luau/prototyping/Luau/TypeCheck.agda
ajeffrey@roblox.com 8e52542526 WIP
2022-02-16 23:03:40 -06:00

156 lines
4.7 KiB
Agda

{-# OPTIONS --rewriting #-}
open import Luau.Type using (Mode)
module Luau.TypeCheck (m : Mode) where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import Luau.Syntax using (Expr; Stat; Block; yes; nil; addr; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; local_←_; _∙_; done; return; name)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; HeapValue; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Value using (addr; val)
open import Luau.Type using (Type; Mode; nil; bot; top; _⇒_; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
src : Type Type
src = Luau.Type.src m
data _⊢ᴮ_∈_ : VarCtxt Block yes Type Set
data _⊢ᴱ_∈_ : VarCtxt Expr yes Type Set
data _⊢ᴮ_∈_ where
done : {Γ}
---------------
Γ ⊢ᴮ done nil
return : {M B T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴮ B U
---------------------
Γ ⊢ᴮ return M B T
local : {x M B T U V Γ}
Γ ⊢ᴱ M U
(Γ x T) ⊢ᴮ B V
--------------------------------
Γ ⊢ᴮ local var x T M B V
function : f {x B C T U V W Γ}
(Γ x T) ⊢ᴮ C V
(Γ f (T U)) ⊢ᴮ B W
-------------------------------------------------
Γ ⊢ᴮ function f var x T ⟩∈ U is C end B W
data _⊢ᴱ_∈_ where
nil : {Γ}
--------------
Γ ⊢ᴱ nil nil
var : x {T Γ}
T Γ [ x ]ⱽ
--------------
Γ ⊢ᴱ var x T
addr : a T {Γ}
-----------------
Γ ⊢ᴱ (addr a) T
app : {M N T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------
Γ ⊢ᴱ (M $ N) (tgt T)
function : f {x B T U V Γ}
(Γ x T) ⊢ᴮ B V
-----------------------------------------------------
Γ ⊢ᴱ (function f var x T ⟩∈ U is B end) (T U)
block : b {B T Γ}
Γ ⊢ᴮ B T
---------------------------
Γ ⊢ᴱ (block b is B end) T
-- data _⊢ᴮ_∋_∈_⊣_ : VarCtxt → Type → Block yes → Type → VarCtxt → Set
-- data _⊢ᴱ_∋_∈_⊣_ : VarCtxt → Type → Expr yes → Type → VarCtxt → Set
-- data _⊢ᴮ_∋_∈_⊣_ where
-- done : ∀ {S Γ} →
-- ----------------------
-- Γ ⊢ᴮ S ∋ done ∈ nil ⊣ ∅
-- return : ∀ {M B S T U Γ Δ₁ Δ₂} →
-- Γ ⊢ᴱ S ∋ M ∈ T ⊣ Δ₁ →
-- Γ ⊢ᴮ nil ∋ B ∈ U ⊣ Δ₂ →
-- ---------------------------------
-- Γ ⊢ᴮ S ∋ return M ∙ B ∈ T ⊣ Δ₁
-- local : ∀ {x M B S T U V Γ Δ₁ Δ₂} →
-- Γ ⊢ᴱ T ∋ M ∈ U ⊣ Δ₁ →
-- (Γ ⊕ x ↦ T) ⊢ᴮ S ∋ B ∈ V ⊣ Δ₂ →
-- ----------------------------------------------------------
-- Γ ⊢ᴮ S ∋ local var x ∈ T ← M ∙ B ∈ V ⊣ (Δ₁ ⋒ (Δ₂ ⊝ x))
-- function : ∀ {f x B C S T U V W Γ Δ₁ Δ₂} →
-- (Γ ⊕ x ↦ T) ⊢ᴮ U ∋ C ∈ V ⊣ Δ₁ →
-- (Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ S ∋ B ∈ W ⊣ Δ₂ →
-- ---------------------------------------------------------------------------------
-- Γ ⊢ᴮ S ∋ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W ⊣ ((Δ₁ ⊝ x) ⋒ (Δ₂ ⊝ f))
-- data _⊢ᴱ_∋_∈_⊣_ where
-- nil : ∀ {S Γ} →
-- ----------------------
-- Γ ⊢ᴱ S ∋ nil ∈ nil ⊣ ∅
-- var : ∀ x {S T Γ} →
-- T ≡ Γ [ x ]ⱽ →
-- ----------------------------
-- Γ ⊢ᴱ S ∋ var x ∈ T ⊣ (x ↦ S)
-- addr : ∀ a T {S Γ} →
-- -------------------------
-- Γ ⊢ᴱ S ∋ (addr a) ∈ T ⊣ ∅
-- app : ∀ {M N S T U Γ Δ₁ Δ₂} →
-- Γ ⊢ᴱ (U ⇒ S) ∋ M ∈ T ⊣ Δ₁ →
-- Γ ⊢ᴱ (src T) ∋ N ∈ U ⊣ Δ₂ →
-- --------------------------------------
-- Γ ⊢ᴱ S ∋ (M $ N) ∈ (tgt T) ⊣ (Δ₁ ⋒ Δ₂)
-- function : ∀ {f x B S T U V Γ Δ} →
-- (Γ ⊕ x ↦ T) ⊢ᴮ U ∋ B ∈ V ⊣ Δ →
-- -----------------------------------------------------------------------
-- Γ ⊢ᴱ S ∋ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U) ⊣ (Δ ⊝ x)
-- block : ∀ b {B S T Γ Δ} →
-- Γ ⊢ᴮ S ∋ B ∈ T ⊣ Δ →
-- ----------------------------------------------------
-- Γ ⊢ᴱ S ∋ (block b is B end) ∈ T ⊣ Δ