mirror of
https://github.com/luau-lang/luau.git
synced 2025-01-22 10:48:05 +00:00
149 lines
4 KiB
Agda
149 lines
4 KiB
Agda
{-# OPTIONS --rewriting #-}
|
||
|
||
open import Luau.Type using (Mode)
|
||
|
||
module Luau.TypeCheck (m : Mode) where
|
||
|
||
open import Agda.Builtin.Equality using (_≡_)
|
||
open import FFI.Data.Maybe using (Maybe; just)
|
||
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
|
||
open import Luau.Var using (Var)
|
||
open import Luau.Addr using (Addr)
|
||
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
|
||
open import Luau.Type using (Type; Mode; nil; none; number; boolean; string; _⇒_; tgt)
|
||
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
|
||
open import FFI.Data.Vector using (Vector)
|
||
open import FFI.Data.Maybe using (Maybe; just; nothing)
|
||
open import Properties.Product using (_×_; _,_)
|
||
|
||
src : Type → Type
|
||
src = Luau.Type.src m
|
||
|
||
orNone : Maybe Type → Type
|
||
orNone nothing = none
|
||
orNone (just T) = T
|
||
|
||
tgtBinOp : BinaryOperator → Type
|
||
tgtBinOp + = number
|
||
tgtBinOp - = number
|
||
tgtBinOp * = number
|
||
tgtBinOp / = number
|
||
tgtBinOp < = boolean
|
||
tgtBinOp > = boolean
|
||
tgtBinOp == = boolean
|
||
tgtBinOp ~= = boolean
|
||
tgtBinOp <= = boolean
|
||
tgtBinOp >= = boolean
|
||
tgtBinOp ·· = string
|
||
|
||
data _⊢ᴮ_∈_ : VarCtxt → Block yes → Type → Set
|
||
data _⊢ᴱ_∈_ : VarCtxt → Expr yes → Type → Set
|
||
|
||
data _⊢ᴮ_∈_ where
|
||
|
||
done : ∀ {Γ} →
|
||
|
||
---------------
|
||
Γ ⊢ᴮ done ∈ nil
|
||
|
||
return : ∀ {M B T U Γ} →
|
||
|
||
Γ ⊢ᴱ M ∈ T →
|
||
Γ ⊢ᴮ B ∈ U →
|
||
---------------------
|
||
Γ ⊢ᴮ return M ∙ B ∈ T
|
||
|
||
local : ∀ {x M B T U V Γ} →
|
||
|
||
Γ ⊢ᴱ M ∈ U →
|
||
(Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V →
|
||
--------------------------------
|
||
Γ ⊢ᴮ local var x ∈ T ← M ∙ B ∈ V
|
||
|
||
function : ∀ {f x B C T U V W Γ} →
|
||
|
||
(Γ ⊕ x ↦ T) ⊢ᴮ C ∈ V →
|
||
(Γ ⊕ f ↦ (T ⇒ U)) ⊢ᴮ B ∈ W →
|
||
-------------------------------------------------
|
||
Γ ⊢ᴮ function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B ∈ W
|
||
|
||
data _⊢ᴱ_∈_ where
|
||
|
||
nil : ∀ {Γ} →
|
||
|
||
--------------------
|
||
Γ ⊢ᴱ (val nil) ∈ nil
|
||
|
||
var : ∀ {x T Γ} →
|
||
|
||
T ≡ orNone(Γ [ x ]ⱽ) →
|
||
----------------
|
||
Γ ⊢ᴱ (var x) ∈ T
|
||
|
||
addr : ∀ {a Γ} T →
|
||
|
||
-----------------
|
||
Γ ⊢ᴱ val(addr a) ∈ T
|
||
|
||
number : ∀ {n Γ} →
|
||
|
||
---------------------------
|
||
Γ ⊢ᴱ val(number n) ∈ number
|
||
|
||
bool : ∀ {b Γ} →
|
||
|
||
--------------------------
|
||
Γ ⊢ᴱ val(bool b) ∈ boolean
|
||
|
||
string : ∀ {x Γ} →
|
||
|
||
---------------------------
|
||
Γ ⊢ᴱ val(string x) ∈ string
|
||
|
||
app : ∀ {M N T U Γ} →
|
||
|
||
Γ ⊢ᴱ M ∈ T →
|
||
Γ ⊢ᴱ N ∈ U →
|
||
----------------------
|
||
Γ ⊢ᴱ (M $ N) ∈ (tgt T)
|
||
|
||
function : ∀ {f x B T U V Γ} →
|
||
|
||
(Γ ⊕ x ↦ T) ⊢ᴮ B ∈ V →
|
||
-----------------------------------------------------
|
||
Γ ⊢ᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) ∈ (T ⇒ U)
|
||
|
||
block : ∀ {b B T U Γ} →
|
||
|
||
Γ ⊢ᴮ B ∈ U →
|
||
------------------------------------
|
||
Γ ⊢ᴱ (block var b ∈ T is B end) ∈ T
|
||
|
||
binexp : ∀ {op Γ M N T U} →
|
||
|
||
Γ ⊢ᴱ M ∈ T →
|
||
Γ ⊢ᴱ N ∈ U →
|
||
----------------------------------
|
||
Γ ⊢ᴱ (binexp M op N) ∈ tgtBinOp op
|
||
|
||
data ⊢ᴼ_ : Maybe(Object yes) → Set where
|
||
|
||
nothing :
|
||
|
||
---------
|
||
⊢ᴼ nothing
|
||
|
||
function : ∀ {f x T U V B} →
|
||
|
||
(x ↦ T) ⊢ᴮ B ∈ V →
|
||
----------------------------------------------
|
||
⊢ᴼ (just function f ⟨ var x ∈ T ⟩∈ U is B end)
|
||
|
||
⊢ᴴ_ : Heap yes → Set
|
||
⊢ᴴ H = ∀ a {O} → (H [ a ]ᴴ ≡ O) → (⊢ᴼ O)
|
||
|
||
_⊢ᴴᴱ_▷_∈_ : VarCtxt → Heap yes → Expr yes → Type → Set
|
||
(Γ ⊢ᴴᴱ H ▷ M ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴱ M ∈ T)
|
||
|
||
_⊢ᴴᴮ_▷_∈_ : VarCtxt → Heap yes → Block yes → Type → Set
|
||
(Γ ⊢ᴴᴮ H ▷ B ∈ T) = (⊢ᴴ H) × (Γ ⊢ᴮ B ∈ T)
|