luau/bench/tests/sunspider/3d-cube.lua
Vighnesh 906a00d498 Sync to upstream/release/655
* General
- Fix the benchmark require wrapper function to work in Lua
- Fix memory leak in the new Luau C API test

* New Solver
- Luau: type functions should be able to signal whether or not irreducibility is due to an error
- Do not generate extra expansion constraint for uninvoked user-defined type functions
- Print in a user-defined type function should be reported as an error
instead of logging to stdout
- Many e-graphs bugfixes and performance improvements
- Many general bugfixes and improvements to the new solver as a whole
- Fixed issue with Luau used-defined type functions not having all environments initialized
- Infer types of globals under new type solver

* Fragment Autocomplete
- Miscellaneous fixes to make interop with the old solver better

* Runtime
- Support disabling specific Luau built-in functions from being
fast-called or constant-evaluated
- Added constant folding for vector arithmetic
- Added constant propagation and type inference for Vector3 globals

----------------------------------------------------------
9 contributors:

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Daniel Angel <danielangel@roblox.com>
Co-authored-by: Jonathan Kelaty <jkelaty@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-12-13 11:20:43 -08:00

376 lines
8.9 KiB
Lua

-- 3D Cube Rotation
-- http://www.speich.net/computer/moztesting/3d.htm
-- Created by Simon Speich
local function prequire(name) local success, result = pcall(require, name); return success and result end
local bench = script and require(script.Parent.bench_support) or prequire("bench_support") or require("../../bench_support")
function test()
local Q = {}
local MTrans = {}; -- transformation matrix
local MQube = {} -- position information of qube
local I = {} -- entity matrix
local Origin = {}
local Testing = {}
local LoopTimer;
local validation = {
[20] = 2889,
[40] = 2889,
[80] = 2889,
[160] = 2889
};
local DisplArea = {}
DisplArea.Width = 300;
DisplArea.Height = 300;
local function DrawLine(From, To)
local x1 = From.V[1];
local x2 = To.V[1];
local y1 = From.V[2];
local y2 = To.V[2];
local dx = math.abs(x2 - x1);
local dy = math.abs(y2 - y1);
local x = x1;
local y = y1;
local IncX1, IncY1;
local IncX2, IncY2;
local Den;
local Num;
local NumAdd;
local NumPix;
if (x2 >= x1) then IncX1 = 1; IncX2 = 1;
else IncX1 = -1; IncX2 = -1; end
if (y2 >= y1) then IncY1 = 1; IncY2 = 1;
else IncY1 = -1; IncY2 = -1; end
if (dx >= dy) then
IncX1 = 0;
IncY2 = 0;
Den = dx;
Num = dx / 2;
NumAdd = dy;
NumPix = dx;
else
IncX2 = 0;
IncY1 = 0;
Den = dy;
Num = dy / 2;
NumAdd = dx;
NumPix = dy;
end
NumPix = math.floor(Q.LastPx + NumPix + 0.5);
local i = Q.LastPx;
while i < NumPix do
Num = Num + NumAdd;
if (Num >= Den) then
Num = Num - Den;
x = x + IncX1;
y = y + IncY1;
end
x = x + IncX2;
y = y + IncY2;
i = i + 1;
end
Q.LastPx = NumPix;
end
local function CalcCross(V0, V1)
local Cross = {};
Cross[1] = V0[2]*V1[3] - V0[3]*V1[2];
Cross[2] = V0[3]*V1[1] - V0[1]*V1[3];
Cross[3] = V0[1]*V1[2] - V0[2]*V1[1];
return Cross;
end
local function CalcNormal(V0, V1, V2)
local A = {}; local B = {};
for i = 1,3 do
A[i] = V0[i] - V1[i];
B[i] = V2[i] - V1[i];
end
A = CalcCross(A, B);
local Length = math.sqrt(A[1]*A[1] + A[2]*A[2] + A[3]*A[3]);
for i = 1,3 do A[i] = A[i] / Length; end
A[4] = 1;
return A;
end
local function CreateP(X,Y,Z)
local result = {}
result.V = {X,Y,Z,1};
return result
end
-- multiplies two matrices
local function MMulti(M1, M2)
local M = {{},{},{},{}};
for i = 1,4 do
for j = 1,4 do
M[i][j] = M1[i][1] * M2[1][j] + M1[i][2] * M2[2][j] + M1[i][3] * M2[3][j] + M1[i][4] * M2[4][j];
end
end
return M;
end
-- multiplies matrix with vector
local function VMulti(M, V)
local Vect = {};
for i = 1,4 do
Vect[i] = M[i][1] * V[1] + M[i][2] * V[2] + M[i][3] * V[3] + M[i][4] * V[4];
end
return Vect;
end
local function VMulti2(M, V)
local Vect = {};
for i = 1,3 do
Vect[i] = M[i][1] * V[1] + M[i][2] * V[2] + M[i][3] * V[3];
end
return Vect;
end
-- add to matrices
local function MAdd(M1, M2)
local M = {{},{},{},{}};
for i = 1,4 do
for j = 1,4 do
M[i][j] = M1[i][j] + M2[i][j];
end
end
return M;
end
local function Translate(M, Dx, Dy, Dz)
local T = {
{1,0,0,Dx},
{0,1,0,Dy},
{0,0,1,Dz},
{0,0,0,1}
};
return MMulti(T, M);
end
local function RotateX(M, Phi)
local a = Phi;
a = a * math.pi / 180;
local Cos = math.cos(a);
local Sin = math.sin(a);
local R = {
{1,0,0,0},
{0,Cos,-Sin,0},
{0,Sin,Cos,0},
{0,0,0,1}
};
return MMulti(R, M);
end
local function RotateY(M, Phi)
local a = Phi;
a = a * math.pi / 180;
local Cos = math.cos(a);
local Sin = math.sin(a);
local R = {
{Cos,0,Sin,0},
{0,1,0,0},
{-Sin,0,Cos,0},
{0,0,0,1}
};
return MMulti(R, M);
end
local function RotateZ(M, Phi)
local a = Phi;
a = a * math.pi / 180;
local Cos = math.cos(a);
local Sin = math.sin(a);
local R = {
{Cos,-Sin,0,0},
{Sin,Cos,0,0},
{0,0,1,0},
{0,0,0,1}
};
return MMulti(R, M);
end
local function DrawQube()
-- calc current normals
local CurN = {};
local i = 5;
Q.LastPx = 0;
while i > -1 do CurN[i+1] = VMulti2(MQube, Q.Normal[i+1]); i = i - 1 end
if (CurN[1][3] < 0) then
if (not Q.Line[1]) then DrawLine(Q[1], Q[2]); Q.Line[1] = true; end
if (not Q.Line[2]) then DrawLine(Q[2], Q[3]); Q.Line[2] = true; end
if (not Q.Line[3]) then DrawLine(Q[3], Q[4]); Q.Line[3] = true; end
if (not Q.Line[4]) then DrawLine(Q[4], Q[1]); Q.Line[4] = true; end
end
if (CurN[2][3] < 0) then
if (not Q.Line[3]) then DrawLine(Q[4], Q[3]); Q.Line[3] = true; end
if (not Q.Line[10]) then DrawLine(Q[3], Q[7]); Q.Line[10] = true; end
if (not Q.Line[7]) then DrawLine(Q[7], Q[8]); Q.Line[7] = true; end
if (not Q.Line[11]) then DrawLine(Q[8], Q[4]); Q.Line[11] = true; end
end
if (CurN[3][3] < 0) then
if (not Q.Line[5]) then DrawLine(Q[5], Q[6]); Q.Line[6] = true; end
if (not Q.Line[6]) then DrawLine(Q[6], Q[7]); Q.Line[6] = true; end
if (not Q.Line[7]) then DrawLine(Q[7], Q[8]); Q.Line[7] = true; end
if (not Q.Line[8]) then DrawLine(Q[8], Q[5]); Q.Line[8] = true; end
end
if (CurN[4][3] < 0) then
if (not Q.Line[5]) then DrawLine(Q[5], Q[6]); Q.Line[5] = true; end
if (not Q.Line[9]) then DrawLine(Q[6], Q[2]); Q.Line[9] = true; end
if (not Q.Line[1]) then DrawLine(Q[2], Q[1]); Q.Line[1] = true; end
if (not Q.Line[12]) then DrawLine(Q[1], Q[5]); Q.Line[12] = true; end
end
if (CurN[5][3] < 0) then
if (not Q.Line[12]) then DrawLine(Q[5], Q[1]); Q.Line[12] = true; end
if (not Q.Line[4]) then DrawLine(Q[1], Q[4]); Q.Line[4] = true; end
if (not Q.Line[11]) then DrawLine(Q[4], Q[8]); Q.Line[11] = true; end
if (not Q.Line[8]) then DrawLine(Q[8], Q[5]); Q.Line[8] = true; end
end
if (CurN[6][3] < 0) then
if (not Q.Line[9]) then DrawLine(Q[2], Q[6]); Q.Line[9] = true; end
if (not Q.Line[6]) then DrawLine(Q[6], Q[7]); Q.Line[6] = true; end
if (not Q.Line[10]) then DrawLine(Q[7], Q[3]); Q.Line[10] = true; end
if (not Q.Line[2]) then DrawLine(Q[3], Q[2]); Q.Line[2] = true; end
end
Q.Line = {false,false,false,false,false,false,false,false,false,false,false,false}
Q.LastPx = 0;
end
local function Loop()
if (Testing.LoopCount > Testing.LoopMax) then return; end
local TestingStr = tostring(Testing.LoopCount);
while (#TestingStr < 3) do TestingStr = "0" .. TestingStr; end
MTrans = Translate(I, -Q[9].V[1], -Q[9].V[2], -Q[9].V[3]);
MTrans = RotateX(MTrans, 1);
MTrans = RotateY(MTrans, 3);
MTrans = RotateZ(MTrans, 5);
MTrans = Translate(MTrans, Q[9].V[1], Q[9].V[2], Q[9].V[3]);
MQube = MMulti(MTrans, MQube);
local i = 8;
while i > -1 do
Q[i+1].V = VMulti(MTrans, Q[i+1].V);
i = i - 1
end
DrawQube();
Testing.LoopCount = Testing.LoopCount + 1;
Loop();
end
local function Init(CubeSize)
-- init/reset vars
Origin.V = {150,150,20,1};
Testing.LoopCount = 0;
Testing.LoopMax = 50;
Testing.TimeMax = 0;
Testing.TimeAvg = 0;
Testing.TimeMin = 0;
Testing.TimeTemp = 0;
Testing.TimeTotal = 0;
Testing.Init = false;
-- transformation matrix
MTrans = {
{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
{0,0,0,1}
};
-- position information of qube
MQube = {
{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
{0,0,0,1}
};
-- entity matrix
I = {
{1,0,0,0},
{0,1,0,0},
{0,0,1,0},
{0,0,0,1}
};
-- create qube
Q[1] = CreateP(-CubeSize,-CubeSize, CubeSize);
Q[2] = CreateP(-CubeSize, CubeSize, CubeSize);
Q[3] = CreateP( CubeSize, CubeSize, CubeSize);
Q[4] = CreateP( CubeSize,-CubeSize, CubeSize);
Q[5] = CreateP(-CubeSize,-CubeSize,-CubeSize);
Q[6] = CreateP(-CubeSize, CubeSize,-CubeSize);
Q[7] = CreateP( CubeSize, CubeSize,-CubeSize);
Q[8] = CreateP( CubeSize,-CubeSize,-CubeSize);
-- center of gravity
Q[9] = CreateP(0, 0, 0);
-- anti-clockwise edge check
Q.Edge = {{1,2,3},{4,5,7},{8,7,6},{5,6,2},{5,1,4},{2,6,7}};
-- calculate squad normals
Q.Normal = {};
for i = 1,#Q.Edge do
Q.Normal[i] = CalcNormal(Q[Q.Edge[i][1]].V, Q[Q.Edge[i][2]].V, Q[Q.Edge[i][3]].V);
end
-- line drawn ?
Q.Line = {false,false,false,false,false,false,false,false,false,false,false,false};
-- create line pixels
Q.NumPx = 9 * 2 * CubeSize;
for i = 1,Q.NumPx do CreateP(0,0,0); end
MTrans = Translate(MTrans, Origin.V[1], Origin.V[2], Origin.V[3]);
MQube = MMulti(MTrans, MQube);
local i = 0;
while i < 9 do
Q[i+1].V = VMulti(MTrans, Q[i+1].V);
i = i + 1
end
DrawQube();
Testing.Init = true;
Loop();
-- Perform a simple sum-based verification.
local sum = 0;
for i = 1,#Q do
local vector = Q[i].V;
for j = 1,#vector do
sum = sum + vector[j];
end
end
if (math.floor(sum) ~= validation[CubeSize]) then
assert(false, "Error: bad vector sum for CubeSize = " .. CubeSize .. "; expected " .. validation[CubeSize] .. " but got " .. math.floor(sum))
end
end
local i = 20
while i <= 160 do
Init(i);
i = i * 2
end
Q = nil;
MTrans = nil;
MQube = nil;
I = nil;
Origin = nil;
Testing = nil;
LoopTime = nil;
DisplArea = nil;
end
bench.runCode(test, "3d-cube")