mirror of
https://github.com/luau-lang/luau.git
synced 2025-01-19 01:18:03 +00:00
7105c81579
# What's changed? * Fixed a bug in type cloning by maintaining persistent types. * We now parse imprecise integer literals to report the imprecision as a warning to developers. * Add a compiler flag to specify the name of the statistics output file. ### New type solver * Renamed `ConstraintGraphBuilder` to `ConstraintGenerator` * LValues now take into account the type being assigned during constraint generation. * Normalization performance has been improved by 33% by replacing the an internal usage of `std::unordered_set` with `DenseHashMap`. * Normalization now has a helper to identify types that are equivalent to `unknown`, which is being used to fix some bugs in subtyping. * Uses of the old unifier in the new type solver have been eliminated. * Improved error explanations for subtyping errors in `TypeChecker2`. ### Native code generation * Expanded some of the statistics recorded during compilation to include the number of instructions and blocks. * Introduce instruction and block count limiters for controlling what bytecode is translated into native code. * Implement code generation for byteswap instruction. ### Internal Contributors Co-authored-by: Aaron Weiss <aaronweiss@roblox.com> Co-authored-by: Alexander McCord <amccord@roblox.com> Co-authored-by: Andy Friesen <afriesen@roblox.com> Co-authored-by: Aviral Goel <agoel@roblox.com> Co-authored-by: Lily Brown <lbrown@roblox.com>
390 lines
10 KiB
Lua
390 lines
10 KiB
Lua
-- This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
|
|
-- This file is based on Lua 5.x tests -- https://github.com/lua/lua/tree/master/testes
|
|
print("testing numbers and math lib")
|
|
|
|
do
|
|
local a,b,c = "2", " 3e0 ", " 10 "
|
|
assert(a+b == 5 and -b == -3 and b+"2" == 5 and "10"-c == 0)
|
|
assert(type(a) == 'string' and type(b) == 'string' and type(c) == 'string')
|
|
assert(a == "2" and b == " 3e0 " and c == " 10 " and -c == -" 10 ")
|
|
assert(c%a == 0 and a^b == 8)
|
|
end
|
|
|
|
|
|
do
|
|
local a,b = math.modf(3.5)
|
|
assert(a == 3 and b == 0.5)
|
|
assert(math.huge > 10e30)
|
|
assert(-math.huge < -10e30)
|
|
end
|
|
|
|
function f(...)
|
|
if select('#', ...) == 1 then
|
|
return (...)
|
|
else
|
|
return "***"
|
|
end
|
|
end
|
|
|
|
assert(pcall(tonumber) == false)
|
|
assert(tonumber{} == nil)
|
|
assert(tonumber'+0.01' == 1/100 and tonumber'+.01' == 0.01 and
|
|
tonumber'.01' == 0.01 and tonumber'-1.' == -1 and
|
|
tonumber'+1.' == 1)
|
|
assert(tonumber'+ 0.01' == nil and tonumber'+.e1' == nil and
|
|
tonumber'1e' == nil and tonumber'1.0e+' == nil and
|
|
tonumber'.' == nil)
|
|
assert(tonumber('-12') == -10-2)
|
|
assert(tonumber('-1.2e2') == - - -120)
|
|
assert(f(tonumber('1 a')) == nil)
|
|
assert(f(tonumber('e1')) == nil)
|
|
assert(f(tonumber('e 1')) == nil)
|
|
assert(f(tonumber(' 3.4.5 ')) == nil)
|
|
assert(f(tonumber('')) == nil)
|
|
assert(f(tonumber('', 8)) == nil)
|
|
assert(f(tonumber(' ')) == nil)
|
|
assert(f(tonumber(' ', 9)) == nil)
|
|
assert(f(tonumber('99', 8)) == nil)
|
|
assert(tonumber(' 1010 ', 2) == 10)
|
|
assert(tonumber('10', 36) == 36)
|
|
--assert(tonumber('\n -10 \n', 36) == -36)
|
|
--assert(tonumber('-fFfa', 16) == -(10+(16*(15+(16*(15+(16*15)))))))
|
|
assert(tonumber('fFfa', 15) == nil)
|
|
--assert(tonumber(string.rep('1', 42), 2) + 1 == 2^42)
|
|
assert(tonumber(string.rep('1', 32), 2) + 1 == 2^32)
|
|
--assert(tonumber('-fffffFFFFF', 16)-1 == -2^40)
|
|
assert(tonumber('ffffFFFF', 16)+1 == 2^32)
|
|
|
|
assert(1.1 == 1.+.1)
|
|
assert(100.0 == 1E2 and .01 == 1e-2)
|
|
assert(1111111111111111-1111111111111110== 1000.00e-03)
|
|
-- 1234567890123456
|
|
assert(1.1 == '1.'+'.1')
|
|
assert('1111111111111111'-'1111111111111110' == tonumber" +0.001e+3 \n\t")
|
|
assert(10000000000000001 == 10000000000000000)
|
|
|
|
function eq (a,b,limit)
|
|
if not limit then limit = 10E-10 end
|
|
return math.abs(a-b) <= limit
|
|
end
|
|
|
|
assert(0.1e-30 > 0.9E-31 and 0.9E30 < 0.1e31)
|
|
|
|
assert(0.123456 > 0.123455)
|
|
|
|
assert(tonumber('+1.23E30') == 1.23*10^30)
|
|
|
|
-- testing order operators
|
|
assert(not(1<1) and (1<2) and not(2<1))
|
|
assert(not('a'<'a') and ('a'<'b') and not('b'<'a'))
|
|
assert((1<=1) and (1<=2) and not(2<=1))
|
|
assert(('a'<='a') and ('a'<='b') and not('b'<='a'))
|
|
assert(not(1>1) and not(1>2) and (2>1))
|
|
assert(not('a'>'a') and not('a'>'b') and ('b'>'a'))
|
|
assert((1>=1) and not(1>=2) and (2>=1))
|
|
assert(('a'>='a') and not('a'>='b') and ('b'>='a'))
|
|
assert((unk and unk > 0) == nil) -- validate precedence between and and >
|
|
|
|
-- testing mod operator
|
|
assert(-4%3 == 2)
|
|
assert(4%-3 == -2)
|
|
assert(math.pi - math.pi % 1 == 3)
|
|
assert(math.pi - math.pi % 0.001 == 3.141)
|
|
|
|
do
|
|
local a = 3 % 0;
|
|
assert(a ~= a) -- Expect NaN
|
|
assert(((2^53+1) % 2) == 0)
|
|
assert((1234 % (2^53+1)) == 1234)
|
|
end
|
|
|
|
local function testbit(a, n)
|
|
return a/2^n % 2 >= 1
|
|
end
|
|
|
|
assert(eq(math.sin(-9.8)^2 + math.cos(-9.8)^2, 1))
|
|
assert(eq(math.tan(math.pi/4), 1))
|
|
assert(eq(math.sin(math.pi/2), 1) and eq(math.cos(math.pi/2), 0))
|
|
assert(eq(math.atan(1), math.pi/4) and eq(math.acos(0), math.pi/2) and
|
|
eq(math.asin(1), math.pi/2))
|
|
assert(eq(math.deg(math.pi/2), 90) and eq(math.rad(90), math.pi/2))
|
|
assert(math.abs(-10) == 10)
|
|
assert(eq(math.atan2(1,0), math.pi/2))
|
|
assert(math.ceil(4.5) == 5.0)
|
|
assert(math.floor(4.5) == 4.0)
|
|
assert(10 % 3 == 1)
|
|
assert(eq(math.sqrt(10)^2, 10))
|
|
assert(eq(math.log10(2), math.log(2)/math.log(10)))
|
|
assert(eq(math.log(2, 2), 1))
|
|
assert(eq(math.log(9, 3), 2))
|
|
assert(eq(math.log(100, 10), 2))
|
|
assert(eq(math.exp(0), 1))
|
|
assert(eq(math.sin(10), math.sin(10%(2*math.pi))))
|
|
local v,e = math.frexp(math.pi)
|
|
assert(eq(math.ldexp(v,e), math.pi))
|
|
|
|
assert(eq(math.tanh(3.5), math.sinh(3.5)/math.cosh(3.5)))
|
|
|
|
assert(tonumber(' 1.3e-2 ') == 1.3e-2)
|
|
assert(tonumber(' -1.00000000000001 ') == -1.00000000000001)
|
|
|
|
-- testing constant limits
|
|
-- 2^23 = 8388608
|
|
assert(8388609 + -8388609 == 0)
|
|
assert(8388608 + -8388608 == 0)
|
|
assert(8388607 + -8388607 == 0)
|
|
|
|
if rawget(_G, "_soft") then return end
|
|
|
|
f = "a = {"
|
|
i = 1
|
|
repeat
|
|
f = f .. "{" .. math.sin(i) .. ", " .. math.cos(i) .. ", " .. (i/3) .. "},\n"
|
|
i=i+1
|
|
until i > 1000
|
|
f = f .. "}"
|
|
assert(loadstring(f))()
|
|
|
|
assert(eq(a[300][1], math.sin(300)))
|
|
assert(eq(a[600][1], math.sin(600)))
|
|
assert(eq(a[500][2], math.cos(500)))
|
|
assert(eq(a[800][2], math.cos(800)))
|
|
assert(eq(a[200][3], 200/3))
|
|
assert(eq(a[1000][3], 1000/3, 0.001))
|
|
print('+')
|
|
|
|
do -- testing NaN
|
|
local NaN -- to avoid constant folding
|
|
NaN = 10e500 - 10e400
|
|
|
|
assert(NaN ~= NaN)
|
|
assert(not (NaN == NaN))
|
|
|
|
assert(not (NaN < NaN))
|
|
assert(not (NaN <= NaN))
|
|
assert(not (NaN > NaN))
|
|
assert(not (NaN >= NaN))
|
|
|
|
assert(not (0 == NaN))
|
|
assert(not (0 < NaN))
|
|
assert(not (0 <= NaN))
|
|
assert(not (0 > NaN))
|
|
assert(not (0 >= NaN))
|
|
|
|
assert(not (NaN == 0))
|
|
assert(not (NaN < 0))
|
|
assert(not (NaN <= 0))
|
|
assert(not (NaN > 0))
|
|
assert(not (NaN >= 0))
|
|
|
|
assert(if NaN < 0 then false else true)
|
|
assert(if NaN <= 0 then false else true)
|
|
assert(if NaN > 0 then false else true)
|
|
assert(if NaN >= 0 then false else true)
|
|
|
|
local a = {}
|
|
assert(not pcall(function () a[NaN] = 1 end))
|
|
assert(a[NaN] == nil)
|
|
a[1] = 1
|
|
assert(not pcall(function () a[NaN] = 1 end))
|
|
assert(a[NaN] == nil)
|
|
end
|
|
|
|
-- extra NaN tests, hidden in a function
|
|
do
|
|
function neq(a) return a ~= a end
|
|
function eq(a) return a == a end
|
|
function lt(a) return a < a end
|
|
function le(a) return a <= a end
|
|
function gt(a) return a > a end
|
|
function ge(a) return a >= a end
|
|
|
|
local NaN -- to avoid constant folding
|
|
NaN = 10e500 - 10e400
|
|
|
|
assert(neq(NaN))
|
|
assert(not eq(NaN))
|
|
assert(not lt(NaN))
|
|
assert(not le(NaN))
|
|
assert(not gt(NaN))
|
|
assert(not ge(NaN))
|
|
end
|
|
|
|
-- require "checktable"
|
|
-- stat(a)
|
|
|
|
a = nil
|
|
|
|
-- testing implicit conversions
|
|
|
|
local a,b = '10', '20'
|
|
assert(a*b == 200 and a+b == 30 and a-b == -10 and a/b == 0.5 and -b == -20)
|
|
assert(a == '10' and b == '20')
|
|
|
|
|
|
math.randomseed(0)
|
|
|
|
local i = 0
|
|
local Max = 0
|
|
local Min = 2
|
|
repeat
|
|
local t = math.random()
|
|
Max = math.max(Max, t)
|
|
Min = math.min(Min, t)
|
|
i=i+1
|
|
flag = eq(Max, 1, 0.001) and eq(Min, 0, 0.001)
|
|
until flag or i>10000
|
|
assert(0 <= Min and Max<1)
|
|
assert(flag);
|
|
|
|
for i=1,10 do
|
|
local t = math.random(5)
|
|
assert(1 <= t and t <= 5)
|
|
end
|
|
|
|
i = 0
|
|
Max = -200
|
|
Min = 200
|
|
repeat
|
|
local t = math.random(-10,0)
|
|
Max = math.max(Max, t)
|
|
Min = math.min(Min, t)
|
|
i=i+1
|
|
flag = (Max == 0 and Min == -10)
|
|
until flag or i>10000
|
|
assert(-10 <= Min and Max<=0)
|
|
assert(flag);
|
|
|
|
assert(select(2, pcall(math.random, 1, 2, 3)):match("wrong number of arguments"))
|
|
|
|
-- argument count
|
|
function nothing() end
|
|
|
|
assert(pcall(math.abs) == false)
|
|
assert(pcall(function() return math.abs(nothing()) end) == false)
|
|
|
|
-- min/max
|
|
assert(math.min(1) == 1)
|
|
assert(math.min(1, 2) == 1)
|
|
assert(math.min(1, 2, -1) == -1)
|
|
assert(math.min(1, -1, 2) == -1)
|
|
assert(math.max(1) == 1)
|
|
assert(math.max(1, 2) == 2)
|
|
assert(math.max(1, 2, -1) == 2)
|
|
assert(math.max(1, -1, 2) == 2)
|
|
|
|
-- noise
|
|
assert(math.noise(0.5) == 0)
|
|
assert(math.noise(0.5, 0.5) == -0.25)
|
|
assert(math.noise(0.5, 0.5, -0.5) == 0.125)
|
|
assert(math.noise(455.7204209769105, 340.80410508750134, 121.80087666537628) == 0.5010709762573242)
|
|
|
|
local inf = math.huge * 2
|
|
local nan = 0 / 0
|
|
|
|
-- sign
|
|
assert(math.sign(0) == 0)
|
|
assert(math.sign(42) == 1)
|
|
assert(math.sign(-42) == -1)
|
|
assert(math.sign(inf) == 1)
|
|
assert(math.sign(-inf) == -1)
|
|
assert(math.sign(nan) == 0)
|
|
|
|
assert(math.min(nan, 2) ~= math.min(nan, 2))
|
|
assert(math.min(1, nan) == 1)
|
|
assert(math.max(nan, 2) ~= math.max(nan, 2))
|
|
assert(math.max(1, nan) == 1)
|
|
|
|
-- clamp
|
|
assert(math.clamp(-1, 0, 1) == 0)
|
|
assert(math.clamp(0.5, 0, 1) == 0.5)
|
|
assert(math.clamp(2, 0, 1) == 1)
|
|
assert(math.clamp(4, 0, 0) == 0)
|
|
|
|
-- round
|
|
assert(math.round(0) == 0)
|
|
assert(math.round(0.4) == 0)
|
|
assert(math.round(0.5) == 1)
|
|
assert(math.round(3.5) == 4)
|
|
assert(math.round(-0.4) == 0)
|
|
assert(math.round(-0.5) == -1)
|
|
assert(math.round(-3.5) == -4)
|
|
assert(math.round(math.huge) == math.huge)
|
|
assert(math.round(0.49999999999999994) == 0)
|
|
assert(math.round(-0.49999999999999994) == 0)
|
|
|
|
-- fmod
|
|
assert(math.fmod(3, 2) == 1)
|
|
assert(math.fmod(-3, 2) == -1)
|
|
assert(math.fmod(3, -2) == 1)
|
|
assert(math.fmod(-3, -2) == -1)
|
|
|
|
-- pow
|
|
assert(math.pow(2, 0) == 1)
|
|
assert(math.pow(2, 2) == 4)
|
|
assert(math.pow(4, 0.5) == 2)
|
|
assert(math.pow(-2, 2) == 4)
|
|
assert(tostring(math.pow(-2, 0.5)) == "nan")
|
|
|
|
-- most of the tests above go through fastcall path
|
|
-- to make sure the basic implementations are also correct we test these functions with string->number coercions
|
|
assert(math.abs("-4") == 4)
|
|
assert(math.acos("1") == 0)
|
|
assert(math.asin("0") == 0)
|
|
assert(math.atan2("0", "0") == 0)
|
|
assert(math.atan("0") == 0)
|
|
assert(math.ceil("1.5") == 2)
|
|
assert(math.cosh("0") == 1)
|
|
assert(math.cos("0") == 1)
|
|
assert(math.deg("0") == 0)
|
|
assert(math.exp("0") == 1)
|
|
assert(math.floor("1.5") == 1)
|
|
assert(math.fmod("1.5", 1) == 0.5)
|
|
local v,e = math.frexp("1.5")
|
|
assert(v == 0.75 and e == 1)
|
|
assert(math.ldexp("0.75", 1) == 1.5)
|
|
assert(math.log10("10") == 1)
|
|
assert(math.log("0") == -inf)
|
|
assert(math.log("8", 2) == 3)
|
|
assert(math.log("10", 10) == 1)
|
|
assert(math.log("16", 4) == 2)
|
|
assert(math.max("1", 2) == 2)
|
|
assert(math.max(2, "1") == 2)
|
|
assert(math.max(1, 2, "3") == 3)
|
|
assert(math.min("1", 2) == 1)
|
|
assert(math.min(2, "1") == 1)
|
|
assert(math.min(1, 2, "3") == 1)
|
|
local v,f = math.modf("1.5")
|
|
assert(v == 1 and f == 0.5)
|
|
assert(math.pow("2", 2) == 4)
|
|
assert(math.rad("0") == 0)
|
|
assert(math.sinh("0") == 0)
|
|
assert(math.sin("0") == 0)
|
|
assert(math.sqrt("4") == 2)
|
|
assert(math.tanh("0") == 0)
|
|
assert(math.tan("0") == 0)
|
|
assert(math.clamp("0", 2, 3) == 2)
|
|
assert(math.clamp("4", 2, 3) == 3)
|
|
assert(math.sign("2") == 1)
|
|
assert(math.sign("-2") == -1)
|
|
assert(math.sign("0") == 0)
|
|
assert(math.round("1.8") == 2)
|
|
|
|
-- test that fastcalls return correct number of results
|
|
assert(select('#', math.floor(1.4)) == 1)
|
|
assert(select('#', math.ceil(1.6)) == 1)
|
|
assert(select('#', math.sqrt(9)) == 1)
|
|
assert(select('#', math.deg(9)) == 1)
|
|
assert(select('#', math.rad(9)) == 1)
|
|
assert(select('#', math.sin(1.5)) == 1)
|
|
assert(select('#', math.atan2(1.5, 0.5)) == 1)
|
|
assert(select('#', math.modf(1.5)) == 2)
|
|
assert(select('#', math.frexp(1.5)) == 2)
|
|
|
|
-- test that fastcalls that return variadic results return them correctly in variadic position
|
|
assert(select(1, math.modf(1.5)) == 1)
|
|
assert(select(2, math.modf(1.5)) == 0.5)
|
|
assert(select(1, math.frexp(1.5)) == 0.75)
|
|
assert(select(2, math.frexp(1.5)) == 1)
|
|
|
|
return('OK')
|