luau/CodeGen/src/CodeGenLower.h
ayoungbloodrbx d19a5f0699
Sync to upstream/release/653 (#1541)
## What's Changed?

* Optimized the vector dot product by up to 24%
* Allow for x/y/z/X/Y/Z vector field access by registering a `vector`
metatable
with an `__index` method (Fixes #1521)
* Fixed a bug preventing consistent recovery from parse errors in table
types.
* Optimized `k*n` and `k+n` when types are known
* Allow fragment autocomplete to handle cases like the automatic
insertion of
parens, keywords, strings, etc., while maintaining a correct relative
positioning

### New Solver

* Allow for `nil` assignment to tables and classes with indexers

---------

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-11-22 13:00:51 -08:00

388 lines
12 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/AssemblyBuilderA64.h"
#include "Luau/AssemblyBuilderX64.h"
#include "Luau/CodeGen.h"
#include "Luau/IrBuilder.h"
#include "Luau/IrDump.h"
#include "Luau/IrUtils.h"
#include "Luau/OptimizeConstProp.h"
#include "Luau/OptimizeDeadStore.h"
#include "Luau/OptimizeFinalX64.h"
#include "EmitCommon.h"
#include "IrLoweringA64.h"
#include "IrLoweringX64.h"
#include "lobject.h"
#include "lstate.h"
#include <algorithm>
#include <vector>
LUAU_FASTFLAG(DebugCodegenNoOpt)
LUAU_FASTFLAG(DebugCodegenOptSize)
LUAU_FASTFLAG(DebugCodegenSkipNumbering)
LUAU_FASTINT(CodegenHeuristicsInstructionLimit)
LUAU_FASTINT(CodegenHeuristicsBlockLimit)
LUAU_FASTINT(CodegenHeuristicsBlockInstructionLimit)
namespace Luau
{
namespace CodeGen
{
inline void gatherFunctionsHelper(
std::vector<Proto*>& results,
Proto* proto,
const unsigned int flags,
const bool hasNativeFunctions,
const bool root
)
{
if (results.size() <= size_t(proto->bytecodeid))
results.resize(proto->bytecodeid + 1);
// Skip protos that we've already compiled in this run: this happens because at -O2, inlined functions get their protos reused
if (results[proto->bytecodeid])
return;
// if native module, compile cold functions if requested
// if not native module, compile function if it has native attribute and is not root
bool shouldGather = hasNativeFunctions ? (!root && (proto->flags & LPF_NATIVE_FUNCTION) != 0)
: ((proto->flags & LPF_NATIVE_COLD) == 0 || (flags & CodeGen_ColdFunctions) != 0);
if (shouldGather)
results[proto->bytecodeid] = proto;
// Recursively traverse child protos even if we aren't compiling this one
for (int i = 0; i < proto->sizep; i++)
gatherFunctionsHelper(results, proto->p[i], flags, hasNativeFunctions, false);
}
inline void gatherFunctions(std::vector<Proto*>& results, Proto* root, const unsigned int flags, const bool hasNativeFunctions = false)
{
gatherFunctionsHelper(results, root, flags, hasNativeFunctions, true);
}
inline unsigned getInstructionCount(const std::vector<IrInst>& instructions, IrCmd cmd)
{
return unsigned(std::count_if(
instructions.begin(),
instructions.end(),
[&cmd](const IrInst& inst)
{
return inst.cmd == cmd;
}
));
}
template<typename AssemblyBuilder, typename IrLowering>
inline bool lowerImpl(
AssemblyBuilder& build,
IrLowering& lowering,
IrFunction& function,
const std::vector<uint32_t>& sortedBlocks,
int bytecodeid,
AssemblyOptions options
)
{
// For each IR instruction that begins a bytecode instruction, which bytecode instruction is it?
std::vector<uint32_t> bcLocations(function.instructions.size() + 1, ~0u);
for (size_t i = 0; i < function.bcMapping.size(); ++i)
{
uint32_t irLocation = function.bcMapping[i].irLocation;
if (irLocation != ~0u)
bcLocations[irLocation] = uint32_t(i);
}
bool outputEnabled = options.includeAssembly || options.includeIr;
IrToStringContext ctx{build.text, function.blocks, function.constants, function.cfg};
// We use this to skip outlined fallback blocks from IR/asm text output
size_t textSize = build.text.length();
uint32_t codeSize = build.getCodeSize();
bool seenFallback = false;
IrBlock dummy;
dummy.start = ~0u;
// Make sure entry block is first
CODEGEN_ASSERT(sortedBlocks[0] == 0);
for (size_t i = 0; i < sortedBlocks.size(); ++i)
{
uint32_t blockIndex = sortedBlocks[i];
IrBlock& block = function.blocks[blockIndex];
if (block.kind == IrBlockKind::Dead)
continue;
CODEGEN_ASSERT(block.start != ~0u);
CODEGEN_ASSERT(block.finish != ~0u);
// If we want to skip fallback code IR/asm, we'll record when those blocks start once we see them
if (block.kind == IrBlockKind::Fallback && !seenFallback)
{
textSize = build.text.length();
codeSize = build.getCodeSize();
seenFallback = true;
}
if (options.includeIr)
{
if (options.includeIrPrefix == IncludeIrPrefix::Yes)
build.logAppend("# ");
toStringDetailed(ctx, block, blockIndex, options.includeUseInfo, options.includeCfgInfo, options.includeRegFlowInfo);
}
// Values can only reference restore operands in the current block chain
function.validRestoreOpBlocks.push_back(blockIndex);
build.setLabel(block.label);
if (blockIndex == function.entryBlock)
{
function.entryLocation = build.getLabelOffset(block.label);
}
IrBlock& nextBlock = getNextBlock(function, sortedBlocks, dummy, i);
// Optimizations often propagate information between blocks
// To make sure the register and spill state is correct when blocks are lowered, we check that sorted block order matches the expected one
if (block.expectedNextBlock != ~0u)
CODEGEN_ASSERT(function.getBlockIndex(nextBlock) == block.expectedNextBlock);
for (uint32_t index = block.start; index <= block.finish; index++)
{
CODEGEN_ASSERT(index < function.instructions.size());
uint32_t bcLocation = bcLocations[index];
// If IR instruction is the first one for the original bytecode, we can annotate it with source code text
if (outputEnabled && options.annotator && bcLocation != ~0u)
{
options.annotator(options.annotatorContext, build.text, bytecodeid, bcLocation);
// If available, report inferred register tags
BytecodeTypes bcTypes = function.getBytecodeTypesAt(bcLocation);
if (bcTypes.result != LBC_TYPE_ANY || bcTypes.a != LBC_TYPE_ANY || bcTypes.b != LBC_TYPE_ANY || bcTypes.c != LBC_TYPE_ANY)
{
toString(ctx.result, bcTypes, options.compilationOptions.userdataTypes);
build.logAppend("\n");
}
}
// If bytecode needs the location of this instruction for jumps, record it
if (bcLocation != ~0u)
{
Label label = (index == block.start) ? block.label : build.setLabel();
function.bcMapping[bcLocation].asmLocation = build.getLabelOffset(label);
}
IrInst& inst = function.instructions[index];
// Skip pseudo instructions, but make sure they are not used at this stage
// This also prevents them from getting into text output when that's enabled
if (isPseudo(inst.cmd))
{
CODEGEN_ASSERT(inst.useCount == 0);
continue;
}
// Either instruction result value is not referenced or the use count is not zero
CODEGEN_ASSERT(inst.lastUse == 0 || inst.useCount != 0);
if (options.includeIr)
{
if (options.includeIrPrefix == IncludeIrPrefix::Yes)
build.logAppend("# ");
toStringDetailed(ctx, block, blockIndex, inst, index, options.includeUseInfo);
}
lowering.lowerInst(inst, index, nextBlock);
if (lowering.hasError())
{
// Place labels for all blocks that we're skipping
// This is needed to avoid AssemblyBuilder assertions about jumps in earlier blocks with unplaced labels
for (size_t j = i + 1; j < sortedBlocks.size(); ++j)
{
IrBlock& abandoned = function.blocks[sortedBlocks[j]];
build.setLabel(abandoned.label);
}
lowering.finishFunction();
return false;
}
}
lowering.finishBlock(block, nextBlock);
if (options.includeIr && options.includeIrPrefix == IncludeIrPrefix::Yes)
build.logAppend("#\n");
if (block.expectedNextBlock == ~0u)
function.validRestoreOpBlocks.clear();
}
if (!seenFallback)
{
textSize = build.text.length();
codeSize = build.getCodeSize();
}
lowering.finishFunction();
if (outputEnabled && !options.includeOutlinedCode && textSize < build.text.size())
{
build.text.resize(textSize);
if (options.includeAssembly)
build.logAppend("; skipping %u bytes of outlined code\n", unsigned((build.getCodeSize() - codeSize) * sizeof(build.code[0])));
}
return true;
}
inline bool lowerIr(
X64::AssemblyBuilderX64& build,
IrBuilder& ir,
const std::vector<uint32_t>& sortedBlocks,
ModuleHelpers& helpers,
Proto* proto,
AssemblyOptions options,
LoweringStats* stats
)
{
optimizeMemoryOperandsX64(ir.function);
X64::IrLoweringX64 lowering(build, helpers, ir.function, stats);
return lowerImpl(build, lowering, ir.function, sortedBlocks, proto->bytecodeid, options);
}
inline bool lowerIr(
A64::AssemblyBuilderA64& build,
IrBuilder& ir,
const std::vector<uint32_t>& sortedBlocks,
ModuleHelpers& helpers,
Proto* proto,
AssemblyOptions options,
LoweringStats* stats
)
{
A64::IrLoweringA64 lowering(build, helpers, ir.function, stats);
return lowerImpl(build, lowering, ir.function, sortedBlocks, proto->bytecodeid, options);
}
template<typename AssemblyBuilder>
inline bool lowerFunction(
IrBuilder& ir,
AssemblyBuilder& build,
ModuleHelpers& helpers,
Proto* proto,
AssemblyOptions options,
LoweringStats* stats,
CodeGenCompilationResult& codeGenCompilationResult
)
{
killUnusedBlocks(ir.function);
unsigned preOptBlockCount = 0;
unsigned maxBlockInstructions = 0;
for (const IrBlock& block : ir.function.blocks)
{
preOptBlockCount += (block.kind != IrBlockKind::Dead);
unsigned blockInstructions = block.finish - block.start;
maxBlockInstructions = std::max(maxBlockInstructions, blockInstructions);
}
// we update stats before checking the heuristic so that even if we bail out
// our stats include information about the limit that was exceeded.
if (stats)
{
stats->blocksPreOpt += preOptBlockCount;
stats->maxBlockInstructions = maxBlockInstructions;
}
if (preOptBlockCount >= unsigned(FInt::CodegenHeuristicsBlockLimit.value))
{
codeGenCompilationResult = CodeGenCompilationResult::CodeGenOverflowBlockLimit;
return false;
}
if (maxBlockInstructions >= unsigned(FInt::CodegenHeuristicsBlockInstructionLimit.value))
{
codeGenCompilationResult = CodeGenCompilationResult::CodeGenOverflowBlockInstructionLimit;
return false;
}
computeCfgInfo(ir.function);
if (!FFlag::DebugCodegenNoOpt)
{
bool useValueNumbering = !FFlag::DebugCodegenSkipNumbering;
constPropInBlockChains(ir, useValueNumbering);
if (!FFlag::DebugCodegenOptSize)
{
double startTime = 0.0;
unsigned constPropInstructionCount = 0;
if (stats)
{
constPropInstructionCount = getInstructionCount(ir.function.instructions, IrCmd::SUBSTITUTE);
startTime = lua_clock();
}
createLinearBlocks(ir, useValueNumbering);
if (stats)
{
stats->blockLinearizationStats.timeSeconds += lua_clock() - startTime;
constPropInstructionCount = getInstructionCount(ir.function.instructions, IrCmd::SUBSTITUTE) - constPropInstructionCount;
stats->blockLinearizationStats.constPropInstructionCount += constPropInstructionCount;
}
}
markDeadStoresInBlockChains(ir);
}
std::vector<uint32_t> sortedBlocks = getSortedBlockOrder(ir.function);
// In order to allocate registers during lowering, we need to know where instruction results are last used
updateLastUseLocations(ir.function, sortedBlocks);
if (stats)
{
for (const IrBlock& block : ir.function.blocks)
{
if (block.kind != IrBlockKind::Dead)
++stats->blocksPostOpt;
}
}
bool result = lowerIr(build, ir, sortedBlocks, helpers, proto, options, stats);
if (!result)
codeGenCompilationResult = CodeGenCompilationResult::CodeGenLoweringFailure;
return result;
}
} // namespace CodeGen
} // namespace Luau