luau/Analysis/src/TypeUtils.cpp
ayoungbloodrbx d19a5f0699
Sync to upstream/release/653 (#1541)
## What's Changed?

* Optimized the vector dot product by up to 24%
* Allow for x/y/z/X/Y/Z vector field access by registering a `vector`
metatable
with an `__index` method (Fixes #1521)
* Fixed a bug preventing consistent recovery from parse errors in table
types.
* Optimized `k*n` and `k+n` when types are known
* Allow fragment autocomplete to handle cases like the automatic
insertion of
parens, keywords, strings, etc., while maintaining a correct relative
positioning

### New Solver

* Allow for `nil` assignment to tables and classes with indexers

---------

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-11-22 13:00:51 -08:00

547 lines
16 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/TypeUtils.h"
#include "Luau/Common.h"
#include "Luau/Normalize.h"
#include "Luau/Scope.h"
#include "Luau/ToString.h"
#include "Luau/TypeInfer.h"
#include <algorithm>
LUAU_FASTFLAG(LuauSolverV2);
LUAU_FASTFLAG(LuauAutocompleteRefactorsForIncrementalAutocomplete);
namespace Luau
{
bool inConditional(const TypeContext& context)
{
return context == TypeContext::Condition;
}
bool occursCheck(TypeId needle, TypeId haystack)
{
LUAU_ASSERT(get<BlockedType>(needle) || get<PendingExpansionType>(needle));
haystack = follow(haystack);
auto checkHaystack = [needle](TypeId haystack)
{
return occursCheck(needle, haystack);
};
if (needle == haystack)
return true;
else if (auto ut = get<UnionType>(haystack))
return std::any_of(begin(ut), end(ut), checkHaystack);
else if (auto it = get<IntersectionType>(haystack))
return std::any_of(begin(it), end(it), checkHaystack);
return false;
}
// FIXME: Property is quite large.
//
// Returning it on the stack like this isn't great. We'd like to just return a
// const Property*, but we mint a property of type any if the subject type is
// any.
std::optional<Property> findTableProperty(NotNull<BuiltinTypes> builtinTypes, ErrorVec& errors, TypeId ty, const std::string& name, Location location)
{
if (get<AnyType>(ty))
return Property::rw(ty);
if (const TableType* tableType = getTableType(ty))
{
const auto& it = tableType->props.find(name);
if (it != tableType->props.end())
return it->second;
}
std::optional<TypeId> mtIndex = findMetatableEntry(builtinTypes, errors, ty, "__index", location);
int count = 0;
while (mtIndex)
{
TypeId index = follow(*mtIndex);
if (count >= 100)
return std::nullopt;
++count;
if (const auto& itt = getTableType(index))
{
const auto& fit = itt->props.find(name);
if (fit != itt->props.end())
return fit->second.type();
}
else if (const auto& itf = get<FunctionType>(index))
{
std::optional<TypeId> r = first(follow(itf->retTypes));
if (!r)
return builtinTypes->nilType;
else
return *r;
}
else if (get<AnyType>(index))
return builtinTypes->anyType;
else
errors.push_back(TypeError{location, GenericError{"__index should either be a function or table. Got " + toString(index)}});
mtIndex = findMetatableEntry(builtinTypes, errors, *mtIndex, "__index", location);
}
return std::nullopt;
}
std::optional<TypeId> findMetatableEntry(
NotNull<BuiltinTypes> builtinTypes,
ErrorVec& errors,
TypeId type,
const std::string& entry,
Location location
)
{
type = follow(type);
std::optional<TypeId> metatable = getMetatable(type, builtinTypes);
if (!metatable)
return std::nullopt;
TypeId unwrapped = follow(*metatable);
if (get<AnyType>(unwrapped))
return builtinTypes->anyType;
const TableType* mtt = getTableType(unwrapped);
if (!mtt)
{
errors.push_back(TypeError{location, GenericError{"Metatable was not a table"}});
return std::nullopt;
}
auto it = mtt->props.find(entry);
if (it != mtt->props.end())
return it->second.type();
else
return std::nullopt;
}
std::optional<TypeId> findTablePropertyRespectingMeta(
NotNull<BuiltinTypes> builtinTypes,
ErrorVec& errors,
TypeId ty,
const std::string& name,
Location location
)
{
return findTablePropertyRespectingMeta(builtinTypes, errors, ty, name, ValueContext::RValue, location);
}
std::optional<TypeId> findTablePropertyRespectingMeta(
NotNull<BuiltinTypes> builtinTypes,
ErrorVec& errors,
TypeId ty,
const std::string& name,
ValueContext context,
Location location
)
{
if (get<AnyType>(ty))
return ty;
if (const TableType* tableType = getTableType(ty))
{
const auto& it = tableType->props.find(name);
if (it != tableType->props.end())
{
if (FFlag::LuauSolverV2)
{
switch (context)
{
case ValueContext::RValue:
return it->second.readTy;
case ValueContext::LValue:
return it->second.writeTy;
}
}
else
return it->second.type();
}
}
std::optional<TypeId> mtIndex = findMetatableEntry(builtinTypes, errors, ty, "__index", location);
int count = 0;
while (mtIndex)
{
TypeId index = follow(*mtIndex);
if (count >= 100)
return std::nullopt;
++count;
if (const auto& itt = getTableType(index))
{
const auto& fit = itt->props.find(name);
if (fit != itt->props.end())
return fit->second.type();
}
else if (const auto& itf = get<FunctionType>(index))
{
std::optional<TypeId> r = first(follow(itf->retTypes));
if (!r)
return builtinTypes->nilType;
else
return *r;
}
else if (get<AnyType>(index))
return builtinTypes->anyType;
else
errors.push_back(TypeError{location, GenericError{"__index should either be a function or table. Got " + toString(index)}});
mtIndex = findMetatableEntry(builtinTypes, errors, *mtIndex, "__index", location);
}
return std::nullopt;
}
std::pair<size_t, std::optional<size_t>> getParameterExtents(const TxnLog* log, TypePackId tp, bool includeHiddenVariadics)
{
size_t minCount = 0;
size_t optionalCount = 0;
auto it = begin(tp, log);
auto endIter = end(tp);
while (it != endIter)
{
TypeId ty = *it;
if (isOptional(ty))
++optionalCount;
else
{
minCount += optionalCount;
optionalCount = 0;
minCount++;
}
++it;
}
if (it.tail() && isVariadicTail(*it.tail(), *log, includeHiddenVariadics))
return {minCount, std::nullopt};
else
return {minCount, minCount + optionalCount};
}
TypePack extendTypePack(
TypeArena& arena,
NotNull<BuiltinTypes> builtinTypes,
TypePackId pack,
size_t length,
std::vector<std::optional<TypeId>> overrides
)
{
TypePack result;
while (true)
{
pack = follow(pack);
if (const TypePack* p = get<TypePack>(pack))
{
size_t i = 0;
while (i < p->head.size() && result.head.size() < length)
{
result.head.push_back(p->head[i]);
++i;
}
if (result.head.size() == length)
{
if (i == p->head.size())
result.tail = p->tail;
else
{
TypePackId newTail = arena.addTypePack(TypePack{});
TypePack* newTailPack = getMutable<TypePack>(newTail);
newTailPack->head.insert(newTailPack->head.begin(), p->head.begin() + i, p->head.end());
newTailPack->tail = p->tail;
result.tail = newTail;
}
return result;
}
else if (p->tail)
{
pack = *p->tail;
continue;
}
else
{
// There just aren't enough types in this pack to satisfy the request.
return result;
}
}
else if (const VariadicTypePack* vtp = get<VariadicTypePack>(pack))
{
while (result.head.size() < length)
result.head.push_back(vtp->ty);
result.tail = pack;
return result;
}
else if (FreeTypePack* ftp = getMutable<FreeTypePack>(pack))
{
// If we need to get concrete types out of a free pack, we choose to
// interpret this as proof that the pack must have at least 'length'
// elements. We mint fresh types for each element we're extracting
// and rebind the free pack to be a TypePack containing them. We
// also have to create a new tail.
TypePack newPack;
newPack.tail = arena.freshTypePack(ftp->scope);
if (FFlag::LuauSolverV2)
result.tail = newPack.tail;
size_t overridesIndex = 0;
while (result.head.size() < length)
{
TypeId t;
if (overridesIndex < overrides.size() && overrides[overridesIndex])
{
t = *overrides[overridesIndex];
}
else
{
if (FFlag::LuauSolverV2)
{
FreeType ft{ftp->scope, builtinTypes->neverType, builtinTypes->unknownType};
t = arena.addType(ft);
}
else
t = arena.freshType(ftp->scope);
}
newPack.head.push_back(t);
result.head.push_back(newPack.head.back());
overridesIndex++;
}
asMutable(pack)->ty.emplace<TypePack>(std::move(newPack));
return result;
}
else if (auto etp = getMutable<ErrorTypePack>(pack))
{
while (result.head.size() < length)
result.head.push_back(builtinTypes->errorRecoveryType());
result.tail = pack;
return result;
}
else
{
// If the pack is blocked or generic, we can't extract.
// Return whatever we've got with this pack as the tail.
result.tail = pack;
return result;
}
}
}
std::vector<TypeId> reduceUnion(const std::vector<TypeId>& types)
{
std::vector<TypeId> result;
for (TypeId t : types)
{
t = follow(t);
if (get<NeverType>(t))
continue;
if (get<ErrorType>(t) || get<AnyType>(t))
return {t};
if (const UnionType* utv = get<UnionType>(t))
{
for (TypeId ty : utv)
{
ty = follow(ty);
if (get<NeverType>(ty))
continue;
if (get<ErrorType>(ty) || get<AnyType>(ty))
return {ty};
if (result.end() == std::find(result.begin(), result.end(), ty))
result.push_back(ty);
}
}
else if (std::find(result.begin(), result.end(), t) == result.end())
result.push_back(t);
}
return result;
}
static std::optional<TypeId> tryStripUnionFromNil(TypeArena& arena, TypeId ty)
{
if (const UnionType* utv = get<UnionType>(ty))
{
if (!std::any_of(begin(utv), end(utv), isNil))
return ty;
std::vector<TypeId> result;
for (TypeId option : utv)
{
if (!isNil(option))
result.push_back(option);
}
if (result.empty())
return std::nullopt;
return result.size() == 1 ? result[0] : arena.addType(UnionType{std::move(result)});
}
return std::nullopt;
}
TypeId stripNil(NotNull<BuiltinTypes> builtinTypes, TypeArena& arena, TypeId ty)
{
ty = follow(ty);
if (get<UnionType>(ty))
{
std::optional<TypeId> cleaned = tryStripUnionFromNil(arena, ty);
// If there is no union option without 'nil'
if (!cleaned)
return builtinTypes->nilType;
return follow(*cleaned);
}
return follow(ty);
}
ErrorSuppression shouldSuppressErrors(NotNull<Normalizer> normalizer, TypeId ty)
{
LUAU_ASSERT(FFlag::LuauSolverV2 || FFlag::LuauAutocompleteRefactorsForIncrementalAutocomplete);
std::shared_ptr<const NormalizedType> normType = normalizer->normalize(ty);
if (!normType)
return ErrorSuppression::NormalizationFailed;
return (normType->shouldSuppressErrors()) ? ErrorSuppression::Suppress : ErrorSuppression::DoNotSuppress;
}
ErrorSuppression shouldSuppressErrors(NotNull<Normalizer> normalizer, TypePackId tp)
{
auto [tys, tail] = flatten(tp);
// check the head, one type at a time
for (TypeId ty : tys)
{
auto result = shouldSuppressErrors(normalizer, ty);
if (result != ErrorSuppression::DoNotSuppress)
return result;
}
// check the tail if we have one and it's finite
if (tail && tp != tail && finite(*tail))
return shouldSuppressErrors(normalizer, *tail);
return ErrorSuppression::DoNotSuppress;
}
// This is a useful helper because it is often the case that we are looking at specifically a pair of types that might suppress.
ErrorSuppression shouldSuppressErrors(NotNull<Normalizer> normalizer, TypeId ty1, TypeId ty2)
{
auto result = shouldSuppressErrors(normalizer, ty1);
// if ty1 is do not suppress, ty2 determines our overall behavior
if (result == ErrorSuppression::DoNotSuppress)
return shouldSuppressErrors(normalizer, ty2);
// otherwise, ty1 is either suppress or normalization failure which are both the appropriate overarching result
return result;
}
ErrorSuppression shouldSuppressErrors(NotNull<Normalizer> normalizer, TypePackId tp1, TypePackId tp2)
{
auto result = shouldSuppressErrors(normalizer, tp1);
// if tp1 is do not suppress, tp2 determines our overall behavior
if (result == ErrorSuppression::DoNotSuppress)
return shouldSuppressErrors(normalizer, tp2);
// otherwise, tp1 is either suppress or normalization failure which are both the appropriate overarching result
return result;
}
bool isLiteral(const AstExpr* expr)
{
return (
expr->is<AstExprTable>() || expr->is<AstExprFunction>() || expr->is<AstExprConstantNumber>() || expr->is<AstExprConstantString>() ||
expr->is<AstExprConstantBool>() || expr->is<AstExprConstantNil>()
);
}
/**
* Visitor which, given an expression and a mapping from expression to TypeId,
* determines if there are any literal expressions that contain blocked types.
* This is used for bi-directional inference: we want to "apply" a type from
* a function argument or a type annotation to a literal.
*/
class BlockedTypeInLiteralVisitor : public AstVisitor
{
public:
explicit BlockedTypeInLiteralVisitor(NotNull<DenseHashMap<const AstExpr*, TypeId>> astTypes, NotNull<std::vector<TypeId>> toBlock)
: astTypes_{astTypes}
, toBlock_{toBlock}
{
}
bool visit(AstNode*) override
{
return false;
}
bool visit(AstExpr* e) override
{
auto ty = astTypes_->find(e);
if (ty && (get<BlockedType>(follow(*ty)) != nullptr))
{
toBlock_->push_back(*ty);
}
return isLiteral(e) || e->is<AstExprGroup>();
}
private:
NotNull<DenseHashMap<const AstExpr*, TypeId>> astTypes_;
NotNull<std::vector<TypeId>> toBlock_;
};
std::vector<TypeId> findBlockedTypesIn(AstExprTable* expr, NotNull<DenseHashMap<const AstExpr*, TypeId>> astTypes)
{
std::vector<TypeId> toBlock;
BlockedTypeInLiteralVisitor v{astTypes, NotNull{&toBlock}};
expr->visit(&v);
return toBlock;
}
std::vector<TypeId> findBlockedArgTypesIn(AstExprCall* expr, NotNull<DenseHashMap<const AstExpr*, TypeId>> astTypes)
{
std::vector<TypeId> toBlock;
BlockedTypeInLiteralVisitor v{astTypes, NotNull{&toBlock}};
for (auto arg: expr->args)
{
if (isLiteral(arg) || arg->is<AstExprGroup>())
{
arg->visit(&v);
}
}
return toBlock;
}
} // namespace Luau