luau/Analysis/include/Luau/Constraint.h
Lily Brown e5ec0cdff3
Sync to upstream/release/601 (#1084)
## What's changed

- `bit32.byteswap` added
([RFC](4f543ec23b/docs/function-bit32-byteswap.md))
- Buffer library implementation
([RFC](4f543ec23b/docs/type-byte-buffer.md))
- Fixed a missing `stdint.h` include
- Fixed parser limiter for recursive type annotations being kind of
weird (fixes #645)

### Native Codegen
- Fixed a pair of issues when lowering `bit32.extract`
- Fixed a narrow edge case that could result in an infinite loop without
an interruption
- Fixed a negative array out-of-bounds access issue
- Temporarily reverted linear block predecessor value propagation

### New type solver
- We now type check assignments to annotated variables
- Fixed some test cases under local type inference
- Moved `isPending` checks for type families to improve performance
- Optimized our process for testing if a free type is sufficiently
solved
- Removed "none ptr" from lea instruction disassembly logging

### Build system & tooling
- CMake configuration now validates dependencies to maintain separation
between components
- Improvements to the fuzzer coverage
- Deduplicator for fuzzed callstacks

---------

Co-authored-by: Arseny Kapoulkine <arseny.kapoulkine@gmail.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
2023-10-27 14:18:41 -07:00

284 lines
7.2 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#pragma once
#include "Luau/Ast.h" // Used for some of the enumerations
#include "Luau/DenseHash.h"
#include "Luau/NotNull.h"
#include "Luau/Variant.h"
#include "Luau/TypeFwd.h"
#include <string>
#include <memory>
#include <vector>
namespace Luau
{
struct Scope;
// subType <: superType
struct SubtypeConstraint
{
TypeId subType;
TypeId superType;
};
// subPack <: superPack
struct PackSubtypeConstraint
{
TypePackId subPack;
TypePackId superPack;
// HACK!! TODO clip.
// We need to know which of `PackSubtypeConstraint` are emitted from `AstStatReturn` vs any others.
// Then we force these specific `PackSubtypeConstraint` to only dispatch in the order of the `return`s.
bool returns = false;
};
// generalizedType ~ gen sourceType
struct GeneralizationConstraint
{
TypeId generalizedType;
TypeId sourceType;
};
// subType ~ inst superType
struct InstantiationConstraint
{
TypeId subType;
TypeId superType;
};
// iteratee is iterable
// iterators is the iteration types.
struct IterableConstraint
{
TypePackId iterator;
TypePackId variables;
const AstNode* nextAstFragment;
DenseHashMap<const AstNode*, TypeId>* astForInNextTypes;
};
// name(namedType) = name
struct NameConstraint
{
TypeId namedType;
std::string name;
bool synthetic = false;
std::vector<TypeId> typeParameters;
std::vector<TypePackId> typePackParameters;
};
// target ~ inst target
struct TypeAliasExpansionConstraint
{
// Must be a PendingExpansionType.
TypeId target;
};
struct FunctionCallConstraint
{
TypeId fn;
TypePackId argsPack;
TypePackId result;
class AstExprCall* callSite = nullptr;
std::vector<std::optional<TypeId>> discriminantTypes;
// When we dispatch this constraint, we update the key at this map to record
// the overload that we selected.
DenseHashMap<const AstNode*, TypeId>* astOverloadResolvedTypes = nullptr;
};
// result ~ prim ExpectedType SomeSingletonType MultitonType
//
// If ExpectedType is potentially a singleton (an actual singleton or a union
// that contains a singleton), then result ~ SomeSingletonType
//
// else result ~ MultitonType
struct PrimitiveTypeConstraint
{
TypeId resultType;
TypeId expectedType;
TypeId singletonType;
TypeId multitonType;
};
// result ~ hasProp type "prop_name"
//
// If the subject is a table, bind the result to the named prop. If the table
// has an indexer, bind it to the index result type. If the subject is a union,
// bind the result to the union of its constituents' properties.
//
// It would be nice to get rid of this constraint and someday replace it with
//
// T <: {p: X}
//
// Where {} describes an inexact shape type.
struct HasPropConstraint
{
TypeId resultType;
TypeId subjectType;
std::string prop;
// HACK: We presently need types like true|false or string|"hello" when
// deciding whether a particular literal expression should have a singleton
// type. This boolean is set to true when extracting the property type of a
// value that may be a union of tables.
//
// For example, in the following code fragment, we want the lookup of the
// success property to yield true|false when extracting an expectedType in
// this expression:
//
// type Result<T, E> = {success:true, result: T} | {success:false, error: E}
//
// local r: Result<number, string> = {success=true, result=9}
//
// If we naively simplify the expectedType to boolean, we will erroneously
// compute the type boolean for the success property of the table literal.
// This causes type checking to fail.
bool suppressSimplification = false;
};
// result ~ setProp subjectType ["prop", "prop2", ...] propType
//
// If the subject is a table or table-like thing that already has the named
// property chain, we unify propType with that existing property type.
//
// If the subject is a free table, we augment it in place.
//
// If the subject is an unsealed table, result is an augmented table that
// includes that new prop.
struct SetPropConstraint
{
TypeId resultType;
TypeId subjectType;
std::vector<std::string> path;
TypeId propType;
};
// result ~ setIndexer subjectType indexType propType
//
// If the subject is a table or table-like thing that already has an indexer,
// unify its indexType and propType with those from this constraint.
//
// If the table is a free or unsealed table, we augment it with a new indexer.
struct SetIndexerConstraint
{
TypeId resultType;
TypeId subjectType;
TypeId indexType;
TypeId propType;
};
// if negation:
// result ~ if isSingleton D then ~D else unknown where D = discriminantType
// if not negation:
// result ~ if isSingleton D then D else unknown where D = discriminantType
struct SingletonOrTopTypeConstraint
{
TypeId resultType;
TypeId discriminantType;
bool negated;
};
// resultType ~ unpack sourceTypePack
//
// Similar to PackSubtypeConstraint, but with one important difference: If the
// sourcePack is blocked, this constraint blocks.
struct UnpackConstraint
{
TypePackId resultPack;
TypePackId sourcePack;
};
// resultType ~ refine type mode discriminant
//
// Compute type & discriminant (or type | discriminant) as soon as possible (but
// no sooner), simplify, and bind resultType to that type.
struct RefineConstraint
{
enum
{
Intersection,
Union
} mode;
TypeId resultType;
TypeId type;
TypeId discriminant;
};
// resultType ~ T0 op T1 op ... op TN
//
// op is either union or intersection. If any of the input types are blocked,
// this constraint will block unless forced.
struct SetOpConstraint
{
enum
{
Intersection,
Union
} mode;
TypeId resultType;
std::vector<TypeId> types;
};
// ty ~ reduce ty
//
// Try to reduce ty, if it is a TypeFamilyInstanceType. Otherwise, do nothing.
struct ReduceConstraint
{
TypeId ty;
};
// tp ~ reduce tp
//
// Analogous to ReduceConstraint, but for type packs.
struct ReducePackConstraint
{
TypePackId tp;
};
using ConstraintV = Variant<SubtypeConstraint, PackSubtypeConstraint, GeneralizationConstraint, InstantiationConstraint, IterableConstraint,
NameConstraint, TypeAliasExpansionConstraint, FunctionCallConstraint, PrimitiveTypeConstraint, HasPropConstraint, SetPropConstraint,
SetIndexerConstraint, SingletonOrTopTypeConstraint, UnpackConstraint, RefineConstraint, SetOpConstraint, ReduceConstraint, ReducePackConstraint>;
struct Constraint
{
Constraint(NotNull<Scope> scope, const Location& location, ConstraintV&& c);
Constraint(const Constraint&) = delete;
Constraint& operator=(const Constraint&) = delete;
NotNull<Scope> scope;
Location location;
ConstraintV c;
std::vector<NotNull<Constraint>> dependencies;
DenseHashSet<TypeId> getFreeTypes() const;
};
using ConstraintPtr = std::unique_ptr<Constraint>;
inline Constraint& asMutable(const Constraint& c)
{
return const_cast<Constraint&>(c);
}
template<typename T>
T* getMutable(Constraint& c)
{
return ::Luau::get_if<T>(&c.c);
}
template<typename T>
const T* get(const Constraint& c)
{
return getMutable<T>(asMutable(c));
}
} // namespace Luau