luau/CodeGen/src/BytecodeAnalysis.cpp
2024-04-19 14:04:30 -07:00

906 lines
27 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/BytecodeAnalysis.h"
#include "Luau/BytecodeUtils.h"
#include "Luau/IrData.h"
#include "Luau/IrUtils.h"
#include "lobject.h"
LUAU_FASTFLAG(LuauCodegenDirectUserdataFlow)
namespace Luau
{
namespace CodeGen
{
static bool hasTypedParameters(Proto* proto)
{
return proto->typeinfo && proto->numparams != 0;
}
static uint8_t getBytecodeConstantTag(Proto* proto, unsigned ki)
{
TValue protok = proto->k[ki];
switch (protok.tt)
{
case LUA_TNIL:
return LBC_TYPE_NIL;
case LUA_TBOOLEAN:
return LBC_TYPE_BOOLEAN;
case LUA_TLIGHTUSERDATA:
return LBC_TYPE_USERDATA;
case LUA_TNUMBER:
return LBC_TYPE_NUMBER;
case LUA_TVECTOR:
return LBC_TYPE_VECTOR;
case LUA_TSTRING:
return LBC_TYPE_STRING;
case LUA_TTABLE:
return LBC_TYPE_TABLE;
case LUA_TFUNCTION:
return LBC_TYPE_FUNCTION;
case LUA_TUSERDATA:
return LBC_TYPE_USERDATA;
case LUA_TTHREAD:
return LBC_TYPE_THREAD;
case LUA_TBUFFER:
return LBC_TYPE_BUFFER;
}
return LBC_TYPE_ANY;
}
static void applyBuiltinCall(int bfid, BytecodeTypes& types)
{
switch (bfid)
{
case LBF_NONE:
case LBF_ASSERT:
types.result = LBC_TYPE_ANY;
break;
case LBF_MATH_ABS:
case LBF_MATH_ACOS:
case LBF_MATH_ASIN:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_MATH_ATAN2:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_MATH_ATAN:
case LBF_MATH_CEIL:
case LBF_MATH_COSH:
case LBF_MATH_COS:
case LBF_MATH_DEG:
case LBF_MATH_EXP:
case LBF_MATH_FLOOR:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_MATH_FMOD:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_MATH_FREXP:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_MATH_LDEXP:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_MATH_LOG10:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_MATH_LOG:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER; // We can mark optional arguments
break;
case LBF_MATH_MAX:
case LBF_MATH_MIN:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER; // We can mark optional arguments
break;
case LBF_MATH_MODF:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_MATH_POW:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_MATH_RAD:
case LBF_MATH_SINH:
case LBF_MATH_SIN:
case LBF_MATH_SQRT:
case LBF_MATH_TANH:
case LBF_MATH_TAN:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_BIT32_ARSHIFT:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_BIT32_BAND:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER; // We can mark optional arguments
break;
case LBF_BIT32_BNOT:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_BIT32_BOR:
case LBF_BIT32_BXOR:
case LBF_BIT32_BTEST:
case LBF_BIT32_EXTRACT:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER; // We can mark optional arguments
break;
case LBF_BIT32_LROTATE:
case LBF_BIT32_LSHIFT:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_BIT32_REPLACE:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER; // We can mark optional arguments
break;
case LBF_BIT32_RROTATE:
case LBF_BIT32_RSHIFT:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_TYPE:
types.result = LBC_TYPE_STRING;
break;
case LBF_STRING_BYTE:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_STRING;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_STRING_CHAR:
types.result = LBC_TYPE_STRING;
// We can mark optional arguments
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_STRING_LEN:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_STRING;
break;
case LBF_TYPEOF:
types.result = LBC_TYPE_STRING;
break;
case LBF_STRING_SUB:
types.result = LBC_TYPE_STRING;
types.a = LBC_TYPE_STRING;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_MATH_CLAMP:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_MATH_SIGN:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_MATH_ROUND:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_RAWGET:
types.result = LBC_TYPE_ANY;
types.a = LBC_TYPE_TABLE;
break;
case LBF_RAWEQUAL:
types.result = LBC_TYPE_BOOLEAN;
break;
case LBF_TABLE_UNPACK:
types.result = LBC_TYPE_ANY;
types.a = LBC_TYPE_TABLE;
types.b = LBC_TYPE_NUMBER; // We can mark optional arguments
break;
case LBF_VECTOR:
types.result = LBC_TYPE_VECTOR;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_BIT32_COUNTLZ:
case LBF_BIT32_COUNTRZ:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_SELECT_VARARG:
types.result = LBC_TYPE_ANY;
break;
case LBF_RAWLEN:
types.result = LBC_TYPE_NUMBER;
break;
case LBF_BIT32_EXTRACTK:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_GETMETATABLE:
types.result = LBC_TYPE_TABLE;
break;
case LBF_TONUMBER:
types.result = LBC_TYPE_NUMBER;
break;
case LBF_TOSTRING:
types.result = LBC_TYPE_STRING;
break;
case LBF_BIT32_BYTESWAP:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_READI8:
case LBF_BUFFER_READU8:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_WRITEU8:
types.result = LBC_TYPE_NIL;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_READI16:
case LBF_BUFFER_READU16:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_WRITEU16:
types.result = LBC_TYPE_NIL;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_READI32:
case LBF_BUFFER_READU32:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_WRITEU32:
types.result = LBC_TYPE_NIL;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_READF32:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_WRITEF32:
types.result = LBC_TYPE_NIL;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_READF64:
types.result = LBC_TYPE_NUMBER;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
break;
case LBF_BUFFER_WRITEF64:
types.result = LBC_TYPE_NIL;
types.a = LBC_TYPE_BUFFER;
types.b = LBC_TYPE_NUMBER;
types.c = LBC_TYPE_NUMBER;
break;
case LBF_TABLE_INSERT:
types.result = LBC_TYPE_NIL;
types.a = LBC_TYPE_TABLE;
break;
case LBF_RAWSET:
types.result = LBC_TYPE_ANY;
types.a = LBC_TYPE_TABLE;
break;
case LBF_SETMETATABLE:
types.result = LBC_TYPE_TABLE;
types.a = LBC_TYPE_TABLE;
types.b = LBC_TYPE_TABLE;
break;
}
}
void buildBytecodeBlocks(IrFunction& function, const std::vector<uint8_t>& jumpTargets)
{
Proto* proto = function.proto;
CODEGEN_ASSERT(proto);
std::vector<BytecodeBlock>& bcBlocks = function.bcBlocks;
// Using the same jump targets, create VM bytecode basic blocks
bcBlocks.push_back(BytecodeBlock{0, -1});
int previ = 0;
for (int i = 0; i < proto->sizecode;)
{
const Instruction* pc = &proto->code[i];
LuauOpcode op = LuauOpcode(LUAU_INSN_OP(*pc));
int nexti = i + getOpLength(op);
// If instruction is a jump target, begin new block starting from it
if (i != 0 && jumpTargets[i])
{
bcBlocks.back().finishpc = previ;
bcBlocks.push_back(BytecodeBlock{i, -1});
}
int target = getJumpTarget(*pc, uint32_t(i));
// Implicit fallthroughs terminate the block and might start a new one
if (target >= 0 && !isFastCall(op))
{
bcBlocks.back().finishpc = i;
// Start a new block if there was no explicit jump for the fallthrough
if (!jumpTargets[nexti])
bcBlocks.push_back(BytecodeBlock{nexti, -1});
}
// Returns just terminate the block
else if (op == LOP_RETURN)
{
bcBlocks.back().finishpc = i;
}
previ = i;
i = nexti;
CODEGEN_ASSERT(i <= proto->sizecode);
}
}
void analyzeBytecodeTypes(IrFunction& function)
{
Proto* proto = function.proto;
CODEGEN_ASSERT(proto);
// Setup our current knowledge of type tags based on arguments
uint8_t regTags[256];
memset(regTags, LBC_TYPE_ANY, 256);
function.bcTypes.resize(proto->sizecode);
// Now that we have VM basic blocks, we can attempt to track register type tags locally
for (const BytecodeBlock& block : function.bcBlocks)
{
CODEGEN_ASSERT(block.startpc != -1);
CODEGEN_ASSERT(block.finishpc != -1);
// At the block start, reset or knowledge to the starting state
// In the future we might be able to propagate some info between the blocks as well
if (hasTypedParameters(proto))
{
for (int i = 0; i < proto->numparams; ++i)
{
uint8_t et = proto->typeinfo[2 + i];
// TODO: if argument is optional, this might force a VM exit unnecessarily
regTags[i] = et & ~LBC_TYPE_OPTIONAL_BIT;
}
}
for (int i = proto->numparams; i < proto->maxstacksize; ++i)
regTags[i] = LBC_TYPE_ANY;
for (int i = block.startpc; i <= block.finishpc;)
{
const Instruction* pc = &proto->code[i];
LuauOpcode op = LuauOpcode(LUAU_INSN_OP(*pc));
BytecodeTypes& bcType = function.bcTypes[i];
switch (op)
{
case LOP_NOP:
break;
case LOP_LOADNIL:
{
int ra = LUAU_INSN_A(*pc);
regTags[ra] = LBC_TYPE_NIL;
bcType.result = regTags[ra];
break;
}
case LOP_LOADB:
{
int ra = LUAU_INSN_A(*pc);
regTags[ra] = LBC_TYPE_BOOLEAN;
bcType.result = regTags[ra];
break;
}
case LOP_LOADN:
{
int ra = LUAU_INSN_A(*pc);
regTags[ra] = LBC_TYPE_NUMBER;
bcType.result = regTags[ra];
break;
}
case LOP_LOADK:
{
int ra = LUAU_INSN_A(*pc);
int kb = LUAU_INSN_D(*pc);
bcType.a = getBytecodeConstantTag(proto, kb);
regTags[ra] = bcType.a;
bcType.result = regTags[ra];
break;
}
case LOP_LOADKX:
{
int ra = LUAU_INSN_A(*pc);
int kb = int(pc[1]);
bcType.a = getBytecodeConstantTag(proto, kb);
regTags[ra] = bcType.a;
bcType.result = regTags[ra];
break;
}
case LOP_MOVE:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
bcType.a = regTags[rb];
regTags[ra] = regTags[rb];
bcType.result = regTags[ra];
break;
}
case LOP_GETTABLE:
{
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = regTags[rc];
break;
}
case LOP_SETTABLE:
{
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = regTags[rc];
break;
}
case LOP_GETTABLEKS:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
uint32_t kc = pc[1];
bcType.a = regTags[rb];
bcType.b = getBytecodeConstantTag(proto, kc);
regTags[ra] = LBC_TYPE_ANY;
// Assuming that vector component is being indexed
// TODO: check what key is used
if (bcType.a == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_NUMBER;
bcType.result = regTags[ra];
break;
}
case LOP_SETTABLEKS:
{
int rb = LUAU_INSN_B(*pc);
bcType.a = regTags[rb];
bcType.b = LBC_TYPE_STRING;
break;
}
case LOP_GETTABLEN:
case LOP_SETTABLEN:
{
int rb = LUAU_INSN_B(*pc);
bcType.a = regTags[rb];
bcType.b = LBC_TYPE_NUMBER;
break;
}
case LOP_ADD:
case LOP_SUB:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = regTags[rc];
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER && bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
else if (bcType.a == LBC_TYPE_VECTOR && bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
bcType.result = regTags[ra];
break;
}
case LOP_MUL:
case LOP_DIV:
case LOP_IDIV:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = regTags[rc];
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER)
{
if (bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
else if (bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
}
else if (bcType.a == LBC_TYPE_VECTOR)
{
if (bcType.b == LBC_TYPE_NUMBER || bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
}
bcType.result = regTags[ra];
break;
}
case LOP_MOD:
case LOP_POW:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = regTags[rc];
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER && bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
bcType.result = regTags[ra];
break;
}
case LOP_ADDK:
case LOP_SUBK:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int kc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = getBytecodeConstantTag(proto, kc);
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER && bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
else if (bcType.a == LBC_TYPE_VECTOR && bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
bcType.result = regTags[ra];
break;
}
case LOP_MULK:
case LOP_DIVK:
case LOP_IDIVK:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int kc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = getBytecodeConstantTag(proto, kc);
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER)
{
if (bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
else if (bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
}
else if (bcType.a == LBC_TYPE_VECTOR)
{
if (bcType.b == LBC_TYPE_NUMBER || bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
}
bcType.result = regTags[ra];
break;
}
case LOP_MODK:
case LOP_POWK:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
int kc = LUAU_INSN_C(*pc);
bcType.a = regTags[rb];
bcType.b = getBytecodeConstantTag(proto, kc);
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER && bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
bcType.result = regTags[ra];
break;
}
case LOP_SUBRK:
{
int ra = LUAU_INSN_A(*pc);
int kb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
bcType.a = getBytecodeConstantTag(proto, kb);
bcType.b = regTags[rc];
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER && bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
else if (bcType.a == LBC_TYPE_VECTOR && bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
bcType.result = regTags[ra];
break;
}
case LOP_DIVRK:
{
int ra = LUAU_INSN_A(*pc);
int kb = LUAU_INSN_B(*pc);
int rc = LUAU_INSN_C(*pc);
bcType.a = getBytecodeConstantTag(proto, kb);
bcType.b = regTags[rc];
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER)
{
if (bcType.b == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
else if (bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
}
else if (bcType.a == LBC_TYPE_VECTOR)
{
if (bcType.b == LBC_TYPE_NUMBER || bcType.b == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
}
bcType.result = regTags[ra];
break;
}
case LOP_NOT:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
bcType.a = regTags[rb];
regTags[ra] = LBC_TYPE_BOOLEAN;
bcType.result = regTags[ra];
break;
}
case LOP_MINUS:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
bcType.a = regTags[rb];
regTags[ra] = LBC_TYPE_ANY;
if (bcType.a == LBC_TYPE_NUMBER)
regTags[ra] = LBC_TYPE_NUMBER;
else if (bcType.a == LBC_TYPE_VECTOR)
regTags[ra] = LBC_TYPE_VECTOR;
bcType.result = regTags[ra];
break;
}
case LOP_LENGTH:
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
bcType.a = regTags[rb];
regTags[ra] = LBC_TYPE_NUMBER; // Even if it's a custom __len, it's ok to assume a sane result
bcType.result = regTags[ra];
break;
}
case LOP_NEWTABLE:
case LOP_DUPTABLE:
{
int ra = LUAU_INSN_A(*pc);
regTags[ra] = LBC_TYPE_TABLE;
bcType.result = regTags[ra];
break;
}
case LOP_FASTCALL:
{
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
Instruction call = pc[skip + 1];
CODEGEN_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
int ra = LUAU_INSN_A(call);
applyBuiltinCall(bfid, bcType);
regTags[ra + 1] = bcType.a;
regTags[ra + 2] = bcType.b;
regTags[ra + 3] = bcType.c;
regTags[ra] = bcType.result;
break;
}
case LOP_FASTCALL1:
case LOP_FASTCALL2K:
{
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
Instruction call = pc[skip + 1];
CODEGEN_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
int ra = LUAU_INSN_A(call);
applyBuiltinCall(bfid, bcType);
regTags[LUAU_INSN_B(*pc)] = bcType.a;
regTags[ra] = bcType.result;
break;
}
case LOP_FASTCALL2:
{
int bfid = LUAU_INSN_A(*pc);
int skip = LUAU_INSN_C(*pc);
Instruction call = pc[skip + 1];
CODEGEN_ASSERT(LUAU_INSN_OP(call) == LOP_CALL);
int ra = LUAU_INSN_A(call);
applyBuiltinCall(bfid, bcType);
regTags[LUAU_INSN_B(*pc)] = bcType.a;
regTags[int(pc[1])] = bcType.b;
regTags[ra] = bcType.result;
break;
}
case LOP_FORNPREP:
{
int ra = LUAU_INSN_A(*pc);
regTags[ra] = LBC_TYPE_NUMBER;
regTags[ra + 1] = LBC_TYPE_NUMBER;
regTags[ra + 2] = LBC_TYPE_NUMBER;
break;
}
case LOP_FORNLOOP:
{
int ra = LUAU_INSN_A(*pc);
// These types are established by LOP_FORNPREP and we reinforce that here
regTags[ra] = LBC_TYPE_NUMBER;
regTags[ra + 1] = LBC_TYPE_NUMBER;
regTags[ra + 2] = LBC_TYPE_NUMBER;
break;
}
case LOP_CONCAT:
{
int ra = LUAU_INSN_A(*pc);
regTags[ra] = LBC_TYPE_STRING;
bcType.result = regTags[ra];
break;
}
case LOP_NEWCLOSURE:
case LOP_DUPCLOSURE:
{
int ra = LUAU_INSN_A(*pc);
regTags[ra] = LBC_TYPE_FUNCTION;
bcType.result = regTags[ra];
break;
}
case LOP_NAMECALL:
{
if (FFlag::LuauCodegenDirectUserdataFlow)
{
int ra = LUAU_INSN_A(*pc);
int rb = LUAU_INSN_B(*pc);
uint32_t kc = pc[1];
bcType.a = regTags[rb];
bcType.b = getBytecodeConstantTag(proto, kc);
// While namecall might result in a callable table, we assume the function fast path
regTags[ra] = LBC_TYPE_FUNCTION;
// Namecall places source register into target + 1
regTags[ra + 1] = bcType.a;
bcType.result = LBC_TYPE_FUNCTION;
}
break;
}
case LOP_GETGLOBAL:
case LOP_SETGLOBAL:
case LOP_CALL:
case LOP_RETURN:
case LOP_JUMP:
case LOP_JUMPBACK:
case LOP_JUMPIF:
case LOP_JUMPIFNOT:
case LOP_JUMPIFEQ:
case LOP_JUMPIFLE:
case LOP_JUMPIFLT:
case LOP_JUMPIFNOTEQ:
case LOP_JUMPIFNOTLE:
case LOP_JUMPIFNOTLT:
case LOP_JUMPX:
case LOP_JUMPXEQKNIL:
case LOP_JUMPXEQKB:
case LOP_JUMPXEQKN:
case LOP_JUMPXEQKS:
case LOP_SETLIST:
case LOP_GETUPVAL:
case LOP_SETUPVAL:
case LOP_CLOSEUPVALS:
case LOP_FORGLOOP:
case LOP_FORGPREP_NEXT:
case LOP_FORGPREP_INEXT:
case LOP_AND:
case LOP_ANDK:
case LOP_OR:
case LOP_ORK:
case LOP_COVERAGE:
case LOP_GETIMPORT:
case LOP_CAPTURE:
case LOP_PREPVARARGS:
case LOP_GETVARARGS:
case LOP_FORGPREP:
break;
default:
CODEGEN_ASSERT(!"Unknown instruction");
}
i += getOpLength(op);
}
}
}
} // namespace CodeGen
} // namespace Luau