luau/CodeGen/src/CodeGen.cpp
2024-08-01 16:25:12 -07:00

201 lines
5.5 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "Luau/CodeGen.h"
#include "CodeGenLower.h"
#include "Luau/Common.h"
#include "Luau/CodeAllocator.h"
#include "Luau/CodeBlockUnwind.h"
#include "Luau/IrBuilder.h"
#include "Luau/UnwindBuilder.h"
#include "Luau/UnwindBuilderDwarf2.h"
#include "Luau/UnwindBuilderWin.h"
#include "Luau/AssemblyBuilderA64.h"
#include "Luau/AssemblyBuilderX64.h"
#include "CodeGenContext.h"
#include "NativeState.h"
#include "CodeGenA64.h"
#include "CodeGenX64.h"
#include "lapi.h"
#include "lmem.h"
#include <memory>
#include <optional>
#if defined(CODEGEN_TARGET_X64)
#ifdef _MSC_VER
#include <intrin.h> // __cpuid
#else
#include <cpuid.h> // __cpuid
#endif
#endif
#if defined(CODEGEN_TARGET_A64)
#ifdef __APPLE__
#include <sys/sysctl.h>
#endif
#endif
LUAU_FASTFLAGVARIABLE(DebugCodegenNoOpt, false)
LUAU_FASTFLAGVARIABLE(DebugCodegenOptSize, false)
LUAU_FASTFLAGVARIABLE(DebugCodegenSkipNumbering, false)
// Per-module IR instruction count limit
LUAU_FASTINTVARIABLE(CodegenHeuristicsInstructionLimit, 1'048'576) // 1 M
// Per-function IR block limit
// Current value is based on some member variables being limited to 16 bits
// Because block check is made before optimization passes and optimization can generate new blocks, limit is lowered 2x
// The limit will probably be adjusted in the future to avoid performance issues with analysis that's more complex than O(n)
LUAU_FASTINTVARIABLE(CodegenHeuristicsBlockLimit, 32'768) // 32 K
// Per-function IR instruction limit
// Current value is based on some member variables being limited to 16 bits
LUAU_FASTINTVARIABLE(CodegenHeuristicsBlockInstructionLimit, 65'536) // 64 K
namespace Luau
{
namespace CodeGen
{
std::string toString(const CodeGenCompilationResult& result)
{
switch (result)
{
case CodeGenCompilationResult::Success:
return "Success";
case CodeGenCompilationResult::NothingToCompile:
return "NothingToCompile";
case CodeGenCompilationResult::NotNativeModule:
return "NotNativeModule";
case CodeGenCompilationResult::CodeGenNotInitialized:
return "CodeGenNotInitialized";
case CodeGenCompilationResult::CodeGenOverflowInstructionLimit:
return "CodeGenOverflowInstructionLimit";
case CodeGenCompilationResult::CodeGenOverflowBlockLimit:
return "CodeGenOverflowBlockLimit";
case CodeGenCompilationResult::CodeGenOverflowBlockInstructionLimit:
return "CodeGenOverflowBlockInstructionLimit";
case CodeGenCompilationResult::CodeGenAssemblerFinalizationFailure:
return "CodeGenAssemblerFinalizationFailure";
case CodeGenCompilationResult::CodeGenLoweringFailure:
return "CodeGenLoweringFailure";
case CodeGenCompilationResult::AllocationFailed:
return "AllocationFailed";
case CodeGenCompilationResult::Count:
return "Count";
}
CODEGEN_ASSERT(false);
return "";
}
void onDisable(lua_State* L, Proto* proto)
{
// do nothing if proto already uses bytecode
if (proto->codeentry == proto->code)
return;
// ensure that VM does not call native code for this proto
proto->codeentry = proto->code;
// prevent native code from entering proto with breakpoints
proto->exectarget = 0;
// walk all thread call stacks and clear the LUA_CALLINFO_NATIVE flag from any
// entries pointing to the current proto that has native code enabled.
luaM_visitgco(
L,
proto,
[](void* context, lua_Page* page, GCObject* gco)
{
Proto* proto = (Proto*)context;
if (gco->gch.tt != LUA_TTHREAD)
return false;
lua_State* th = gco2th(gco);
for (CallInfo* ci = th->ci; ci > th->base_ci; ci--)
{
if (isLua(ci))
{
Proto* p = clvalue(ci->func)->l.p;
if (p == proto)
{
ci->flags &= ~LUA_CALLINFO_NATIVE;
}
}
}
return false;
}
);
}
#if defined(CODEGEN_TARGET_A64)
unsigned int getCpuFeaturesA64()
{
unsigned int result = 0;
#ifdef __APPLE__
int jscvt = 0;
size_t jscvtLen = sizeof(jscvt);
if (sysctlbyname("hw.optional.arm.FEAT_JSCVT", &jscvt, &jscvtLen, nullptr, 0) == 0 && jscvt == 1)
result |= A64::Feature_JSCVT;
#endif
return result;
}
#endif
bool isSupported()
{
if (LUA_EXTRA_SIZE != 1)
return false;
if (sizeof(TValue) != 16)
return false;
if (sizeof(LuaNode) != 32)
return false;
// Windows CRT uses stack unwinding in longjmp so we have to use unwind data; on other platforms, it's only necessary for C++ EH.
#if defined(_WIN32)
if (!isUnwindSupported())
return false;
#else
if (!LUA_USE_LONGJMP && !isUnwindSupported())
return false;
#endif
#if defined(CODEGEN_TARGET_X64)
int cpuinfo[4] = {};
#ifdef _MSC_VER
__cpuid(cpuinfo, 1);
#else
__cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]);
#endif
// We require AVX1 support for VEX encoded XMM operations
// We also requre SSE4.1 support for ROUNDSD but the AVX check below covers it
// https://en.wikipedia.org/wiki/CPUID#EAX=1:_Processor_Info_and_Feature_Bits
if ((cpuinfo[2] & (1 << 28)) == 0)
return false;
return true;
#elif defined(CODEGEN_TARGET_A64)
return true;
#else
return false;
#endif
}
} // namespace CodeGen
} // namespace Luau