[0]), "Unknown global 'a'");
}
}
}
TEST_CASE_FIXTURE(Fixture, "strip_nil_from_lhs_or_operator")
{
CheckResult result = check(R"(
--!strict
local a: number? = nil
local b: number = a or 1
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "strip_nil_from_lhs_or_operator2")
{
CheckResult result = check(R"(
--!nonstrict
local a: number? = nil
local b: number = a or 1
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "dont_strip_nil_from_rhs_or_operator")
{
CheckResult result = check(R"(
--!strict
local a: number? = nil
local b: number = 1 or a
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK_EQ(builtinTypes->numberType, tm->wantedType);
CHECK_EQ("number?", toString(tm->givenType));
}
TEST_CASE_FIXTURE(Fixture, "operator_eq_verifies_types_do_intersect")
{
CheckResult result = check(R"(
type Array<T> = { [number]: T }
type Fiber = { id: number }
type null = {}
local fiberStack: Array<Fiber | null> = {}
local index = 0
local function f(fiber: Fiber)
local a = fiber ~= fiberStack[index]
local b = fiberStack[index] ~= fiber
end
return f
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "operator_eq_operands_are_not_subtypes_of_each_other_but_has_overlap")
{
CheckResult result = check(R"(
local function f(a: string | number, b: boolean | number)
return a == b
end
)");
// This doesn't produce any errors but for the wrong reasons.
// This unit test serves as a reminder to not try and unify the operands on `==`/`~=`.
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "operator_eq_completely_incompatible")
{
CheckResult result = check(R"(
local a: string | number = "hi"
local b: {x: string}? = {x = "bye"}
local r1 = a == b
local r2 = b == a
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
}
TEST_CASE_FIXTURE(Fixture, "refine_and_or")
{
CheckResult result = check(R"(
local t: {x: number?}? = {x = nil}
local u = t and t.x or 5
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number", toString(requireType("u")));
}
TEST_CASE_FIXTURE(Fixture, "infer_any_in_all_modes_when_lhs_is_unknown")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x + y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> add<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in + operation; consider adding a type annotation to 'x'");
}
result = check(Mode::Nonstrict, R"(
local function f(x, y)
return x + y
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
// When type inference is unified, we could add an assertion that
// the strict and nonstrict types are equivalent. This isn't actually
// the case right now, though.
}
TEST_CASE_FIXTURE(Fixture, "infer_type_for_generic_subtraction")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x - y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> sub<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in - operation; consider adding a type annotation to 'x'");
}
}
TEST_CASE_FIXTURE(Fixture, "infer_type_for_generic_multiplication")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x * y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> mul<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in * operation; consider adding a type annotation to 'x'");
}
}
TEST_CASE_FIXTURE(Fixture, "infer_type_for_generic_division")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x / y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> div<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in / operation; consider adding a type annotation to 'x'");
}
}
TEST_CASE_FIXTURE(Fixture, "infer_type_for_generic_floor_division")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x // y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> idiv<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in // operation; consider adding a type annotation to 'x'");
}
}
TEST_CASE_FIXTURE(Fixture, "infer_type_for_generic_exponentiation")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x ^ y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> pow<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in ^ operation; consider adding a type annotation to 'x'");
}
}
TEST_CASE_FIXTURE(Fixture, "infer_type_for_generic_modulo")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x % y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> mod<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in % operation; consider adding a type annotation to 'x'");
}
}
TEST_CASE_FIXTURE(Fixture, "infer_type_for_generic_concat")
{
CheckResult result = check(Mode::Strict, R"(
local function f(x, y)
return x .. y
end
)");
if (FFlag::LuauSolverV2)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("f")) == "<a, b>(a, b) -> concat<a, b>");
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(toString(result.errors[0]), "Unknown type used in .. operation; consider adding a type annotation to 'x'");
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "equality_operations_succeed_if_any_union_branch_succeeds")
{
CheckResult result = check(R"(
local mm = {}
type Foo = typeof(setmetatable({}, mm))
local x: Foo
local y: Foo?
local v1 = x == y
local v2 = y == x
local v3 = x ~= y
local v4 = y ~= x
)");
LUAU_REQUIRE_NO_ERRORS(result);
CheckResult result2 = check(R"(
local mm1 = {
x = "foo",
}
local mm2 = {
y = "bar",
}
type Foo = typeof(setmetatable({}, mm1))
type Bar = typeof(setmetatable({}, mm2))
local x1: Foo
local x2: Foo?
local y1: Bar
local y2: Bar?
local v1 = x1 == y1
local v2 = x2 == y2
)");
LUAU_REQUIRE_ERROR_COUNT(1, result2);
CHECK(toString(result2.errors[0]) == "Types Foo and Bar cannot be compared with == because they do not have the same metatable");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "expected_types_through_binary_and")
{
CheckResult result = check(R"(
local x: "a" | "b" | boolean = math.random() > 0.5 and "a"
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "expected_types_through_binary_or")
{
CheckResult result = check(R"(
local x: "a" | "b" | boolean = math.random() > 0.5 or "b"
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(ClassFixture, "unrelated_classes_cannot_be_compared")
{
CheckResult result = check(R"(
local a = BaseClass.New()
local b = UnrelatedClass.New()
local c = a == b
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "unrelated_primitives_cannot_be_compared")
{
CheckResult result = check(R"(
local c = 5 == true
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "mm_comparisons_must_return_a_boolean")
{
// CLI-115687
if (1 || !FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local mm1 = {
__lt = function(self, other)
return 123
end,
}
local mm2 = {
__lt = function(self, other)
return
end,
}
local o1 = setmetatable({}, mm1)
local v1 = o1 < o1
local o2 = setmetatable({}, mm2)
local v2 = o2 < o2
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
CHECK(requireType("v1") == builtinTypes->booleanType);
CHECK(requireType("v2") == builtinTypes->booleanType);
CHECK(toString(result.errors[1]) == "Metamethod '__lt' must return a boolean");
CHECK(toString(result.errors[3]) == "Metamethod '__lt' must return a boolean");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "reworked_and")
{
CheckResult result = check(R"(
local a: number? = 5
local b: boolean = (a or 1) > 10
local c -- free
local x = a and 1
local y = 'a' and 1
local z = b and 1
local w = c and 1
)");
CHECK("number?" == toString(requireType("x")));
CHECK("number" == toString(requireType("y")));
if (FFlag::LuauSolverV2)
CHECK("false | number" == toString(requireType("z")));
else
CHECK("boolean | number" == toString(requireType("z"))); // 'false' widened to boolean
if (FFlag::LuauSolverV2)
CHECK("number?" == toString(requireType("w")));
else
CHECK("(boolean | number)?" == toString(requireType("w")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "reworked_or")
{
CheckResult result = check(R"(
local a: number | false = 5
local b: number? = 6
local c: boolean = true
local d: true = true
local e: false = false
local f: nil = false
local a1 = a or 'a'
local b1 = b or 4
local c1 = c or 'c'
local d1 = d or 'd'
local e1 = e or 'e'
local f1 = f or 'f'
)");
CHECK("number | string" == toString(requireType("a1")));
CHECK("number" == toString(requireType("b1")));
if (FFlag::LuauSolverV2)
{
CHECK("string | true" == toString(requireType("c1")));
CHECK("string | true" == toString(requireType("d1")));
}
else
{
CHECK("boolean | string" == toString(requireType("c1"))); // 'true' widened to boolean
CHECK("boolean | string" == toString(requireType("d1"))); // 'true' widened to boolean
}
CHECK("string" == toString(requireType("e1")));
CHECK("string" == toString(requireType("f1")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "reducing_and")
{
CheckResult result = check(R"(
type Foo = { name: string?, flag: boolean? }
local arr: {Foo} = {}
local function foo(arg: {name: string}?)
local name = if arg and arg.name then arg.name else nil
table.insert(arr, {
name = name or "",
flag = name ~= nil and name ~= "",
})
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "luau_polyfill_is_array_simplified")
{
CheckResult result = check(R"(
--!strict
return function(value: any) : boolean
if typeof(value) ~= "number" then
return false
end
if value % 1 ~= 0 or value < 1 then
return false
end
return true
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "luau_polyfill_is_array")
{
// CLI-116480 Subtyping bug: table should probably be a subtype of {[unknown]: unknown}
ScopedFastFlag sff{FFlag::LuauSolverV2, false};
CheckResult result = check(R"(
--!strict
return function(value: any): boolean
if typeof(value) ~= "table" then
return false
end
if next(value) == nil then
-- an empty table is an empty array
return true
end
local length = #value
if length == 0 then
return false
end
local count = 0
local sum = 0
for key in pairs(value) do
if typeof(key) ~= "number" then
return false
end
if key % 1 ~= 0 or key < 1 then
return false
end
count += 1
sum += key
end
return sum == (count * (count + 1) / 2)
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "luau-polyfill.String.slice")
{
CheckResult result = check(R"(
--!strict
local function slice(str: string, startIndexStr: string | number, lastIndexStr: (string | number)?): string
local strLen, invalidBytePosition = utf8.len(str)
assert(strLen ~= nil, ("string `%s` has an invalid byte at position %s"):format(str, tostring(invalidBytePosition)))
local startIndex = tonumber(startIndexStr)
-- if no last index length set, go to str length + 1
local lastIndex = strLen + 1
assert(typeof(lastIndex) == "number", "lastIndexStr should convert to number")
if lastIndex > strLen then
lastIndex = strLen + 1
end
local startIndexByte = utf8.offset(str, startIndex)
return string.sub(str, startIndexByte, startIndexByte)
end
return slice
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "luau-polyfill.Array.startswith")
{
// This test also exercises whether the binary operator == passes the correct expected type
// to it's l,r operands
CheckResult result = check(R"(
--!strict
local function startsWith(value: string, substring: string, position: number?): boolean
-- Luau FIXME: we have to use a tmp variable, as Luau doesn't understand the logic below narrow position to `number`
local position_
if position == nil or position < 1 then
position_ = 1
else
position_ = position
end
return value:find(substring, position_, true) == position_
end
return startsWith
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "add_type_function_works")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
local function add(x, y)
return x + y
end
local a = add(1, 2)
local b = add("foo", "bar")
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(requireType("a")) == "number");
CHECK(toString(requireType("b")) == "add<string, string>");
CHECK(
toString(result.errors[0]) ==
"Operator '+' could not be applied to operands of types string and string; there is no corresponding overload for __add"
);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "normalize_strings_comparison")
{
CheckResult result = check(R"(
local function sortKeysForPrinting(a: any, b)
local typeofA = type(a)
local typeofB = type(b)
-- strings and numbers are sorted numerically/alphabetically
if typeofA == typeofB and (typeofA == "number" or typeofA == "string") then
return a < b
end
-- sort the rest by type name
return typeofA < typeofB
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "compare_singleton_string_to_string")
{
CheckResult result = check(R"(
local function test(a: string, b: string)
if a == "Pet" and b == "Pet" then
return true
elseif a ~= b then
return a < b
else
return false
end
end
)");
// There is a flag to gate turning this off, and this warning is not
// implemented in the new solver, so assert there are no errors.
if (FFlag::LuauRemoveBadRelationalOperatorWarning || FFlag::LuauSolverV2)
LUAU_REQUIRE_NO_ERRORS(result);
else
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "no_infinite_expansion_of_free_type" * doctest::timeout(1.0))
{
ScopedFastFlag sff(FFlag::LuauSolverV2, true);
check(R"(
local tooltip = {}
function tooltip:Show()
local playerGui = self.Player:FindFirstChild("PlayerGui")
for _,c in ipairs(playerGui:GetChildren()) do
if c:IsA("ScreenGui") and c.DisplayOrder > self.Gui.DisplayOrder then
end
end
end
)");
// just type-checking this code is enough
}
TEST_CASE_FIXTURE(BuiltinsFixture, "compound_operator_on_upvalue")
{
CheckResult result = check(R"(
local byteCursor: number = 0
local function advance(bytes: number)
byteCursor += bytes
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_SUITE_END();