luau/Analysis/src/Type.cpp
aaron 9c588be16d
Sync to upstream/release/610 (#1154)
# What's changed?

* Check interrupt handler inside the pattern match engine to eliminate
potential for programs to hang during string library function execution.
* Allow iteration over table properties to pass the old type solver. 

### Native Code Generation

* Use in-place memory operands for math library operations on x64.
* Replace opaque bools with separate enum classes in IrDump to improve
code maintainability.
* Translate operations on inferred vectors to IR.
* Enable support for debugging native-compiled functions in Roblox
Studio.

### New Type Solver

* Rework type inference for boolean and string literals to introduce
bounded free types (bounded below by the singleton type, and above by
the primitive type) and reworked primitive type constraint to decide
which is the appropriate type for the literal.
* Introduce `FunctionCheckConstraint` to handle bidirectional
typechecking for function calls, pushing the expected parameter types
from the function onto the arguments.
* Introduce `union` and `intersect` type families to compute deferred
simplified unions and intersections to be employed by the constraint
generation logic in the new solver.
* Implement support for expanding the domain of local types in
`Unifier2`.
* Rework type inference for iteration variables bound by for in loops to
use local types.
* Change constraint blocking logic to use a set to prevent accidental
re-blocking.
* Add logic to detect missing return statements in functions.

### Internal Contributors

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

---------

Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Vighnesh <vvijay@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: David Cope <dcope@roblox.com>
Co-authored-by: Lily Brown <lbrown@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-01-26 19:20:56 -08:00

1308 lines
33 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/Type.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Common.h"
#include "Luau/ConstraintSolver.h"
#include "Luau/DenseHash.h"
#include "Luau/Error.h"
#include "Luau/RecursionCounter.h"
#include "Luau/StringUtils.h"
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
#include "Luau/TypePack.h"
#include "Luau/VecDeque.h"
#include "Luau/VisitType.h"
#include <algorithm>
#include <optional>
#include <stdexcept>
#include <unordered_map>
#include <unordered_set>
LUAU_FASTFLAG(DebugLuauFreezeArena)
LUAU_FASTINTVARIABLE(LuauTypeMaximumStringifierLength, 500)
LUAU_FASTINTVARIABLE(LuauTableTypeMaximumStringifierLength, 0)
LUAU_FASTINT(LuauTypeInferRecursionLimit)
LUAU_FASTFLAG(LuauInstantiateInSubtyping)
LUAU_FASTFLAG(DebugLuauReadWriteProperties)
namespace Luau
{
// LUAU_NOINLINE prevents unwrapLazy from being inlined into advance below; advance is important to keep inlineable
static LUAU_NOINLINE TypeId unwrapLazy(LazyType* ltv)
{
TypeId unwrapped = ltv->unwrapped.load();
if (unwrapped)
return unwrapped;
ltv->unwrap(*ltv);
unwrapped = ltv->unwrapped.load();
if (!unwrapped)
throw InternalCompilerError("Lazy Type didn't fill in unwrapped type field");
if (get<LazyType>(unwrapped))
throw InternalCompilerError("Lazy Type cannot resolve to another Lazy Type");
return unwrapped;
}
TypeId follow(TypeId t)
{
return follow(t, FollowOption::Normal);
}
TypeId follow(TypeId t, FollowOption followOption)
{
return follow(t, followOption, nullptr, [](const void*, TypeId t) -> TypeId {
return t;
});
}
TypeId follow(TypeId t, const void* context, TypeId (*mapper)(const void*, TypeId))
{
return follow(t, FollowOption::Normal, context, mapper);
}
TypeId follow(TypeId t, FollowOption followOption, const void* context, TypeId (*mapper)(const void*, TypeId))
{
auto advance = [followOption, context, mapper](TypeId ty) -> std::optional<TypeId> {
TypeId mapped = mapper(context, ty);
if (auto btv = get<Unifiable::Bound<TypeId>>(mapped))
return btv->boundTo;
if (auto ttv = get<TableType>(mapped))
return ttv->boundTo;
if (auto ltv = getMutable<LazyType>(mapped); ltv && followOption != FollowOption::DisableLazyTypeThunks)
return unwrapLazy(ltv);
return std::nullopt;
};
TypeId cycleTester = t; // Null once we've determined that there is no cycle
if (auto a = advance(cycleTester))
cycleTester = *a;
else
return t;
if (!advance(cycleTester)) // Short circuit traversal for the rather common case when advance(advance(t)) == null
return cycleTester;
while (true)
{
auto a1 = advance(t);
if (a1)
t = *a1;
else
return t;
if (nullptr != cycleTester)
{
auto a2 = advance(cycleTester);
if (a2)
{
auto a3 = advance(*a2);
if (a3)
cycleTester = *a3;
else
cycleTester = nullptr;
}
else
cycleTester = nullptr;
if (t == cycleTester)
throw InternalCompilerError("Luau::follow detected a Type cycle!!");
}
}
}
std::vector<TypeId> flattenIntersection(TypeId ty)
{
if (!get<IntersectionType>(follow(ty)))
return {ty};
std::unordered_set<TypeId> seen;
VecDeque<TypeId> queue{ty};
std::vector<TypeId> result;
while (!queue.empty())
{
TypeId current = follow(queue.front());
queue.pop_front();
if (seen.find(current) != seen.end())
continue;
seen.insert(current);
if (auto itv = get<IntersectionType>(current))
{
for (TypeId ty : itv->parts)
queue.push_back(ty);
}
else
result.push_back(current);
}
return result;
}
bool isPrim(TypeId ty, PrimitiveType::Type primType)
{
auto p = get<PrimitiveType>(follow(ty));
return p && p->type == primType;
}
bool isNil(TypeId ty)
{
return isPrim(ty, PrimitiveType::NilType);
}
bool isBoolean(TypeId ty)
{
if (isPrim(ty, PrimitiveType::Boolean) || get<BooleanSingleton>(get<SingletonType>(follow(ty))))
return true;
if (auto utv = get<UnionType>(follow(ty)))
return std::all_of(begin(utv), end(utv), isBoolean);
return false;
}
bool isNumber(TypeId ty)
{
return isPrim(ty, PrimitiveType::Number);
}
// Returns true when ty is a subtype of string
bool isString(TypeId ty)
{
ty = follow(ty);
if (isPrim(ty, PrimitiveType::String) || get<StringSingleton>(get<SingletonType>(ty)))
return true;
if (auto utv = get<UnionType>(ty))
return std::all_of(begin(utv), end(utv), isString);
return false;
}
// Returns true when ty is a supertype of string
bool maybeString(TypeId ty)
{
ty = follow(ty);
if (isPrim(ty, PrimitiveType::String) || get<AnyType>(ty))
return true;
if (auto utv = get<UnionType>(ty))
return std::any_of(begin(utv), end(utv), maybeString);
return false;
}
bool isThread(TypeId ty)
{
return isPrim(ty, PrimitiveType::Thread);
}
bool isBuffer(TypeId ty)
{
return isPrim(ty, PrimitiveType::Buffer);
}
bool isOptional(TypeId ty)
{
if (isNil(ty))
return true;
ty = follow(ty);
if (get<AnyType>(ty) || get<UnknownType>(ty))
return true;
auto utv = get<UnionType>(ty);
if (!utv)
return false;
return std::any_of(begin(utv), end(utv), isOptional);
}
bool isTableIntersection(TypeId ty)
{
if (!get<IntersectionType>(follow(ty)))
return false;
std::vector<TypeId> parts = flattenIntersection(ty);
return std::all_of(parts.begin(), parts.end(), getTableType);
}
bool isTableUnion(TypeId ty)
{
const UnionType* ut = get<UnionType>(follow(ty));
if (!ut)
return false;
return std::all_of(begin(ut), end(ut), getTableType);
}
bool isOverloadedFunction(TypeId ty)
{
if (!get<IntersectionType>(follow(ty)))
return false;
auto isFunction = [](TypeId part) -> bool {
return get<FunctionType>(part);
};
std::vector<TypeId> parts = flattenIntersection(ty);
return std::all_of(parts.begin(), parts.end(), isFunction);
}
std::optional<TypeId> getMetatable(TypeId type, NotNull<BuiltinTypes> builtinTypes)
{
type = follow(type);
if (const MetatableType* mtType = get<MetatableType>(type))
return mtType->metatable;
else if (const ClassType* classType = get<ClassType>(type))
return classType->metatable;
else if (isString(type))
{
auto ptv = get<PrimitiveType>(builtinTypes->stringType);
LUAU_ASSERT(ptv && ptv->metatable);
return ptv->metatable;
}
return std::nullopt;
}
const TableType* getTableType(TypeId type)
{
type = follow(type);
if (const TableType* ttv = get<TableType>(type))
return ttv;
else if (const MetatableType* mtv = get<MetatableType>(type))
return get<TableType>(follow(mtv->table));
else
return nullptr;
}
TableType* getMutableTableType(TypeId type)
{
return const_cast<TableType*>(getTableType(type));
}
const std::string* getName(TypeId type)
{
type = follow(type);
if (auto mtv = get<MetatableType>(type))
{
if (mtv->syntheticName)
return &*mtv->syntheticName;
type = follow(mtv->table);
}
if (auto ttv = get<TableType>(type))
{
if (ttv->name)
return &*ttv->name;
if (ttv->syntheticName)
return &*ttv->syntheticName;
}
return nullptr;
}
std::optional<ModuleName> getDefinitionModuleName(TypeId type)
{
type = follow(type);
if (auto ttv = get<TableType>(type))
{
if (!ttv->definitionModuleName.empty())
return ttv->definitionModuleName;
}
else if (auto ftv = get<FunctionType>(type))
{
if (ftv->definition)
return ftv->definition->definitionModuleName;
}
else if (auto ctv = get<ClassType>(type))
{
if (!ctv->definitionModuleName.empty())
return ctv->definitionModuleName;
}
return std::nullopt;
}
bool isSubset(const UnionType& super, const UnionType& sub)
{
std::unordered_set<TypeId> superTypes;
for (TypeId id : super.options)
superTypes.insert(id);
for (TypeId id : sub.options)
{
if (superTypes.find(id) == superTypes.end())
return false;
}
return true;
}
bool hasPrimitiveTypeInIntersection(TypeId ty, PrimitiveType::Type primTy)
{
TypeId tf = follow(ty);
if (isPrim(tf, primTy))
return true;
for (auto t : flattenIntersection(tf))
return isPrim(follow(t), primTy);
return false;
}
// When typechecking an assignment `x = e`, we typecheck `x:T` and `e:U`,
// then instantiate U if `isGeneric(U)` is true, and `maybeGeneric(T)` is false.
bool isGeneric(TypeId ty)
{
LUAU_ASSERT(!FFlag::LuauInstantiateInSubtyping);
ty = follow(ty);
if (auto ftv = get<FunctionType>(ty))
return ftv->generics.size() > 0 || ftv->genericPacks.size() > 0;
else
// TODO: recurse on type synonyms CLI-39914
// TODO: recurse on table types CLI-39914
return false;
}
bool maybeGeneric(TypeId ty)
{
LUAU_ASSERT(!FFlag::LuauInstantiateInSubtyping);
ty = follow(ty);
if (get<FreeType>(ty))
return true;
if (auto ttv = get<TableType>(ty))
{
// TODO: recurse on table types CLI-39914
(void)ttv;
return true;
}
if (auto itv = get<IntersectionType>(ty))
{
return std::any_of(begin(itv), end(itv), maybeGeneric);
}
return isGeneric(ty);
}
bool maybeSingleton(TypeId ty)
{
ty = follow(ty);
if (get<SingletonType>(ty))
return true;
if (const UnionType* utv = get<UnionType>(ty))
for (TypeId option : utv)
if (get<SingletonType>(follow(option)))
return true;
if (const IntersectionType* itv = get<IntersectionType>(ty))
for (TypeId part : itv)
if (maybeSingleton(part)) // will i regret this?
return true;
return false;
}
bool hasLength(TypeId ty, DenseHashSet<TypeId>& seen, int* recursionCount)
{
RecursionLimiter _rl(recursionCount, FInt::LuauTypeInferRecursionLimit);
ty = follow(ty);
if (seen.contains(ty))
return true;
if (isString(ty) || isPrim(ty, PrimitiveType::Table) || get<AnyType>(ty) || get<TableType>(ty) || get<MetatableType>(ty))
return true;
if (auto uty = get<UnionType>(ty))
{
seen.insert(ty);
for (TypeId part : uty->options)
{
if (!hasLength(part, seen, recursionCount))
return false;
}
return true;
}
if (auto ity = get<IntersectionType>(ty))
{
seen.insert(ty);
for (TypeId part : ity->parts)
{
if (hasLength(part, seen, recursionCount))
return true;
}
return false;
}
return false;
}
FreeType::FreeType(TypeLevel level)
: index(Unifiable::freshIndex())
, level(level)
, scope(nullptr)
{
}
FreeType::FreeType(Scope* scope)
: index(Unifiable::freshIndex())
, level{}
, scope(scope)
{
}
FreeType::FreeType(Scope* scope, TypeLevel level)
: index(Unifiable::freshIndex())
, level(level)
, scope(scope)
{
}
FreeType::FreeType(Scope* scope, TypeId lowerBound, TypeId upperBound)
: index(Unifiable::freshIndex())
, scope(scope)
, lowerBound(lowerBound)
, upperBound(upperBound)
{
}
GenericType::GenericType()
: index(Unifiable::freshIndex())
, name("g" + std::to_string(index))
{
}
GenericType::GenericType(TypeLevel level)
: index(Unifiable::freshIndex())
, level(level)
, name("g" + std::to_string(index))
{
}
GenericType::GenericType(const Name& name)
: index(Unifiable::freshIndex())
, name(name)
, explicitName(true)
{
}
GenericType::GenericType(Scope* scope)
: index(Unifiable::freshIndex())
, scope(scope)
{
}
GenericType::GenericType(TypeLevel level, const Name& name)
: index(Unifiable::freshIndex())
, level(level)
, name(name)
, explicitName(true)
{
}
GenericType::GenericType(Scope* scope, const Name& name)
: index(Unifiable::freshIndex())
, scope(scope)
, name(name)
, explicitName(true)
{
}
BlockedType::BlockedType()
: index(Unifiable::freshIndex())
{
}
PendingExpansionType::PendingExpansionType(
std::optional<AstName> prefix, AstName name, std::vector<TypeId> typeArguments, std::vector<TypePackId> packArguments)
: prefix(prefix)
, name(name)
, typeArguments(typeArguments)
, packArguments(packArguments)
, index(++nextIndex)
{
}
size_t PendingExpansionType::nextIndex = 0;
FunctionType::FunctionType(TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(TypeLevel level, TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, level(level)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(
TypeLevel level, Scope* scope, TypePackId argTypes, TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, level(level)
, scope(scope)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes, TypePackId retTypes,
std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, generics(generics)
, genericPacks(genericPacks)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(TypeLevel level, std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes,
TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, generics(generics)
, genericPacks(genericPacks)
, level(level)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
FunctionType::FunctionType(TypeLevel level, Scope* scope, std::vector<TypeId> generics, std::vector<TypePackId> genericPacks, TypePackId argTypes,
TypePackId retTypes, std::optional<FunctionDefinition> defn, bool hasSelf)
: definition(std::move(defn))
, generics(generics)
, genericPacks(genericPacks)
, level(level)
, scope(scope)
, argTypes(argTypes)
, retTypes(retTypes)
, hasSelf(hasSelf)
{
}
Property::Property() {}
Property::Property(TypeId readTy, bool deprecated, const std::string& deprecatedSuggestion, std::optional<Location> location, const Tags& tags,
const std::optional<std::string>& documentationSymbol, std::optional<Location> typeLocation)
: deprecated(deprecated)
, deprecatedSuggestion(deprecatedSuggestion)
, location(location)
, typeLocation(typeLocation)
, tags(tags)
, documentationSymbol(documentationSymbol)
, readTy(readTy)
, writeTy(readTy)
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
}
Property Property::readonly(TypeId ty)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.readTy = ty;
return p;
}
Property Property::writeonly(TypeId ty)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.writeTy = ty;
return p;
}
Property Property::rw(TypeId ty)
{
return Property::rw(ty, ty);
}
Property Property::rw(TypeId read, TypeId write)
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
Property p;
p.readTy = read;
p.writeTy = write;
return p;
}
Property Property::create(std::optional<TypeId> read, std::optional<TypeId> write)
{
if (read && !write)
return Property::readonly(*read);
else if (!read && write)
return Property::writeonly(*write);
else
{
LUAU_ASSERT(read && write);
return Property::rw(*read, *write);
}
}
TypeId Property::type() const
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(readTy);
return *readTy;
}
void Property::setType(TypeId ty)
{
LUAU_ASSERT(!FFlag::DebugLuauReadWriteProperties);
readTy = ty;
}
std::optional<TypeId> Property::readType() const
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(!(bool(readTy) && bool(writeTy)));
return readTy;
}
std::optional<TypeId> Property::writeType() const
{
LUAU_ASSERT(FFlag::DebugLuauReadWriteProperties);
LUAU_ASSERT(!(bool(readTy) && bool(writeTy)));
return writeTy;
}
bool Property::isShared() const
{
return readTy && writeTy && readTy == writeTy;
}
TableType::TableType(TableState state, TypeLevel level, Scope* scope)
: state(state)
, level(level)
, scope(scope)
{
}
TableType::TableType(const Props& props, const std::optional<TableIndexer>& indexer, TypeLevel level, TableState state)
: props(props)
, indexer(indexer)
, state(state)
, level(level)
{
}
TableType::TableType(const Props& props, const std::optional<TableIndexer>& indexer, TypeLevel level, Scope* scope, TableState state)
: props(props)
, indexer(indexer)
, state(state)
, level(level)
, scope(scope)
{
}
// Test Types for equivalence
// More complex than we'd like because Types can self-reference.
bool areSeen(SeenSet& seen, const void* lhs, const void* rhs)
{
if (lhs == rhs)
return true;
auto p = std::make_pair(const_cast<void*>(lhs), const_cast<void*>(rhs));
if (seen.find(p) != seen.end())
return true;
seen.insert(p);
return false;
}
bool areEqual(SeenSet& seen, const FunctionType& lhs, const FunctionType& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
// TODO: check generics CLI-39915
if (!areEqual(seen, *lhs.argTypes, *rhs.argTypes))
return false;
if (!areEqual(seen, *lhs.retTypes, *rhs.retTypes))
return false;
return true;
}
bool areEqual(SeenSet& seen, const TableType& lhs, const TableType& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
if (lhs.state != rhs.state)
return false;
if (lhs.props.size() != rhs.props.size())
return false;
if (bool(lhs.indexer) != bool(rhs.indexer))
return false;
if (lhs.indexer && rhs.indexer)
{
if (!areEqual(seen, *lhs.indexer->indexType, *rhs.indexer->indexType))
return false;
if (!areEqual(seen, *lhs.indexer->indexResultType, *rhs.indexer->indexResultType))
return false;
}
auto l = lhs.props.begin();
auto r = rhs.props.begin();
while (l != lhs.props.end())
{
if (l->first != r->first)
return false;
if (!areEqual(seen, *l->second.type(), *r->second.type()))
return false;
++l;
++r;
}
return true;
}
static bool areEqual(SeenSet& seen, const MetatableType& lhs, const MetatableType& rhs)
{
if (areSeen(seen, &lhs, &rhs))
return true;
return areEqual(seen, *lhs.table, *rhs.table) && areEqual(seen, *lhs.metatable, *rhs.metatable);
}
bool areEqual(SeenSet& seen, const Type& lhs, const Type& rhs)
{
if (auto bound = get_if<BoundType>(&lhs.ty))
return areEqual(seen, *bound->boundTo, rhs);
if (auto bound = get_if<BoundType>(&rhs.ty))
return areEqual(seen, lhs, *bound->boundTo);
if (lhs.ty.index() != rhs.ty.index())
return false;
{
const FreeType* lf = get_if<FreeType>(&lhs.ty);
const FreeType* rf = get_if<FreeType>(&rhs.ty);
if (lf && rf)
return lf->index == rf->index;
}
{
const GenericType* lg = get_if<GenericType>(&lhs.ty);
const GenericType* rg = get_if<GenericType>(&rhs.ty);
if (lg && rg)
return lg->index == rg->index;
}
{
const PrimitiveType* lp = get_if<PrimitiveType>(&lhs.ty);
const PrimitiveType* rp = get_if<PrimitiveType>(&rhs.ty);
if (lp && rp)
return lp->type == rp->type;
}
{
const GenericType* lg = get_if<GenericType>(&lhs.ty);
const GenericType* rg = get_if<GenericType>(&rhs.ty);
if (lg && rg)
return lg->index == rg->index;
}
{
const ErrorType* le = get_if<ErrorType>(&lhs.ty);
const ErrorType* re = get_if<ErrorType>(&rhs.ty);
if (le && re)
return le->index == re->index;
}
{
const FunctionType* lf = get_if<FunctionType>(&lhs.ty);
const FunctionType* rf = get_if<FunctionType>(&rhs.ty);
if (lf && rf)
return areEqual(seen, *lf, *rf);
}
{
const TableType* lt = get_if<TableType>(&lhs.ty);
const TableType* rt = get_if<TableType>(&rhs.ty);
if (lt && rt)
return areEqual(seen, *lt, *rt);
}
{
const MetatableType* lmt = get_if<MetatableType>(&lhs.ty);
const MetatableType* rmt = get_if<MetatableType>(&rhs.ty);
if (lmt && rmt)
return areEqual(seen, *lmt, *rmt);
}
if (get_if<AnyType>(&lhs.ty) && get_if<AnyType>(&rhs.ty))
return true;
return false;
}
Type* asMutable(TypeId ty)
{
return const_cast<Type*>(ty);
}
bool Type::operator==(const Type& rhs) const
{
SeenSet seen;
return areEqual(seen, *this, rhs);
}
bool Type::operator!=(const Type& rhs) const
{
SeenSet seen;
return !areEqual(seen, *this, rhs);
}
Type& Type::operator=(const TypeVariant& rhs)
{
ty = rhs;
return *this;
}
Type& Type::operator=(TypeVariant&& rhs)
{
ty = std::move(rhs);
return *this;
}
Type& Type::operator=(const Type& rhs)
{
LUAU_ASSERT(owningArena == rhs.owningArena);
LUAU_ASSERT(!rhs.persistent);
reassign(rhs);
return *this;
}
TypeId makeFunction(TypeArena& arena, std::optional<TypeId> selfType, std::initializer_list<TypeId> generics,
std::initializer_list<TypePackId> genericPacks, std::initializer_list<TypeId> paramTypes, std::initializer_list<std::string> paramNames,
std::initializer_list<TypeId> retTypes);
TypeId makeStringMetatable(NotNull<BuiltinTypes> builtinTypes); // BuiltinDefinitions.cpp
BuiltinTypes::BuiltinTypes()
: arena(new TypeArena)
, debugFreezeArena(FFlag::DebugLuauFreezeArena)
, nilType(arena->addType(Type{PrimitiveType{PrimitiveType::NilType}, /*persistent*/ true}))
, numberType(arena->addType(Type{PrimitiveType{PrimitiveType::Number}, /*persistent*/ true}))
, stringType(arena->addType(Type{PrimitiveType{PrimitiveType::String}, /*persistent*/ true}))
, booleanType(arena->addType(Type{PrimitiveType{PrimitiveType::Boolean}, /*persistent*/ true}))
, threadType(arena->addType(Type{PrimitiveType{PrimitiveType::Thread}, /*persistent*/ true}))
, bufferType(arena->addType(Type{PrimitiveType{PrimitiveType::Buffer}, /*persistent*/ true}))
, functionType(arena->addType(Type{PrimitiveType{PrimitiveType::Function}, /*persistent*/ true}))
, classType(arena->addType(Type{ClassType{"class", {}, std::nullopt, std::nullopt, {}, {}, {}}, /*persistent*/ true}))
, tableType(arena->addType(Type{PrimitiveType{PrimitiveType::Table}, /*persistent*/ true}))
, emptyTableType(arena->addType(Type{TableType{TableState::Sealed, TypeLevel{}, nullptr}, /*persistent*/ true}))
, trueType(arena->addType(Type{SingletonType{BooleanSingleton{true}}, /*persistent*/ true}))
, falseType(arena->addType(Type{SingletonType{BooleanSingleton{false}}, /*persistent*/ true}))
, anyType(arena->addType(Type{AnyType{}, /*persistent*/ true}))
, unknownType(arena->addType(Type{UnknownType{}, /*persistent*/ true}))
, neverType(arena->addType(Type{NeverType{}, /*persistent*/ true}))
, errorType(arena->addType(Type{ErrorType{}, /*persistent*/ true}))
, falsyType(arena->addType(Type{UnionType{{falseType, nilType}}, /*persistent*/ true}))
, truthyType(arena->addType(Type{NegationType{falsyType}, /*persistent*/ true}))
, optionalNumberType(arena->addType(Type{UnionType{{numberType, nilType}}, /*persistent*/ true}))
, optionalStringType(arena->addType(Type{UnionType{{stringType, nilType}}, /*persistent*/ true}))
, emptyTypePack(arena->addTypePack(TypePackVar{TypePack{{}}, /*persistent*/ true}))
, anyTypePack(arena->addTypePack(TypePackVar{VariadicTypePack{anyType}, /*persistent*/ true}))
, neverTypePack(arena->addTypePack(TypePackVar{VariadicTypePack{neverType}, /*persistent*/ true}))
, uninhabitableTypePack(arena->addTypePack(TypePackVar{TypePack{{neverType}, neverTypePack}, /*persistent*/ true}))
, errorTypePack(arena->addTypePack(TypePackVar{Unifiable::Error{}, /*persistent*/ true}))
{
freeze(*arena);
}
BuiltinTypes::~BuiltinTypes()
{
// Destroy the arena with the same memory management flags it was created with
bool prevFlag = FFlag::DebugLuauFreezeArena;
FFlag::DebugLuauFreezeArena.value = debugFreezeArena;
unfreeze(*arena);
arena.reset(nullptr);
FFlag::DebugLuauFreezeArena.value = prevFlag;
}
TypeId BuiltinTypes::errorRecoveryType() const
{
return errorType;
}
TypePackId BuiltinTypes::errorRecoveryTypePack() const
{
return errorTypePack;
}
TypeId BuiltinTypes::errorRecoveryType(TypeId guess) const
{
return guess;
}
TypePackId BuiltinTypes::errorRecoveryTypePack(TypePackId guess) const
{
return guess;
}
void persist(TypeId ty)
{
VecDeque<TypeId> queue{ty};
while (!queue.empty())
{
TypeId t = queue.front();
queue.pop_front();
if (t->persistent)
continue;
asMutable(t)->persistent = true;
if (auto btv = get<BoundType>(t))
queue.push_back(btv->boundTo);
else if (auto ftv = get<FunctionType>(t))
{
persist(ftv->argTypes);
persist(ftv->retTypes);
}
else if (auto ttv = get<TableType>(t))
{
LUAU_ASSERT(ttv->state != TableState::Free && ttv->state != TableState::Unsealed);
for (const auto& [_name, prop] : ttv->props)
queue.push_back(prop.type());
if (ttv->indexer)
{
queue.push_back(ttv->indexer->indexType);
queue.push_back(ttv->indexer->indexResultType);
}
}
else if (auto ctv = get<ClassType>(t))
{
for (const auto& [_name, prop] : ctv->props)
queue.push_back(prop.type());
}
else if (auto utv = get<UnionType>(t))
{
for (TypeId opt : utv->options)
queue.push_back(opt);
}
else if (auto itv = get<IntersectionType>(t))
{
for (TypeId opt : itv->parts)
queue.push_back(opt);
}
else if (auto mtv = get<MetatableType>(t))
{
queue.push_back(mtv->table);
queue.push_back(mtv->metatable);
}
else if (get<GenericType>(t) || get<AnyType>(t) || get<FreeType>(t) || get<SingletonType>(t) || get<PrimitiveType>(t) || get<NegationType>(t))
{
}
else if (auto tfit = get<TypeFamilyInstanceType>(t))
{
for (auto ty : tfit->typeArguments)
queue.push_back(ty);
for (auto tp : tfit->packArguments)
persist(tp);
}
else
{
LUAU_ASSERT(!"TypeId is not supported in a persist call");
}
}
}
void persist(TypePackId tp)
{
if (tp->persistent)
return;
asMutable(tp)->persistent = true;
if (auto p = get<TypePack>(tp))
{
for (TypeId ty : p->head)
persist(ty);
if (p->tail)
persist(*p->tail);
}
else if (auto vtp = get<VariadicTypePack>(tp))
{
persist(vtp->ty);
}
else if (get<GenericTypePack>(tp))
{
}
else if (auto tfitp = get<TypeFamilyInstanceTypePack>(tp))
{
for (auto ty : tfitp->typeArguments)
persist(ty);
for (auto tp : tfitp->packArguments)
persist(tp);
}
else
{
LUAU_ASSERT(!"TypePackId is not supported in a persist call");
}
}
const TypeLevel* getLevel(TypeId ty)
{
ty = follow(ty);
if (auto ftv = get<FreeType>(ty))
return &ftv->level;
else if (auto ttv = get<TableType>(ty))
return &ttv->level;
else if (auto ftv = get<FunctionType>(ty))
return &ftv->level;
else
return nullptr;
}
TypeLevel* getMutableLevel(TypeId ty)
{
return const_cast<TypeLevel*>(getLevel(ty));
}
std::optional<TypeLevel> getLevel(TypePackId tp)
{
tp = follow(tp);
if (auto ftv = get<FreeTypePack>(tp))
return ftv->level;
else
return std::nullopt;
}
const Property* lookupClassProp(const ClassType* cls, const Name& name)
{
while (cls)
{
auto it = cls->props.find(name);
if (it != cls->props.end())
return &it->second;
if (cls->parent)
cls = get<ClassType>(*cls->parent);
else
return nullptr;
LUAU_ASSERT(cls);
}
return nullptr;
}
bool isSubclass(const ClassType* cls, const ClassType* parent)
{
while (cls)
{
if (cls == parent)
return true;
else if (!cls->parent)
return false;
cls = get<ClassType>(*cls->parent);
LUAU_ASSERT(cls);
}
return false;
}
const std::vector<TypeId>& getTypes(const UnionType* utv)
{
return utv->options;
}
const std::vector<TypeId>& getTypes(const IntersectionType* itv)
{
return itv->parts;
}
UnionTypeIterator begin(const UnionType* utv)
{
return UnionTypeIterator{utv};
}
UnionTypeIterator end(const UnionType* utv)
{
return UnionTypeIterator{};
}
IntersectionTypeIterator begin(const IntersectionType* itv)
{
return IntersectionTypeIterator{itv};
}
IntersectionTypeIterator end(const IntersectionType* itv)
{
return IntersectionTypeIterator{};
}
TypeId freshType(NotNull<TypeArena> arena, NotNull<BuiltinTypes> builtinTypes, Scope* scope)
{
return arena->addType(FreeType{scope, builtinTypes->neverType, builtinTypes->unknownType});
}
std::vector<TypeId> filterMap(TypeId type, TypeIdPredicate predicate)
{
type = follow(type);
if (auto utv = get<UnionType>(type))
{
std::set<TypeId> options;
for (TypeId option : utv)
if (auto out = predicate(follow(option)))
options.insert(*out);
return std::vector<TypeId>(options.begin(), options.end());
}
else if (auto out = predicate(type))
return {*out};
return {};
}
static Tags* getTags(TypeId ty)
{
ty = follow(ty);
if (auto ftv = getMutable<FunctionType>(ty))
return &ftv->tags;
else if (auto ttv = getMutable<TableType>(ty))
return &ttv->tags;
else if (auto ctv = getMutable<ClassType>(ty))
return &ctv->tags;
return nullptr;
}
void attachTag(TypeId ty, const std::string& tagName)
{
if (auto tags = getTags(ty))
tags->push_back(tagName);
else
LUAU_ASSERT(!"This TypeId does not support tags");
}
void attachTag(Property& prop, const std::string& tagName)
{
prop.tags.push_back(tagName);
}
// We would ideally not expose this because it could cause a footgun.
// If the Base class has a tag and you ask if Derived has that tag, it would return false.
// Unfortunately, there's already use cases that's hard to disentangle. For now, we expose it.
bool hasTag(const Tags& tags, const std::string& tagName)
{
return std::find(tags.begin(), tags.end(), tagName) != tags.end();
}
bool hasTag(TypeId ty, const std::string& tagName)
{
ty = follow(ty);
// We special case classes because getTags only returns a pointer to one vector of tags.
// But classes has multiple vector of tags, represented throughout the hierarchy.
if (auto ctv = get<ClassType>(ty))
{
while (ctv)
{
if (hasTag(ctv->tags, tagName))
return true;
else if (!ctv->parent)
return false;
ctv = get<ClassType>(*ctv->parent);
LUAU_ASSERT(ctv);
}
}
else if (auto tags = getTags(ty))
return hasTag(*tags, tagName);
return false;
}
bool hasTag(const Property& prop, const std::string& tagName)
{
return hasTag(prop.tags, tagName);
}
bool TypeFun::operator==(const TypeFun& rhs) const
{
return type == rhs.type && typeParams == rhs.typeParams && typePackParams == rhs.typePackParams;
}
bool GenericTypeDefinition::operator==(const GenericTypeDefinition& rhs) const
{
return ty == rhs.ty && defaultValue == rhs.defaultValue;
}
bool GenericTypePackDefinition::operator==(const GenericTypePackDefinition& rhs) const
{
return tp == rhs.tp && defaultValue == rhs.defaultValue;
}
} // namespace Luau