luau/tests/TypeInfer.aliases.test.cpp
ayoungbloodrbx 6b33251b89
Sync to upstream/release/667 (#1754)
After a very auspicious release last week, we have a new bevy of changes
for you!

## What's Changed

### Deprecated Attribute

This release includes an implementation of the `@deprecated` attribute
proposed in [this
RFC](https://rfcs.luau.org/syntax-attribute-functions-deprecated.html).
It relies on the new type solver to propagate deprecation information
from function and method AST nodes to the corresponding type objects.
These objects are queried by a linter pass when it encounters local,
global, or indexed variables, to issue deprecation warnings. Uses of
deprecated functions and methods in recursion are ignored. To support
deprecation of class methods, the parser has been extended to allow
attribute declarations on class methods. The implementation does not
support parameters, so it is not currently possible for users to
customize deprecation messages.

### General

- Add a limit for normalization of function types.

### New Type Solver

- Fix type checker to accept numbers as concat operands (Fixes #1671).
- Fix user-defined type functions failing when used inside type
aliases/nested calls (Fixes #1738, Fixes #1679).
- Improve constraint generation for overloaded functions (in part thanks
to @vvatheus in #1694).
- Improve type inference for indexers on table literals, especially when
passing table literals directly as a function call argument.
- Equate regular error type and intersection with a negation of an error
type.
- Avoid swapping types in 2-part union when RHS is optional.
- Use simplification when doing `~nil` refinements.
- `len<>` now works on metatables without `__len` function.

### AST

- Retain source information for `AstTypeUnion` and
`AstTypeIntersection`.

### Transpiler

- Print attributes on functions.

### Parser

- Allow types in indexers to begin with string literals by @jackdotink
in #1750.

### Autocomplete

- Evaluate user-defined type functions in ill-formed source code to
provide autocomplete.
- Fix the start location of functions that have attributes.
- Implement better fragment selection.

### Internal Contributors

Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Sora Kanosue <skanosue@roblox.com>
Co-authored-by: Talha Pathan <tpathan@roblox.com>
Co-authored-by: Varun Saini <vsaini@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>

**Full Changelog**:
https://github.com/luau-lang/luau/compare/0.666...0.667

---------

Co-authored-by: Hunter Goldstein <hgoldstein@roblox.com>
Co-authored-by: Varun Saini <61795485+vrn-sn@users.noreply.github.com>
Co-authored-by: Menarul Alam <malam@roblox.com>
Co-authored-by: Aviral Goel <agoel@roblox.com>
Co-authored-by: Vighnesh <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
Co-authored-by: Ariel Weiss <aaronweiss@roblox.com>
2025-03-28 16:15:46 -07:00

1229 lines
34 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Fixture.h"
#include "ScopedFlags.h"
#include "doctest.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/AstQuery.h"
using namespace Luau;
LUAU_FASTFLAG(LuauSolverV2)
LUAU_FASTFLAG(LuauFixInfiniteRecursionInNormalization)
LUAU_FASTFLAG(LuauImproveTypePathsInErrors)
LUAU_FASTFLAG(LuauPrecalculateMutatedFreeTypes2)
LUAU_FASTFLAG(LuauDeferBidirectionalInferenceForTableAssignment)
LUAU_FASTFLAG(LuauBidirectionalInferenceUpcast)
LUAU_FASTFLAG(LuauBidirectionalInferenceCollectIndexerTypes)
TEST_SUITE_BEGIN("TypeAliases");
TEST_CASE_FIXTURE(Fixture, "basic_alias")
{
CheckResult result = check(R"(
type T = number
local x: T = 1
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("number", toString(requireType("x")));
}
TEST_CASE_FIXTURE(Fixture, "cyclic_function_type_in_type_alias")
{
CheckResult result = check(R"(
type F = () -> F?
local function f()
return f
end
local g: F = f
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("t1 where t1 = () -> t1?", toString(requireType("g")));
}
TEST_CASE_FIXTURE(Fixture, "names_are_ascribed")
{
CheckResult result = check(R"(
type T = { x: number }
local x: T
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("T", toString(requireType("x")));
}
TEST_CASE_FIXTURE(Fixture, "cannot_steal_hoisted_type_alias")
{
// This is a tricky case. In order to support recursive type aliases,
// we first walk the block and generate free types as placeholders.
// We then walk the AST as normal. If we declare a type alias as below,
// we generate a free type. We then begin our normal walk, examining
// local x: T = "foo", which establishes two constraints:
// a <: b
// string <: a
// We then visit the type alias, and establish that
// b <: number
// Then, when solving these constraints, we dispatch them in the order
// they appear above. This means that a ~ b, and a ~ string, thus
// b ~ string. This means the b <: number constraint has no effect.
// Essentially we've "stolen" the alias's type out from under it.
// This test ensures that we don't actually do this.
CheckResult result = check(R"(
local x: T = "foo"
type T = number
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
if (FFlag::LuauSolverV2)
{
CHECK(
result.errors[0] ==
TypeError{
Location{{1, 21}, {1, 26}},
getMainSourceModule()->name,
TypeMismatch{
builtinTypes->numberType,
builtinTypes->stringType,
},
}
);
}
else
{
CHECK(
result.errors[0] ==
TypeError{
Location{{1, 8}, {1, 26}},
getMainSourceModule()->name,
TypeMismatch{
builtinTypes->numberType,
builtinTypes->stringType,
},
}
);
}
}
TEST_CASE_FIXTURE(Fixture, "mismatched_generic_type_param")
{
// We erroneously report an extra error in this case when the new solver is enabled.
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
type T<A> = (A...) -> ()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(
toString(result.errors[0]) ==
"Generic type 'A' is used as a variadic type parameter; consider changing 'A' to 'A...' in the generic argument list"
);
CHECK(result.errors[0].location == Location{{1, 21}, {1, 25}});
}
TEST_CASE_FIXTURE(Fixture, "mismatched_generic_pack_type_param")
{
CheckResult result = check(R"(
type T<A...> = (A) -> ()
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(
toString(result.errors[0]) ==
"Variadic type parameter 'A...' is used as a regular generic type; consider changing 'A...' to 'A' in the generic argument list"
);
CHECK(result.errors[0].location == Location{{1, 24}, {1, 25}});
}
TEST_CASE_FIXTURE(Fixture, "default_type_parameter")
{
CheckResult result = check(R"(
type T<A = number, B = string> = { a: A, b: B }
local x: T<string> = { a = "foo", b = "bar" }
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("x")) == "T<string, string>");
}
TEST_CASE_FIXTURE(Fixture, "default_pack_parameter")
{
CheckResult result = check(R"(
type T<A... = (number, string)> = { fn: (A...) -> () }
local x: T
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("x")) == "T<number, string>");
}
TEST_CASE_FIXTURE(Fixture, "saturate_to_first_type_pack")
{
CheckResult result = check(R"(
type T<A, B, C...> = { fn: (A, B) -> C... }
local x: T<string, number, string, boolean>
local f = x.fn
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK(toString(requireType("x")) == "T<string, number, string, boolean>");
CHECK(toString(requireType("f")) == "(string, number) -> (string, boolean)");
}
TEST_CASE_FIXTURE(Fixture, "cyclic_types_of_named_table_fields_do_not_expand_when_stringified")
{
CheckResult result = check(R"(
--!strict
type Node = { Parent: Node?; }
function f(node: Node)
node.Parent = 1
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE_MESSAGE(tm, result.errors[0]);
CHECK_EQ("Node?", toString(tm->wantedType));
CHECK_EQ(builtinTypes->numberType, tm->givenType);
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_aliases")
{
CheckResult result = check(R"(
--!strict
type T = { f: number, g: U }
type U = { h: number, i: T? }
local x: T = { f = 37, g = { h = 5, i = nil } }
x.g.i = x
local y: T = { f = 3, g = { h = 5, i = nil } }
y.g.i = y
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "generic_aliases")
{
ScopedFastFlag sff[] = {
{FFlag::LuauSolverV2, true},
};
CheckResult result = check(R"(
type T<a> = { v: a }
local x: T<number> = { v = 123 }
local y: T<string> = { v = "foo" }
local bad: T<number> = { v = "foo" }
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
const std::string expected = (FFlag::LuauImproveTypePathsInErrors)
? "Type '{ v: string }' could not be converted into 'T<number>'; \n"
"this is because accessing `v` results in `string` in the former type and `number` in the latter type, and "
"`string` is not exactly `number`"
: R"(Type '{ v: string }' could not be converted into 'T<number>'; at [read "v"], string is not exactly number)";
CHECK(result.errors[0].location == Location{{4, 31}, {4, 44}});
CHECK_EQ(expected, toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "dependent_generic_aliases")
{
ScopedFastFlag sff[] = {
{FFlag::LuauSolverV2, true},
};
CheckResult result = check(R"(
type T<a> = { v: a }
type U<a> = { t: T<a> }
local x: U<number> = { t = { v = 123 } }
local bad: U<number> = { t = { v = "foo" } }
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
const std::string expected =
(FFlag::LuauImproveTypePathsInErrors)
? "Type '{ t: { v: string } }' could not be converted into 'U<number>'; \n"
"this is because accessing `t.v` results in `string` in the former type and `number` in the latter type, and `string` is not exactly "
"`number`"
: R"(Type '{ t: { v: string } }' could not be converted into 'U<number>'; at [read "t"][read "v"], string is not exactly number)";
CHECK(result.errors[0].location == Location{{4, 31}, {4, 52}});
CHECK_EQ(expected, toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_generic_aliases")
{
ScopedFastFlag sffs[] = {
{FFlag::LuauPrecalculateMutatedFreeTypes2, true},
{FFlag::LuauDeferBidirectionalInferenceForTableAssignment, true},
{FFlag::LuauBidirectionalInferenceUpcast, true},
{FFlag::LuauBidirectionalInferenceCollectIndexerTypes, true},
};
CheckResult result = check(R"(
--!strict
type T<a> = { f: a, g: U<a> }
type U<a> = { h: a, i: T<a>? }
local x: T<number> = { f = 37, g = { h = 5, i = nil } }
x.g.i = x
local y: T<string> = { f = "hi", g = { h = "lo", i = nil } }
y.g.i = y
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_types_errors")
{
CheckResult result = check(R"(
--!strict
type T<a> = { f: a, g: U<a> }
type U<b> = { h: b, i: T<b>? }
local x: T<number> = { f = 37, g = { h = 5, i = nil } }
x.g.i = x
local y: T<string> = { f = "hi", g = { h = 5, i = nil } }
y.g.i = y
)");
LUAU_REQUIRE_ERRORS(result);
// We had a UAF in this example caused by not cloning type function arguments
ModulePtr module = frontend.moduleResolver.getModule("MainModule");
unfreeze(module->interfaceTypes);
copyErrors(module->errors, module->interfaceTypes, builtinTypes);
freeze(module->interfaceTypes);
module->internalTypes.clear();
module->astTypes.clear();
// Make sure the error strings don't include "VALUELESS"
for (auto error : module->errors)
CHECK_MESSAGE(toString(error).find("VALUELESS") == std::string::npos, toString(error));
}
TEST_CASE_FIXTURE(Fixture, "use_table_name_and_generic_params_in_errors")
{
CheckResult result = check(R"(
type Pair<T, U> = {first: T, second: U}
local a: Pair<string, number>
local b: Pair<string, string>
a = b
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK_EQ("Pair<string, number>", toString(tm->wantedType));
CHECK_EQ("Pair<string, string>", toString(tm->givenType));
}
TEST_CASE_FIXTURE(Fixture, "dont_stop_typechecking_after_reporting_duplicate_type_definition")
{
CheckResult result = check(R"(
type A = number
type A = string -- Redefinition of type 'A', previously defined at line 1
local foo: string = 1 -- "Type 'number' could not be converted into 'string'"
)");
LUAU_REQUIRE_ERROR_COUNT(2, result);
}
TEST_CASE_FIXTURE(Fixture, "stringify_type_alias_of_recursive_template_table_type")
{
CheckResult result = check(R"(
type Table<T> = { a: T }
type Wrapped = Table<Wrapped>
local l: Wrapped = 2
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
CHECK_EQ("Wrapped", toString(tm->wantedType));
CHECK_EQ(builtinTypes->numberType, tm->givenType);
}
TEST_CASE_FIXTURE(Fixture, "stringify_type_alias_of_recursive_template_table_type2")
{
CheckResult result = check(R"(
type Table<T> = { a: T }
type Wrapped = (Table<Wrapped>) -> string
local l: Wrapped = 2
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
TypeMismatch* tm = get<TypeMismatch>(result.errors[0]);
REQUIRE(tm);
if (FFlag::LuauSolverV2)
CHECK_EQ("t1 where t1 = ({ a: t1 }) -> string", toString(tm->wantedType));
else
CHECK_EQ("t1 where t1 = ({| a: t1 |}) -> string", toString(tm->wantedType));
CHECK_EQ(builtinTypes->numberType, tm->givenType);
}
// Check that recursive intersection type doesn't generate an OOM
TEST_CASE_FIXTURE(Fixture, "cli_38393_recursive_intersection_oom")
{
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
function _(l0:(t0)&((t0)&(((t0)&((t0)->()))->(typeof(_),typeof(# _)))),l39,...):any
end
type t0<t0> = ((typeof(_))&((t0)&(((typeof(_))&(t0))->typeof(_))),{n163:any,})->(any,typeof(_))
_(_)
)");
}
TEST_CASE_FIXTURE(Fixture, "type_alias_fwd_declaration_is_precise")
{
CheckResult result = check(R"(
local foo: Id<number> = 1
type Id<T> = T
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "corecursive_types_generic")
{
const std::string code = R"(
type A<T> = {v:T, b:B<T>}
type B<T> = {v:T, a:A<T>}
function f(a: A<number>)
return a
end
)";
const std::string expected = R"(
type A<T> = {v:T, b:B<T>}
type B<T> = {v:T, a:A<T>}
function f(a: A<number>): A<number>
return a
end
)";
CHECK_EQ(expected, decorateWithTypes(code));
CheckResult result = check(code);
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "corecursive_function_types")
{
CheckResult result = check(R"(
type A = () -> (number, B)
type B = () -> (string, A)
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("t1 where t1 = () -> (number, () -> (string, t1))", toString(requireTypeAlias("A")));
CHECK_EQ("t1 where t1 = () -> (string, () -> (number, t1))", toString(requireTypeAlias("B")));
}
TEST_CASE_FIXTURE(Fixture, "generic_param_remap")
{
DOES_NOT_PASS_NEW_SOLVER_GUARD();
const std::string code = R"(
-- An example of a forwarded use of a type that has different type arguments than parameters
type A<T,U> = {t:T, u:U, next:A<U,T>?}
local aa:A<number,string> = { t = 5, u = 'hi', next = { t = 'lo', u = 8 } }
local bb = aa
)";
const std::string expected = R"(
type A<T,U> = {t:T, u:U, next:A<U,T>?}
local aa:A<number,string> = { t = 5, u = 'hi', next = { t = 'lo', u = 8 } }
local bb:A<number,string>=aa
)";
CHECK_EQ(expected, decorateWithTypes(code));
CheckResult result = check(code);
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "export_type_and_type_alias_are_duplicates")
{
CheckResult result = check(R"(
export type Foo = number
type Foo = number
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto dtd = get<DuplicateTypeDefinition>(result.errors[0]);
REQUIRE(dtd);
CHECK_EQ(dtd->name, "Foo");
}
TEST_CASE_FIXTURE(Fixture, "reported_location_is_correct_when_type_alias_are_duplicates")
{
CheckResult result = check(R"(
type A = string
type B = number
type C = string
type B = number
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto dtd = get<DuplicateTypeDefinition>(result.errors[0]);
REQUIRE(dtd);
CHECK_EQ(dtd->name, "B");
REQUIRE(dtd->previousLocation);
CHECK_EQ(dtd->previousLocation->begin.line + 1, 3);
}
TEST_CASE_FIXTURE(Fixture, "stringify_optional_parameterized_alias")
{
CheckResult result = check(R"(
type Node<T> = { value: T, child: Node<T>? }
local function visitor<T>(node: Node<T>?)
local a: Node<T>
if node then
a = node.child -- Observe the output of the error message.
end
end
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto e = get<TypeMismatch>(result.errors[0]);
REQUIRE(e != nullptr);
CHECK_EQ("Node<T>?", toString(e->givenType));
CHECK_EQ("Node<T>", toString(e->wantedType));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "general_require_multi_assign")
{
fileResolver.source["workspace/A"] = R"(
export type myvec2 = {x: number, y: number}
return {}
)";
fileResolver.source["workspace/B"] = R"(
export type myvec3 = {x: number, y: number, z: number}
return {}
)";
fileResolver.source["workspace/C"] = R"(
local Foo, Bar = require(workspace.A), require(workspace.B)
local a: Foo.myvec2
local b: Bar.myvec3
)";
CheckResult result = frontend.check("workspace/C");
LUAU_REQUIRE_NO_ERRORS(result);
TypeId aTypeId = requireType("workspace/C", "a");
const Luau::TableType* aType = get<TableType>(follow(aTypeId));
REQUIRE(aType);
REQUIRE(aType->props.size() == 2);
TypeId bTypeId = requireType("workspace/C", "b");
const Luau::TableType* bType = get<TableType>(follow(bTypeId));
REQUIRE(bType);
REQUIRE(bType->props.size() == 3);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "type_alias_import_mutation")
{
CheckResult result = check("type t10<x> = typeof(table)");
LUAU_REQUIRE_NO_ERRORS(result);
TypeId ty = getGlobalBinding(frontend.globals, "table");
CHECK(toString(ty) == "typeof(table)");
const TableType* ttv = get<TableType>(ty);
REQUIRE(ttv);
CHECK(ttv->instantiatedTypeParams.empty());
}
TEST_CASE_FIXTURE(Fixture, "type_alias_local_mutation")
{
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
type Cool = { a: number, b: string }
local c: Cool = { a = 1, b = "s" }
type NotCool<x> = Cool
)");
LUAU_REQUIRE_NO_ERRORS(result);
std::optional<TypeId> ty = requireType("c");
REQUIRE(ty);
CHECK_EQ(toString(*ty), "Cool");
const TableType* ttv = get<TableType>(*ty);
REQUIRE(ttv);
CHECK(ttv->instantiatedTypeParams.empty());
}
TEST_CASE_FIXTURE(Fixture, "type_alias_local_rename")
{
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
type Cool = { a: number, b: string }
type NotCool = Cool
local c: Cool = { a = 1, b = "s" }
local d: NotCool = { a = 1, b = "s" }
)");
LUAU_REQUIRE_NO_ERRORS(result);
std::optional<TypeId> ty = requireType("c");
REQUIRE(ty);
CHECK_EQ(toString(*ty), "Cool");
ty = requireType("d");
REQUIRE(ty);
CHECK_EQ(toString(*ty), "NotCool");
}
TEST_CASE_FIXTURE(Fixture, "type_alias_local_synthetic_mutation")
{
CheckResult result = check(R"(
local c = { a = 1, b = "s" }
type Cool = typeof(c)
)");
LUAU_REQUIRE_NO_ERRORS(result);
std::optional<TypeId> ty = requireType("c");
REQUIRE(ty);
const TableType* ttv = get<TableType>(*ty);
REQUIRE(ttv);
CHECK_EQ(ttv->name, "Cool");
}
TEST_CASE_FIXTURE(BuiltinsFixture, "type_alias_of_an_imported_recursive_type")
{
fileResolver.source["game/A"] = R"(
export type X = { a: number, b: X? }
return {}
)";
CheckResult aResult = frontend.check("game/A");
LUAU_REQUIRE_NO_ERRORS(aResult);
CheckResult bResult = check(R"(
local Import = require(game.A)
type X = Import.X
)");
LUAU_REQUIRE_NO_ERRORS(bResult);
std::optional<TypeId> ty1 = lookupImportedType("Import", "X");
REQUIRE(ty1);
std::optional<TypeId> ty2 = lookupType("X");
REQUIRE(ty2);
CHECK_EQ(follow(*ty1), follow(*ty2));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "type_alias_of_an_imported_recursive_generic_type")
{
fileResolver.source["game/A"] = R"(
export type X<T, U> = { a: T, b: U, C: X<T, U>? }
return {}
)";
CheckResult aResult = frontend.check("game/A");
LUAU_REQUIRE_NO_ERRORS(aResult);
CheckResult bResult = check(R"(
local Import = require(game.A)
type X<T, U> = Import.X<T, U>
)");
LUAU_REQUIRE_NO_ERRORS(bResult);
std::optional<TypeId> ty1 = lookupImportedType("Import", "X");
REQUIRE(ty1);
std::optional<TypeId> ty2 = lookupType("X");
REQUIRE(ty2);
CHECK_EQ(toString(*ty1, {true}), toString(*ty2, {true}));
bResult = check(R"(
local Import = require(game.A)
type X<T, U> = Import.X<U, T>
)");
LUAU_REQUIRE_NO_ERRORS(bResult);
ty1 = lookupImportedType("Import", "X");
REQUIRE(ty1);
ty2 = lookupType("X");
REQUIRE(ty2);
if (FFlag::LuauSolverV2)
{
CHECK(toString(*ty1, {true}) == "t1 where t1 = { C: t1?, a: T, b: U }");
CHECK(toString(*ty2, {true}) == "t1 where t1 = { C: t1?, a: U, b: T }");
}
else
{
CHECK_EQ(toString(*ty1, {true}), "t1 where t1 = {| C: t1?, a: T, b: U |}");
CHECK_EQ(toString(*ty2, {true}), "{| C: t1, a: U, b: T |} where t1 = {| C: t1, a: U, b: T |}?");
}
}
TEST_CASE_FIXTURE(Fixture, "module_export_free_type_leak")
{
CheckResult result = check(R"(
function get()
return function(obj) return true end
end
export type f = typeof(get())
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "module_export_wrapped_free_type_leak")
{
CheckResult result = check(R"(
function get()
return {a = 1, b = function(obj) return true end}
end
export type f = typeof(get())
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_types_restriction_ok")
{
CheckResult result = check(R"(
type Tree<T> = { data: T, children: Forest<T> }
type Forest<T> = {Tree<T>}
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_types_restriction_not_ok_1")
{
// CLI-116108
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
-- OK because forwarded types are used with their parameters.
type Tree<T> = { data: T, children: Forest<T> }
type Forest<T> = {Tree<{T}>}
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_types_restriction_not_ok_2")
{
// CLI-116108
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
-- Not OK because forwarded types are used with different types than their parameters.
type Forest<T> = {Tree<{T}>}
type Tree<T> = { data: T, children: Forest<T> }
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_types_swapsies_ok")
{
CheckResult result = check(R"(
type Tree1<T,U> = { data: T, children: {Tree2<U,T>} }
type Tree2<U,T> = { data: U, children: {Tree1<T,U>} }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "mutually_recursive_types_swapsies_not_ok")
{
// CLI-116108
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
type Tree1<T,U> = { data: T, children: {Tree2<U,T>} }
type Tree2<T,U> = { data: U, children: {Tree1<T,U>} }
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "free_variables_from_typeof_in_aliases")
{
CheckResult result = check(R"(
function f(x) return x[1] end
-- x has type X? for a free type variable X
local x = f ({})
type ContainsFree<a> = { this: a, that: typeof(x) }
type ContainsContainsFree = { that: ContainsFree<number> }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "non_recursive_aliases_that_reuse_a_generic_name")
{
CheckResult result = check(R"(
type Array<T> = { [number]: T }
type Tuple<T, V> = Array<T | V>
local p: Tuple<number, string>
)");
LUAU_REQUIRE_NO_ERRORS(result);
CHECK_EQ("{number | string}", toString(requireType("p"), {true}));
}
/*
* We had a problem where all type aliases would be prototyped into a child scope that happened
* to have the same level. This caused a problem where, if a sibling function referred to that
* type alias in its type signature, it would erroneously be quantified away, even though it doesn't
* actually belong to the function.
*
* We solved this by ascribing a unique subLevel to each prototyped alias.
*/
TEST_CASE_FIXTURE(BuiltinsFixture, "do_not_quantify_unresolved_aliases")
{
CheckResult result = check(R"(
--!strict
local KeyPool = {}
local function newkey(pool: KeyPool, index)
return {}
end
function newKeyPool()
local pool = {
available = {} :: {Key},
}
return setmetatable(pool, KeyPool)
end
export type KeyPool = typeof(newKeyPool())
export type Key = typeof(newkey(newKeyPool(), 1))
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
/*
* We keep a cache of type alias onto Type to prevent infinite types from
* being constructed via recursive or corecursive aliases. We have to adjust
* the TypeLevels of those generic Types so that the unifier doesn't think
* they have improperly leaked out of their scope.
*/
TEST_CASE_FIXTURE(Fixture, "generic_typevars_are_not_considered_to_escape_their_scope_if_they_are_reused_in_multiple_aliases")
{
CheckResult result = check(R"(
type Array<T> = {T}
type Exclude<T, V> = T
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
/*
* The two-pass alias definition system starts by ascribing a free Type to each alias. It then
* circles back to fill in the actual type later on.
*
* If this free type is unified with something degenerate like `any`, we need to take extra care
* to ensure that the alias actually binds to the type that the user expected.
*/
TEST_CASE_FIXTURE(Fixture, "forward_declared_alias_is_not_clobbered_by_prior_unification_with_any")
{
CheckResult result = check(R"(
local function x()
local y: FutureType = {}::any
return 1
end
type FutureType = { foo: typeof(x()) }
local d: FutureType = { smth = true } -- missing error, 'd' is resolved to 'any'
)");
if (FFlag::LuauSolverV2)
CHECK_EQ("{ foo: number }", toString(requireType("d"), {true}));
else
CHECK_EQ("{| foo: number |}", toString(requireType("d"), {true}));
LUAU_REQUIRE_ERROR_COUNT(1, result);
}
TEST_CASE_FIXTURE(Fixture, "recursive_types_restriction_ok")
{
CheckResult result = check(R"(
type Tree<T> = { data: T, children: {Tree<T>} }
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "recursive_types_restriction_not_ok")
{
// CLI-116108
DOES_NOT_PASS_NEW_SOLVER_GUARD();
CheckResult result = check(R"(
-- this would be an infinite type if we allowed it
type Tree<T> = { data: T, children: {Tree<{T}>} }
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "report_shadowed_aliases")
{
// CLI-116110
DOES_NOT_PASS_NEW_SOLVER_GUARD();
// We allow a previous type alias to depend on a future type alias. That exact feature enables a confusing example, like the following snippet,
// which has the type alias FakeString point to the type alias `string` that which points to `number`.
CheckResult result = check(R"(
type MyString = string
type string = number
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Redefinition of type 'string'");
std::optional<TypeId> t1 = lookupType("MyString");
REQUIRE(t1);
CHECK(isPrim(*t1, PrimitiveType::String));
std::optional<TypeId> t2 = lookupType("string");
REQUIRE(t2);
CHECK(isPrim(*t2, PrimitiveType::String));
}
TEST_CASE_FIXTURE(Fixture, "it_is_ok_to_shadow_user_defined_alias")
{
CheckResult result = check(R"(
type T = number
do
type T = string
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "cannot_create_cyclic_type_with_unknown_module")
{
CheckResult result = check(R"(
type AAA = B.AAA
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK(toString(result.errors[0]) == "Unknown type 'B.AAA'");
}
TEST_CASE_FIXTURE(Fixture, "type_alias_locations")
{
check(R"(
type T = number
do
type T = string
type X = boolean
end
)");
ModulePtr mod = getMainModule();
REQUIRE(!mod->scopes.empty());
REQUIRE(mod->scopes[0].second->typeAliasNameLocations.count("T") > 0);
CHECK(mod->scopes[0].second->typeAliasNameLocations["T"] == Location(Position(1, 13), 1));
ScopePtr doScope = findScopeAtPosition(*mod, Position{4, 0});
REQUIRE(doScope);
REQUIRE(doScope->typeAliasNameLocations.count("T") > 0);
CHECK(doScope->typeAliasNameLocations["T"] == Location(Position(4, 17), 1));
REQUIRE(doScope->typeAliasNameLocations.count("X") > 0);
CHECK(doScope->typeAliasNameLocations["X"] == Location(Position(5, 17), 1));
}
/*
* We had a bug in DCR where substitution would improperly clone a
* PendingExpansionType.
*
* This cloned type did not have a matching constraint to expand it, so it was
* left dangling and unexpanded forever.
*
* We must also delay the dispatch a constraint if doing so would require
* unifying a PendingExpansionType.
*/
TEST_CASE_FIXTURE(BuiltinsFixture, "dont_lose_track_of_PendingExpansionTypes_after_substitution")
{
// CLI-114134 - We need egraphs to properly simplify these types.
DOES_NOT_PASS_NEW_SOLVER_GUARD();
fileResolver.source["game/ReactCurrentDispatcher"] = R"(
export type BasicStateAction<S> = ((S) -> S) | S
export type Dispatch<A> = (A) -> ()
export type Dispatcher = {
useState: <S>(initialState: (() -> S) | S) -> (S, Dispatch<BasicStateAction<S>>),
}
return {}
)";
// Note: This script path is actually as short as it can be. Any shorter
// and we somehow fail to surface the bug.
fileResolver.source["game/React/React/ReactHooks"] = R"(
local RCD = require(script.Parent.Parent.Parent.ReactCurrentDispatcher)
local function resolveDispatcher(): RCD.Dispatcher
return (nil :: any) :: RCD.Dispatcher
end
function useState<S>(
initialState: (() -> S) | S
): (S, RCD.Dispatch<RCD.BasicStateAction<S>>)
local dispatcher = resolveDispatcher()
return dispatcher.useState(initialState)
end
)";
CheckResult result = frontend.check("game/React/React/ReactHooks");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "another_thing_from_roact")
{
CheckResult result = check(R"(
type Map<K, V> = { [K]: V }
type Set<T> = { [T]: boolean }
type FiberRoot = {
pingCache: Map<Wakeable, (Set<any> | Map<Wakeable, Set<any>>)> | nil,
}
type Wakeable = {
andThen: (self: Wakeable) -> nil | Wakeable,
}
local function attachPingListener(root: FiberRoot, wakeable: Wakeable, lanes: number)
local pingCache: Map<Wakeable, (Set<any> | Map<Wakeable, Set<any>>)> | nil = root.pingCache
end
)");
LUAU_REQUIRE_NO_ERRORS(result);
}
/*
* It is sometimes possible for type alias resolution to produce a TypeId that
* belongs to a different module.
*
* We must not mutate any fields of the resulting type when this happens. The
* memory has been frozen.
*/
TEST_CASE_FIXTURE(BuiltinsFixture, "alias_expands_to_bare_reference_to_imported_type")
{
fileResolver.source["game/A"] = R"(
--!strict
export type Object = {[string]: any}
return {}
)";
fileResolver.source["game/B"] = R"(
local A = require(script.Parent.A)
type Object = A.Object
type ReadOnly<T> = T
local function f(): ReadOnly<Object>
return nil :: any
end
)";
CheckResult result = frontend.check("game/B");
LUAU_REQUIRE_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "table_types_record_the_property_locations")
{
CheckResult result = check(R"(
type Table = {
create: () -> ()
}
local x: Table
)");
LUAU_REQUIRE_NO_ERRORS(result);
auto ty = requireTypeAlias("Table");
auto ttv = Luau::get<Luau::TableType>(follow(ty));
REQUIRE(ttv);
auto propIt = ttv->props.find("create");
REQUIRE(propIt != ttv->props.end());
CHECK_EQ(propIt->second.location, std::nullopt);
CHECK_EQ(propIt->second.typeLocation, Location({2, 12}, {2, 18}));
}
TEST_CASE_FIXTURE(Fixture, "typeof_is_not_a_valid_alias_name")
{
CheckResult result = check(R"(
type typeof = number
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
CHECK("Type aliases cannot be named typeof" == toString(result.errors[0]));
}
TEST_CASE_FIXTURE(Fixture, "fuzzer_bug_doesnt_crash")
{
CheckResult result = check(R"(
type t0 = (t0<t0...>)
)");
LUAU_REQUIRE_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "recursive_type_alias_warns")
{
CheckResult result = check(R"(
type Foo<T> = Foo<T>
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto occursCheckError = get<OccursCheckFailed>(result.errors[0]);
REQUIRE(occursCheckError);
}
TEST_CASE_FIXTURE(Fixture, "recursive_type_alias_bad_pack_use_warns")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type Foo<T> = Foo<T...>
)");
LUAU_REQUIRE_ERROR_COUNT(4, result);
auto occursCheckFailed = get<OccursCheckFailed>(result.errors[1]);
REQUIRE(occursCheckFailed);
auto swappedGeneric = get<SwappedGenericTypeParameter>(result.errors[2]);
REQUIRE(swappedGeneric);
CHECK(swappedGeneric->name == "T");
}
TEST_CASE_FIXTURE(Fixture, "corecursive_aliases")
{
CheckResult result = check(R"(
type Foo<T> = Bar<T>
type Bar<T> = Foo<T>
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto err = get<OccursCheckFailed>(result.errors[0]);
REQUIRE(err);
}
TEST_CASE_FIXTURE(Fixture, "should_also_occurs_check")
{
CheckResult result = check(R"(
type Foo<T> = Foo<T> | string
)");
LUAU_REQUIRE_ERROR_COUNT(1, result);
auto err = get<OccursCheckFailed>(result.errors[0]);
REQUIRE(err);
}
TEST_CASE_FIXTURE(BuiltinsFixture, "type_alias_adds_reduce_constraint_for_type_function")
{
if (!FFlag::LuauSolverV2)
return;
CheckResult result = check(R"(
type plus<T> = add<number, T>
local sum: plus<number> = 10
)");
LUAU_CHECK_NO_ERRORS(result);
}
TEST_CASE_FIXTURE(Fixture, "bound_type_in_alias_segfault")
{
ScopedFastFlag sff{FFlag::LuauSolverV2, true};
LUAU_CHECK_NO_ERRORS(check(R"(
--!nonstrict
type Map<T, V> = {[ K]: V}
function foo:bar(): Config<any, any> end
type Config<TSource, TContext> = Map<TSource, TContext> & { fields: FieldConfigMap<any, any>}
export type FieldConfig<TSource, TContext, TArgs> = {[ string]: any}
export type FieldConfigMap<TSource, TContext> = Map<string, FieldConfig<TSource, TContext>>
)"));
}
TEST_CASE_FIXTURE(BuiltinsFixture, "gh1632_no_infinite_recursion_in_normalization")
{
ScopedFastFlag flags[] = {
{FFlag::LuauSolverV2, true},
{FFlag::LuauFixInfiniteRecursionInNormalization, true},
};
CheckResult result = check(R"(
type Node<T> = {
value: T,
next: Node<T>?,
-- remove `prev`, solves issue
prev: Node<T>?,
};
type List<T> = {
head: Node<T>?
}
local function IsFront(list: List<any>, nodeB: Node<any>)
-- remove if statement below, solves issue
if (list.head == nodeB) then
end
end
)");
LUAU_CHECK_NO_ERRORS(result);
}
TEST_SUITE_END();