luau/tests/TypeInfer.test.cpp
Andy Friesen 74c532053f
Sync to upstream/release/604 (#1106)
New Solver

* New algorithm for inferring the types of locals that have no
annotations. This
algorithm is very conservative by default, but is augmented with some
control
  flow awareness to handle most common scenarios.
* Fix bugs in type inference of tables
* Improve performance of by switching out standard C++ containers for
`DenseHashMap`
* Infrastructure to support clearer error messages in strict mode

Native Code Generation

* Fix a lowering issue with buffer.writeu8 and 0x80-0xff values: A
constant
  argument wasn't truncated to the target type range and that causes an
  assertion failure in `build.mov`.
* Store full lightuserdata value in loop iteration protocol lowering
* Add analysis to compute function bytecode distribution
* This includes a class to analyze the bytecode operator distribution
per
function and a CLI tool that produces a JSON report. See the new cmake
      target `Luau.Bytecode.CLI`

---------

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Alexander McCord <amccord@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Lily Brown <lbrown@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2023-11-17 10:46:18 -08:00

1506 lines
39 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/AstQuery.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/Frontend.h"
#include "Luau/Scope.h"
#include "Luau/TypeInfer.h"
#include "Luau/Type.h"
#include "Luau/VisitType.h"
#include "Fixture.h"
#include "ScopedFlags.h"
#include "doctest.h"
#include <algorithm>
LUAU_FASTFLAG(LuauFixLocationSpanTableIndexExpr);
LUAU_FASTFLAG(DebugLuauDeferredConstraintResolution);
LUAU_FASTFLAG(LuauInstantiateInSubtyping);
using namespace Luau;
TEST_SUITE_BEGIN("TypeInfer");
TEST_CASE_FIXTURE(Fixture, "tc_hello_world")
{
CheckResult result = check("local a = 7");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("number" == toString(requireType("a")));
}
TEST_CASE_FIXTURE(Fixture, "tc_propagation")
{
CheckResult result = check("local a = 7 local b = a");
LUAU_REQUIRE_NO_ERRORS(result);
TypeId bType = requireType("b");
CHECK_EQ(getPrimitiveType(bType), PrimitiveType::Number);
}
TEST_CASE_FIXTURE(Fixture, "tc_error")
{
CheckResult result = check("local a = 7 local b = 'hi' a = b");
if (FFlag::DebugLuauDeferredConstraintResolution)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("number | string" == toString(requireType("a")));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(
result.errors[0], (TypeError{Location{Position{0, 35}, Position{0, 36}}, TypeMismatch{builtinTypes->numberType, builtinTypes->stringType}}));
}
}
TEST_CASE_FIXTURE(Fixture, "tc_error_2")
{
CheckResult result = check("local a = 7 a = 'hi'");
if (FFlag::DebugLuauDeferredConstraintResolution)
{
LUAU_REQUIRE_NO_ERRORS(result);
CHECK("number | string" == toString(requireType("a")));
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ(result.errors[0], (TypeError{Location{Position{0, 18}, Position{0, 22}}, TypeMismatch{
requireType("a"),
builtinTypes->stringType,
}}));
}
}
TEST_CASE_FIXTURE(Fixture, "infer_locals_with_nil_value")
{
CheckResult result = check("local f = nil; f = 'hello world'");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::DebugLuauDeferredConstraintResolution)
{
CHECK("string?" == toString(requireType("f")));
}
else
{
TypeId ty = requireType("f");
CHECK_EQ(getPrimitiveType(ty), PrimitiveType::String);
}
}
TEST_CASE_FIXTURE(Fixture, "infer_locals_with_nil_value_2")
{
CheckResult result = check(R"(
local a = 2
local b = a,nil
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number", toString(requireType("a")));
CHECK_EQ("number", toString(requireType("b")));
}
TEST_CASE_FIXTURE(Fixture, "infer_locals_via_assignment_from_its_call_site")
{
CheckResult result = check(R"(
local a
function f(x) a = x end
f(1)
f("foo")
)");
if (FFlag::DebugLuauDeferredConstraintResolution)
{
CHECK("unknown" == toString(requireType("a")));
CHECK("(unknown) -> ()" == toString(requireType("f")));
LUAU_REQUIRE_NO_ERRORS(result);
}
else
{
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_EQ("number", toString(requireType("a")));
}
}
TEST_CASE_FIXTURE(Fixture, "infer_in_nocheck_mode")
{
ScopedFastFlag sff[]{
{"DebugLuauDeferredConstraintResolution", false},
};
CheckResult result = check(R"(
--!nocheck
function f(x)
return x
end
-- we get type information even if there's type errors
f(1, 2)
)");
CHECK_EQ("(any) -> (...any)", toString(requireType("f")));
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "obvious_type_error_in_nocheck_mode")
{
CheckResult result = check(R"(
--!nocheck
local x: string = 5
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "expr_statement")
{
CheckResult result = check("local foo = 5 foo()");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "if_statement")
{
CheckResult result = check(R"(
local a
local b
if true then
a = 'hello'
else
b = 999
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
if (FFlag::DebugLuauDeferredConstraintResolution)
{
CHECK("string?" == toString(requireType("a")));
CHECK("number?" == toString(requireType("b")));
}
else
{
CHECK_EQ(*builtinTypes->stringType, *requireType("a"));
CHECK_EQ(*builtinTypes->numberType, *requireType("b"));
}
}
TEST_CASE_FIXTURE(Fixture, "statements_are_topologically_sorted")
{
CheckResult result = check(R"(
function foo()
return bar(999), bar("hi")
end
function bar(i)
return i
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
dumpErrors(result);
}
TEST_CASE_FIXTURE(Fixture, "unify_nearly_identical_recursive_types")
{
CheckResult result = check(R"(
local o
o:method()
local p
p:method()
o = p
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "warn_on_lowercase_parent_property")
{
CheckResult result = check(R"(
local M = require(script.parent.DoesNotMatter)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto ed = get<DeprecatedApiUsed>(result.errors[0]);
REQUIRE(ed);
REQUIRE_EQ("parent", ed->symbol);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "weird_case")
{
CheckResult result = check(R"(
local function f() return 4 end
local d = math.deg(f())
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "dont_ice_when_failing_the_occurs_check")
{
CheckResult result = check(R"(
--!strict
local s
s(s, 'a')
)");
LUAU_REQUIRE_ERROR_COUNT(0, result);
}
TEST_CASE_FIXTURE(Fixture, "occurs_check_does_not_recurse_forever_if_asked_to_traverse_a_cyclic_type")
{
CheckResult result = check(R"(
--!strict
function u(t, w)
u(u, t)
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
#if 0
// CLI-29798
TEST_CASE_FIXTURE(Fixture, "crazy_complexity")
{
CheckResult result = check(R"(
--!nonstrict
A:A():A():A():A():A():A():A():A():A():A():A()
)");
MESSAGE("OK! Allocated ", typeChecker.types.size(), " types");
}
#endif
TEST_CASE_FIXTURE(Fixture, "type_errors_infer_types")
{
CheckResult result = check(R"(
local err = (true).x
local c = err.Parent.Reward.GetChildren
local d = err.Parent.Reward
local e = err.Parent
local f = err
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
UnknownProperty* err = get<UnknownProperty>(result.errors[0]);
REQUIRE(err != nullptr);
CHECK_EQ("boolean", toString(err->table));
CHECK_EQ("x", err->key);
// TODO: Should we assert anything about these tests when DCR is being used?
if (!FFlag::DebugLuauDeferredConstraintResolution)
{
CHECK_EQ("*error-type*", toString(requireType("c")));
CHECK_EQ("*error-type*", toString(requireType("d")));
CHECK_EQ("*error-type*", toString(requireType("e")));
CHECK_EQ("*error-type*", toString(requireType("f")));
}
}
TEST_CASE_FIXTURE(Fixture, "should_be_able_to_infer_this_without_stack_overflowing")
{
CheckResult result = check(R"(
local function f(x, y)
return x or y
end
local function dont_crash(x, y)
local z: typeof(f(x, y)) = f(x, y)
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "exponential_blowup_from_copying_types")
{
CheckResult result = check(R"(
--!strict
-- An example of exponential blowup in number of types
-- The problem is that if we define function f(a) return x end
-- then this has type <t>(t)->T where x:T
-- *but* it copies T each time f is applied
-- so { left = f("hi"), right = f(5) }
-- has type { left : T_L, right : T_R }
-- where T_L and T_R are copies of T.
-- x0 : T0 where T0 = {}
local x0 = {}
-- f0 : <t>(t)->T0
local function f0(a) return x0 end
-- x1 : T1 where T1 = { left : T0_L, right : T0_R }
local x1 = { left = f0("hi"), right = f0(5) }
-- f1 : <t>(t)->T1
local function f1(a) return x1 end
-- x2 : T2 where T2 = { left : T1_L, right : T1_R }
local x2 = { left = f1("hi"), right = f1(5) }
-- f2 : <t>(t)->T2
local function f2(a) return x2 end
-- etc etc
local x3 = { left = f2("hi"), right = f2(5) }
local function f3(a) return x3 end
local x4 = { left = f3("hi"), right = f3(5) }
return x4
)");
LUAU_REQUIRE_NO_ERRORS(result);
ModulePtr module = getMainModule();
// If we're not careful about copying, this ends up with O(2^N) types rather than O(N)
// (in this case 5 vs 31).
CHECK_GE(5, module->interfaceTypes.types.size());
}
// In these tests, a successful parse is required, so we need the parser to return the AST and then we can test the recursion depth limit in type
// checker. We also want it to somewhat match up with production values, so we push up the parser recursion limit a little bit instead.
TEST_CASE_FIXTURE(Fixture, "check_type_infer_recursion_count")
{
#if defined(LUAU_ENABLE_ASAN)
int limit = 250;
#elif defined(_DEBUG) || defined(_NOOPT)
int limit = 350;
#else
int limit = 600;
#endif
ScopedFastInt sfi{"LuauCheckRecursionLimit", limit};
CheckResult result = check("function f() return " + rep("{a=", limit) + "'a'" + rep("}", limit) + " end");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(nullptr != get<CodeTooComplex>(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "check_block_recursion_limit")
{
#if defined(LUAU_ENABLE_ASAN)
int limit = 250;
#elif defined(_DEBUG) || defined(_NOOPT)
int limit = 350;
#else
int limit = 600;
#endif
ScopedFastInt luauRecursionLimit{"LuauRecursionLimit", limit + 100};
ScopedFastInt luauCheckRecursionLimit{"LuauCheckRecursionLimit", limit - 100};
CheckResult result = check(rep("do ", limit) + "local a = 1" + rep(" end", limit));
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(nullptr != get<CodeTooComplex>(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "check_expr_recursion_limit")
{
#if defined(LUAU_ENABLE_ASAN)
int limit = 250;
#elif defined(_DEBUG) || defined(_NOOPT)
int limit = 300;
#else
int limit = 600;
#endif
ScopedFastInt luauRecursionLimit{"LuauRecursionLimit", limit + 100};
ScopedFastInt luauCheckRecursionLimit{"LuauCheckRecursionLimit", limit - 100};
CheckResult result = check(R"(("foo"))" + rep(":lower()", limit));
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_MESSAGE(nullptr != get<CodeTooComplex>(result.errors[0]), "Expected CodeTooComplex but got " << toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "globals")
{
CheckResult result = check(R"(
--!nonstrict
foo = true
foo = "now i'm a string!"
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("any", toString(requireType("foo")));
}
TEST_CASE_FIXTURE(Fixture, "globals2")
{
CheckResult result = check(R"(
--!nonstrict
foo = function() return 1 end
foo = "now i'm a string!"
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK_EQ("() -> (...any)", toString(tm->wantedType));
CHECK_EQ("string", toString(tm->givenType));
CHECK_EQ("() -> (...any)", toString(requireType("foo")));
}
TEST_CASE_FIXTURE(Fixture, "globals_are_banned_in_strict_mode")
{
CheckResult result = check(R"(
--!strict
foo = true
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
UnknownSymbol* us = get<UnknownSymbol>(result.errors[0]);
REQUIRE(us);
CHECK_EQ("foo", us->name);
}
TEST_CASE_FIXTURE(Fixture, "correctly_scope_locals_do")
{
CheckResult result = check(R"(
do
local a = 1
end
local b = a -- oops!
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
UnknownSymbol* us = get<UnknownSymbol>(result.errors[0]);
REQUIRE(us);
CHECK_EQ(us->name, "a");
}
TEST_CASE_FIXTURE(Fixture, "checking_should_not_ice")
{
CHECK_NOTHROW(check(R"(
--!nonstrict
f,g = ...
f(g(...))[...] = nil
f,xpcall = ...
local value = g(...)(g(...))
)"));
CHECK_EQ("any", toString(requireType("value")));
}
TEST_CASE_FIXTURE(Fixture, "cyclic_follow")
{
check(R"(
--!nonstrict
l0,table,_,_,_ = ...
_,_,_,_.time(...)._.n0,l0,_ = function(l0)
end,_.__index,(_),_.time(_.n0 or _,...)
for l0=...,_,"" do
end
_ += not _
do end
)");
}
TEST_CASE_FIXTURE(Fixture, "cyclic_follow_2")
{
check(R"(
--!nonstrict
n13,_,table,_,l0,_,_ = ...
_,n0[(_)],_,_._(...)._.n39,l0,_._ = function(l84,...)
end,_.__index,"",_,l0._(nil)
for l0=...,table.n5,_ do
end
_:_(...).n1 /= _
do
_(_ + _)
do end
end
)");
}
struct FindFreeTypes
{
bool foundOne = false;
template<typename ID>
void cycle(ID)
{
}
template<typename ID, typename T>
bool operator()(ID, T)
{
return !foundOne;
}
bool operator()(TypeId, FreeType)
{
foundOne = true;
return false;
}
bool operator()(TypePackId, FreeTypePack)
{
foundOne = true;
return false;
}
};
TEST_CASE_FIXTURE(Fixture, "tc_after_error_recovery")
{
CheckResult result = check(R"(
local x =
local a = 7
)");
LUAU_REQUIRE_ERRORS(result);
TypeId aType = requireType("a");
CHECK_EQ(getPrimitiveType(aType), PrimitiveType::Number);
}
// Check that type checker knows about error expressions
TEST_CASE_FIXTURE(Fixture, "tc_after_error_recovery_no_assert")
{
CheckResult result = check("function +() local _ = true end");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "tc_after_error_recovery_no_replacement_name_in_error")
{
{
CheckResult result = check(R"(
--!strict
local t = { x = 10, y = 20 }
return t.
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
{
CheckResult result = check(R"(
--!strict
export type = number
export type = string
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
}
{
CheckResult result = check(R"(
--!strict
function string.() end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
{
CheckResult result = check(R"(
--!strict
local function () end
local function () end
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
}
{
CheckResult result = check(R"(
--!strict
local dm = {}
function dm.() end
function dm.() end
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
}
}
TEST_CASE_FIXTURE(BuiltinsFixture, "index_expr_should_be_checked")
{
CheckResult result = check(R"(
local foo: any
print(foo[(true).x])
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
UnknownProperty* up = get<UnknownProperty>(result.errors[0]); // Should probably be NotATable
REQUIRE(up);
CHECK_EQ("boolean", toString(up->table));
CHECK_EQ("x", up->key);
}
TEST_CASE_FIXTURE(Fixture, "stringify_nested_unions_with_optionals")
{
CheckResult result = check(R"(
--!strict
local a: number | (string | boolean) | nil
local b: number = a
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK_EQ(builtinTypes->numberType, tm->wantedType);
CHECK_EQ("(boolean | number | string)?", toString(tm->givenType));
}
TEST_CASE_FIXTURE(Fixture, "cli_39932_use_unifier_in_ensure_methods")
{
CheckResult result = check(R"(
local x: {number|number} = {1, 2, 3}
local y = x[1] - x[2]
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "dont_report_type_errors_within_an_AstStatError")
{
CheckResult result = check(R"(
foo
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "dont_report_type_errors_within_an_AstExprError")
{
CheckResult result = check(R"(
local a = foo:
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
}
TEST_CASE_FIXTURE(Fixture, "dont_ice_on_astexprerror")
{
CheckResult result = check(R"(
local foo = -;
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "luau_resolves_symbols_the_same_way_lua_does")
{
CheckResult result = check(R"(
--!strict
function Funky()
local a: number = foo
end
local foo: string = 'hello'
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto e = result.errors.front();
REQUIRE_MESSAGE(get<UnknownSymbol>(e) != nullptr, "Expected UnknownSymbol, but got " << e);
}
TEST_CASE_FIXTURE(Fixture, "no_stack_overflow_from_isoptional")
{
CheckResult result = check(R"(
function _(l0:t0): (any, ()->())
return 0,_
end
type t0 = t0 | {}
_(nil)
)");
LUAU_REQUIRE_ERRORS(result);
std::optional<TypeId> t0 = lookupType("t0");
REQUIRE(t0);
CHECK_EQ("*error-type*", toString(*t0));
auto it = std::find_if(result.errors.begin(), result.errors.end(), [](TypeError& err) {
return get<OccursCheckFailed>(err);
});
CHECK(it != result.errors.end());
}
TEST_CASE_FIXTURE(BuiltinsFixture, "no_stack_overflow_from_isoptional2")
{
CheckResult result = check(R"(
function _(l0:({})|(t0)):((((typeof((xpcall)))|(t96<t0>))|(t13))&(t96<t0>),()->typeof(...))
return 0,_
end
type t0<t107> = ((typeof((_G)))|(({})|(t0)))|(t0)
_(nil)
local t: ({})|(t0)
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "no_infinite_loop_when_trying_to_unify_uh_this")
{
CheckResult result = check(R"(
function _(l22,l0):((((boolean)|(t0))|(t0))&(()->(()->(()->()->{},(t0<t22>)|(t0)),any)))
return function():t0<t0>
end
end
type t0<t0> = ((typeof(_))|(any))|(typeof(_))
_()
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "no_heap_use_after_free_error")
{
CheckResult result = check(R"(
--!nonstrict
_ += _:n0(xpcall,_)
local l0
do end
while _ do
function _:_()
_ += _(_._(_:n0(xpcall,_)))
end
end
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "infer_type_assertion_value_type")
{
CheckResult result = check(R"(
local function f()
return {4, "b", 3} :: {string|number}
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "infer_assignment_value_types")
{
CheckResult result = check(R"(
local a: (number, number) -> number = function(a, b) return a - b end
a = function(a, b) return a + b end
local b: {number|string}
local c: {number|string}
b, c = {2, "s"}, {"b", 4}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "infer_assignment_value_types_mutable_lval")
{
CheckResult result = check(R"(
local a = {}
a.x = 2
a = setmetatable(a, { __call = function(x) end })
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "infer_through_group_expr")
{
CheckResult result = check(R"(
local function f(a: (number, number) -> number) return a(1, 3) end
f(((function(a, b) return a + b end)))
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "tc_if_else_expressions1")
{
CheckResult result = check(R"(local a = if true then "true" else "false")");
LUAU_REQUIRE_NO_ERRORS(result);
TypeId aType = requireType("a");
CHECK_EQ(getPrimitiveType(aType), PrimitiveType::String);
}
TEST_CASE_FIXTURE(Fixture, "tc_if_else_expressions2")
{
// Test expression containing elseif
CheckResult result = check(R"(
local a = if false then "a" elseif false then "b" else "c"
)");
LUAU_REQUIRE_NO_ERRORS(result);
TypeId aType = requireType("a");
CHECK_EQ(getPrimitiveType(aType), PrimitiveType::String);
}
TEST_CASE_FIXTURE(Fixture, "tc_if_else_expressions_type_union")
{
CheckResult result = check(R"(local a: number? = if true then 42 else nil)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(toString(requireType("a"), {true}), "number?");
}
TEST_CASE_FIXTURE(Fixture, "tc_if_else_expressions_expected_type_1")
{
CheckResult result = check(R"(
type X = {number | string}
local a: X = if true then {"1", 2, 3} else {4, 5, 6}
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ(toString(requireType("a"), {true}), "{number | string}");
}
TEST_CASE_FIXTURE(Fixture, "tc_if_else_expressions_expected_type_2")
{
CheckResult result = check(R"(
local a: number? = if true then 1 else nil
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "tc_if_else_expressions_expected_type_3")
{
CheckResult result = check(R"(
local function times<T>(n: any, f: () -> T)
local result: {T} = {}
local res = f()
table.insert(result, if true then res else n)
return result
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "tc_interpolated_string_basic")
{
CheckResult result = check(R"(
local foo: string = `hello {"world"}`
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "tc_interpolated_string_with_invalid_expression")
{
CheckResult result = check(R"(
local function f(x: number) end
local foo: string = `hello {f("uh oh")}`
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "tc_interpolated_string_constant_type")
{
CheckResult result = check(R"(
local foo: "hello" = `hello`
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
/*
* If it wasn't instantly obvious, we have the fuzzer to thank for this gem of a test.
*
* We had an issue here where the scope for the `if` block here would
* have an elevated TypeLevel even though there is no function nesting going on.
* This would result in a free type for the type of _ that was much higher than
* it should be. This type would be erroneously quantified in the definition of `aaa`.
* This in turn caused an ice when evaluating `_()` in the while loop.
*/
TEST_CASE_FIXTURE(Fixture, "free_types_introduced_within_control_flow_constructs_do_not_get_an_elevated_TypeLevel")
{
check(R"(
--!strict
if _ then
_[_], _ = nil
_()
end
local aaa = function():typeof(_) return 1 end
if aaa then
while _() do
end
end
)");
// No ice()? No problem.
}
/*
* This is a bit elaborate. Bear with me.
*
* The type of _ becomes free with the first statement. With the second, we unify it with a function.
*
* At this point, it is important that the newly created fresh types of this new function type are promoted
* to the same level as the original free type. If we do not, they are incorrectly ascribed the level of the
* containing function.
*
* If this is allowed to happen, the final lambda erroneously quantifies the type of _ to something ridiculous
* just before we typecheck the invocation to _.
*/
TEST_CASE_FIXTURE(Fixture, "fuzzer_found_this")
{
check(R"(
l0, _ = nil
local function p()
_()
end
a = _(
function():(typeof(p),typeof(_))
end
)[nil]
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "recursive_metatable_crash")
{
CheckResult result = check(R"(
local function getIt()
local y
y = setmetatable({}, y)
return y
end
local a = getIt()
local b = getIt()
local c = a or b
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "bound_typepack_promote")
{
// No assertions should trigger
check(R"(
local function p()
local this = {}
this.pf = foo()
function this:IsActive() end
function this:Start(o) end
return this
end
local function h(tp, o)
ep = tp
tp:Start(o)
tp.pf.Connect(function()
ep:IsActive()
end)
end
function on()
local t = p()
h(t)
end
)");
}
TEST_CASE_FIXTURE(Fixture, "cli_50041_committing_txnlog_in_apollo_client_error")
{
CheckResult result = check(R"(
--!strict
--!nolint
type FieldSpecifier = {
fieldName: string,
}
type ReadFieldOptions = FieldSpecifier & { from: number? }
type Policies = {
getStoreFieldName: (self: Policies, fieldSpec: FieldSpecifier) -> string,
}
local Policies = {}
local function foo(p: Policies)
end
function Policies:getStoreFieldName(specifier: FieldSpecifier): string
return ""
end
function Policies:readField(options: ReadFieldOptions)
local _ = self:getStoreFieldName(options)
foo(self)
end
)");
if (FFlag::LuauInstantiateInSubtyping)
{
// though this didn't error before the flag, it seems as though it should error since fields of a table are invariant.
// the user's intent would likely be that these "method" fields would be read-only, but without an annotation, accepting this should be
// unsound.
LUAU_REQUIRE_ERROR_COUNT(1, result);
const std::string expected = R"(Type 'Policies' from 'MainModule' could not be converted into 'Policies' from 'MainModule'
caused by:
Property 'getStoreFieldName' is not compatible.
Type
'(Policies, FieldSpecifier & {| from: number? |}) -> (a, b...)'
could not be converted into
'(Policies, FieldSpecifier) -> string'
caused by:
Argument #2 type is not compatible.
Type
'FieldSpecifier'
could not be converted into
'FieldSpecifier & {| from: number? |}'
caused by:
Not all intersection parts are compatible.
Table type 'FieldSpecifier' not compatible with type '{| from: number? |}' because the former has extra field 'fieldName')";
CHECK_EQ(expected, toString(result.errors[0]));
}
else
{
LUAU_REQUIRE_NO_ERRORS(result);
}
}
TEST_CASE_FIXTURE(Fixture, "type_infer_recursion_limit_no_ice")
{
ScopedFastInt sfi("LuauTypeInferRecursionLimit", 2);
CheckResult result = check(R"(
function complex()
function _(l0:t0): (any, ()->())
return 0,_
end
type t0 = t0 | {}
_(nil)
end
)");
LUAU_REQUIRE_ERRORS(result);
CHECK_EQ("Code is too complex to typecheck! Consider simplifying the code around this area", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "type_infer_recursion_limit_normalizer")
{
ScopedFastInt sfi("LuauTypeInferRecursionLimit", 10);
CheckResult result = check(R"(
function f<a,b,c,d,e,f,g,h,i,j>()
local x : a&b&c&d&e&f&g&h&(i?)
local y : (a&b&c&d&e&f&g&h&i)? = x
end
)");
validateErrors(result.errors);
REQUIRE_MESSAGE(!result.errors.empty(), getErrors(result));
CHECK(1 == result.errors.size());
CHECK(Location{{3, 12}, {3, 46}} == result.errors[0].location);
CHECK_EQ("Code is too complex to typecheck! Consider simplifying the code around this area", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "type_infer_cache_limit_normalizer")
{
ScopedFastInt sfi("LuauNormalizeCacheLimit", 10);
CheckResult result = check(R"(
local x : ((number) -> number) & ((string) -> string) & ((nil) -> nil) & (({}) -> {})
local y : (number | string | nil | {}) -> (number | string | nil | {}) = x
)");
LUAU_REQUIRE_ERRORS(result);
CHECK_EQ("Code is too complex to typecheck! Consider simplifying the code around this area", toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "follow_on_new_types_in_substitution")
{
CheckResult result = check(R"(
local obj = {}
function obj:Method()
self.fieldA = function(object)
if object.a then
self.arr[object] = true
elseif object.b then
self.fieldB[object] = object:Connect(function(arg)
self.arr[arg] = nil
end)
end
end
end
return obj
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "types_stored_in_astResolvedTypes")
{
CheckResult result = check(R"(
type alias = typeof("hello")
local function foo(param: alias)
end
)");
auto node = findNodeAtPosition(*getMainSourceModule(), {2, 16});
auto ty = lookupType("alias");
REQUIRE(node);
REQUIRE(node->is<AstExprFunction>());
REQUIRE(ty);
auto func = node->as<AstExprFunction>();
REQUIRE(func->args.size == 1);
auto arg = *func->args.begin();
auto annotation = arg->annotation;
CHECK_EQ(*getMainModule()->astResolvedTypes.find(annotation), *ty);
}
TEST_CASE_FIXTURE(Fixture, "bidirectional_checking_of_higher_order_function")
{
CheckResult result = check(R"(
function higher(cb: (number) -> ()) end
higher(function(n) -- no error here. n : number
local e: string = n -- error here. n /: string
end)
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
Location location = result.errors[0].location;
CHECK(location.begin.line == 4);
CHECK(location.end.line == 4);
}
TEST_CASE_FIXTURE(Fixture, "bidirectional_checking_of_callback_property")
{
CheckResult result = check(R"(
local print: (number) -> ()
type Point = {x: number, y: number}
local T : {callback: ((Point) -> ())?} = {}
T.callback = function(p) -- No error here
print(p.z) -- error here. Point has no property z
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK_MESSAGE(get<UnknownProperty>(result.errors[0]), "Expected UnknownProperty but got " << result.errors[0]);
Location location = result.errors[0].location;
CHECK(location.begin.line == 7);
CHECK(location.end.line == 7);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "it_is_ok_to_have_inconsistent_number_of_return_values_in_nonstrict")
{
CheckResult result = check(R"(
--!nonstrict
function validate(stats, hits, misses)
local checked = {}
for _,l in ipairs(hits) do
if not (stats[l] and stats[l] > 0) then
return false, string.format("expected line %d to be hit", l)
end
checked[l] = true
end
for _,l in ipairs(misses) do
if not (stats[l] and stats[l] == 0) then
return false, string.format("expected line %d to be missed", l)
end
checked[l] = true
end
for k,v in pairs(stats) do
if type(k) == "number" and not checked[k] then
return false, string.format("expected line %d to be absent", k)
end
end
return true
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "fuzz_free_table_type_change_during_index_check")
{
CheckResult result = check(R"(
local _ = nil
while _["" >= _] do
end
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "typechecking_in_type_guards")
{
CheckResult result = check(R"(
local a = type(foo) == 'nil'
local b = typeof(foo) ~= 'nil'
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
CHECK(toString(result.errors[0]) == "Unknown global 'foo'");
CHECK(toString(result.errors[1]) == "Unknown global 'foo'");
}
TEST_CASE_FIXTURE(Fixture, "occurs_isnt_always_failure")
{
CheckResult result = check(R"(
function f(x, c) -- x : X
local y = if c then x else nil -- y : X?
local z = if c then x else nil -- z : X?
y = z
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "dcr_delays_expansion_of_function_containing_blocked_parameter_type")
{
ScopedFastFlag sff[] = {
{"DebugLuauDeferredConstraintResolution", true},
// If we run this with error-suppression, it triggers an assertion.
// FATAL ERROR: Assertion failed: !"Internal error: Trying to normalize a BlockedType"
{"LuauTransitiveSubtyping", false},
};
CheckResult result = check(R"(
local b: any
function f(x)
local a = b[1] or 'Cn'
local c = x[1]
if a:sub(1, #c) == c then
end
end
)");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "recursive_function_that_invokes_itself_with_a_refinement_of_its_parameter")
{
CheckResult result = check(R"(
local TRUE: true = true
local function matches(value, t: true)
if value then
return true
end
end
local function readValue(breakpoint)
if matches(breakpoint, TRUE) then
readValue(breakpoint)
end
end
)");
CHECK("<a>(a) -> ()" == toString(requireType("readValue")));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "recursive_function_that_invokes_itself_with_a_refinement_of_its_parameter_2")
{
CheckResult result = check(R"(
local function readValue(breakpoint)
if type(breakpoint) == 'number' then
readValue(breakpoint)
end
end
)");
CHECK("(number) -> ()" == toString(requireType("readValue")));
}
/*
* We got into a case where, as we unified two nearly identical unions with one
* another, where we had a concatenated TxnLog that created a cycle between two
* free types.
*
* This code used to crash the type checker. See CLI-71190
*/
TEST_CASE_FIXTURE(BuiltinsFixture, "convoluted_case_where_two_TypeVars_were_bound_to_each_other")
{
check(R"(
type React_Ref<ElementType> = { current: ElementType } | ((ElementType) -> ())
type React_AbstractComponent<Config, Instance> = {
render: ((ref: React_Ref<Instance>) -> nil)
}
local createElement : <P, T>(React_AbstractComponent<P, T>) -> ()
function ScrollView:render()
local one = table.unpack(
if true then a else b
)
createElement(one)
createElement(one)
end
)");
// If this code does not crash, we are in good shape.
}
/*
* Under DCR we had an issue where constraint resolution resulted in the
* following:
*
* *blocked-55* ~ hasProp {- name: *blocked-55* -}, "name"
*
* This is a perfectly reasonable constraint, but one that doesn't actually
* constrain anything. When we encounter a constraint like this, we need to
* replace the result type by a free type that is scoped to the enclosing table.
*
* Conceptually, it's simplest to think of this constraint as one that is
* tautological. It does not actually contribute any new information.
*/
TEST_CASE_FIXTURE(Fixture, "handle_self_referential_HasProp_constraints")
{
CheckResult result = check(R"(
local function calculateTopBarHeight(props)
end
local function isTopPage(props)
local topMostOpaquePage
if props.avatarRoute then
topMostOpaquePage = props.avatarRoute.opaque.name
else
topMostOpaquePage = props.opaquePage
end
end
function TopBarContainer:updateTopBarHeight(prevProps, prevState)
calculateTopBarHeight(self.props)
isTopPage(self.props)
local topMostOpaquePage
if self.props.avatarRoute then
topMostOpaquePage = self.props.avatarRoute.opaque.name
-- ^--------------------------------^
else
topMostOpaquePage = self.props.opaquePage
end
end
)");
}
/* We had an issue where we were unifying two type packs
*
* free-2-0... and (string, free-4-0...)
*
* The correct thing to do here is to promote everything on the right side to
* level 2-0 before binding the left pack to the right. If we fail to do this,
* then the code fragment here fails to typecheck because the argument and
* return types of C are generalized before we ever get to checking the body of
* C.
*/
TEST_CASE_FIXTURE(Fixture, "promote_tail_type_packs")
{
CheckResult result = check(R"(
--!strict
local A: any = nil
local C
local D = A(
A({}, {
__call = function(a): string
local E: string = C(a)
return E
end
}),
{
F = function(s: typeof(C))
end
}
)
function C(b: any): string
return ''
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "lti_must_record_contributing_locations")
{
ScopedFastFlag sff_DebugLuauDeferredConstraintResolution{"DebugLuauDeferredConstraintResolution", true};
CheckResult result = check(R"(
local function f(a)
if math.random() > 0.5 then
math.abs(a)
else
string.len(a)
end
end
)");
// We inspect the actual errors in other tests; this test verifies that we
// actually recorded breadcrumbs for a.
LUAU_REQUIRE_ERROR_COUNT(3, result);
TypeId fnTy = requireType("f");
const FunctionType* fn = get<FunctionType>(fnTy);
REQUIRE(fn);
TypeId argTy = *first(fn->argTypes);
std::vector<std::pair<Location, TypeId>> locations = getMainModule()->upperBoundContributors[argTy];
CHECK(locations.size() == 2);
}
/*
* CLI-49876
*
* We had a bug where we would not use the correct TxnLog when evaluating a
* variadic overload. We could therefore get into a state where the TxnLog has
* logged that a generic matches to one type, but the variadic tail has already
* been bound to another type outside of that TxnLog.
*
* This caused type checking to succeed when it should have failed.
*/
TEST_CASE_FIXTURE(BuiltinsFixture, "be_sure_to_use_active_txnlog_when_evaluating_a_variadic_overload")
{
CheckResult result = check(R"(
local function concat<T>(target: {T}, ...: {T} | T): {T}
return (nil :: any) :: {T}
end
local res = concat({"alic"}, 1, 2)
)");
LUAU_REQUIRE_ERRORS(result);
for (const auto& e : result.errors)
CHECK(5 == e.location.begin.line);
}
TEST_SUITE_END();