luau/tests/Conformance.test.cpp
vegorov-rbx d518d14b92
Sync to upstream/release/640 (#1374)
### What's new

* Fixed many of the false positive errors in indexing of table unions
and table intersections
* It is now possible to run custom checks over Luau AST during
typechecking by setting `customModuleCheck` in `FrontendOptions`
* Fixed codegen issue on arm, where number->vector cast could corrupt
that number value for the next time it's read

### New Solver

* `error` type now behaves as the bottom type during subtyping checks
* Fixed the scope that is used in subtyping with generic types
* Fixed `astOriginalCallTypes` table often used by LSP to match the old
solver

---

### Internal Contributors

Co-authored-by: Aaron Weiss <aaronweiss@roblox.com>
Co-authored-by: Andy Friesen <afriesen@roblox.com>
Co-authored-by: Vighnesh Vijay <vvijay@roblox.com>
Co-authored-by: Vyacheslav Egorov <vegorov@roblox.com>
2024-08-23 09:35:30 -07:00

2953 lines
77 KiB
C++

// This file is part of the Luau programming language and is licensed under MIT License; see LICENSE.txt for details
#include "lua.h"
#include "lualib.h"
#include "luacode.h"
#include "luacodegen.h"
#include "Luau/BuiltinDefinitions.h"
#include "Luau/DenseHash.h"
#include "Luau/ModuleResolver.h"
#include "Luau/TypeInfer.h"
#include "Luau/BytecodeBuilder.h"
#include "Luau/Frontend.h"
#include "Luau/Compiler.h"
#include "Luau/CodeGen.h"
#include "Luau/BytecodeSummary.h"
#include "doctest.h"
#include "ScopedFlags.h"
#include "ConformanceIrHooks.h"
#include <fstream>
#include <string>
#include <vector>
#include <math.h>
extern bool verbose;
extern bool codegen;
extern int optimizationLevel;
// internal functions, declared in lgc.h - not exposed via lua.h
void luaC_fullgc(lua_State* L);
void luaC_validate(lua_State* L);
LUAU_FASTFLAG(DebugLuauAbortingChecks)
LUAU_FASTINT(CodegenHeuristicsInstructionLimit)
LUAU_FASTFLAG(LuauNativeAttribute)
LUAU_FASTFLAG(LuauPreserveLudataRenaming)
LUAU_FASTFLAG(LuauCodegenArmNumToVecFix)
static lua_CompileOptions defaultOptions()
{
lua_CompileOptions copts = {};
copts.optimizationLevel = optimizationLevel;
copts.debugLevel = 1;
copts.typeInfoLevel = 1;
copts.vectorCtor = "vector";
copts.vectorType = "vector";
return copts;
}
static Luau::CodeGen::CompilationOptions defaultCodegenOptions()
{
Luau::CodeGen::CompilationOptions opts = {};
opts.flags = Luau::CodeGen::CodeGen_ColdFunctions;
return opts;
}
static int lua_collectgarbage(lua_State* L)
{
static const char* const opts[] = {"stop", "restart", "collect", "count", "isrunning", "step", "setgoal", "setstepmul", "setstepsize", nullptr};
static const int optsnum[] = {
LUA_GCSTOP, LUA_GCRESTART, LUA_GCCOLLECT, LUA_GCCOUNT, LUA_GCISRUNNING, LUA_GCSTEP, LUA_GCSETGOAL, LUA_GCSETSTEPMUL, LUA_GCSETSTEPSIZE
};
int o = luaL_checkoption(L, 1, "collect", opts);
int ex = luaL_optinteger(L, 2, 0);
int res = lua_gc(L, optsnum[o], ex);
switch (optsnum[o])
{
case LUA_GCSTEP:
case LUA_GCISRUNNING:
{
lua_pushboolean(L, res);
return 1;
}
default:
{
lua_pushnumber(L, res);
return 1;
}
}
}
static int lua_loadstring(lua_State* L)
{
size_t l = 0;
const char* s = luaL_checklstring(L, 1, &l);
const char* chunkname = luaL_optstring(L, 2, s);
lua_setsafeenv(L, LUA_ENVIRONINDEX, false);
size_t bytecodeSize = 0;
char* bytecode = luau_compile(s, l, nullptr, &bytecodeSize);
int result = luau_load(L, chunkname, bytecode, bytecodeSize, 0);
free(bytecode);
if (result == 0)
return 1;
lua_pushnil(L);
lua_insert(L, -2); // put before error message
return 2; // return nil plus error message
}
static int lua_vector(lua_State* L)
{
double x = luaL_checknumber(L, 1);
double y = luaL_checknumber(L, 2);
double z = luaL_checknumber(L, 3);
#if LUA_VECTOR_SIZE == 4
double w = luaL_optnumber(L, 4, 0.0);
lua_pushvector(L, float(x), float(y), float(z), float(w));
#else
lua_pushvector(L, float(x), float(y), float(z));
#endif
return 1;
}
static int lua_vector_dot(lua_State* L)
{
const float* a = luaL_checkvector(L, 1);
const float* b = luaL_checkvector(L, 2);
lua_pushnumber(L, a[0] * b[0] + a[1] * b[1] + a[2] * b[2]);
return 1;
}
static int lua_vector_cross(lua_State* L)
{
const float* a = luaL_checkvector(L, 1);
const float* b = luaL_checkvector(L, 2);
lua_pushvector(L, a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]);
return 1;
}
static int lua_vector_index(lua_State* L)
{
const float* v = luaL_checkvector(L, 1);
const char* name = luaL_checkstring(L, 2);
if (strcmp(name, "Magnitude") == 0)
{
lua_pushnumber(L, sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
return 1;
}
if (strcmp(name, "Unit") == 0)
{
float invSqrt = 1.0f / sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
lua_pushvector(L, v[0] * invSqrt, v[1] * invSqrt, v[2] * invSqrt);
return 1;
}
if (strcmp(name, "Dot") == 0)
{
lua_pushcfunction(L, lua_vector_dot, "Dot");
return 1;
}
luaL_error(L, "%s is not a valid member of vector", name);
}
static int lua_vector_namecall(lua_State* L)
{
if (const char* str = lua_namecallatom(L, nullptr))
{
if (strcmp(str, "Dot") == 0)
return lua_vector_dot(L);
if (strcmp(str, "Cross") == 0)
return lua_vector_cross(L);
}
luaL_error(L, "%s is not a valid method of vector", luaL_checkstring(L, 1));
}
int lua_silence(lua_State* L)
{
return 0;
}
using StateRef = std::unique_ptr<lua_State, void (*)(lua_State*)>;
static StateRef runConformance(
const char* name,
void (*setup)(lua_State* L) = nullptr,
void (*yield)(lua_State* L) = nullptr,
lua_State* initialLuaState = nullptr,
lua_CompileOptions* options = nullptr,
bool skipCodegen = false,
Luau::CodeGen::CompilationOptions* codegenOptions = nullptr
)
{
#ifdef LUAU_CONFORMANCE_SOURCE_DIR
std::string path = LUAU_CONFORMANCE_SOURCE_DIR;
path += "/";
path += name;
#else
std::string path = __FILE__;
path.erase(path.find_last_of("\\/"));
path += "/conformance/";
path += name;
#endif
std::fstream stream(path, std::ios::in | std::ios::binary);
INFO(path);
REQUIRE(stream);
std::string source(std::istreambuf_iterator<char>(stream), {});
stream.close();
if (!initialLuaState)
initialLuaState = luaL_newstate();
StateRef globalState(initialLuaState, lua_close);
lua_State* L = globalState.get();
if (codegen && !skipCodegen && luau_codegen_supported())
luau_codegen_create(L);
luaL_openlibs(L);
// Register a few global functions for conformance tests
std::vector<luaL_Reg> funcs = {
{"collectgarbage", lua_collectgarbage},
{"loadstring", lua_loadstring},
};
if (!verbose)
{
funcs.push_back({"print", lua_silence});
}
// "null" terminate the list of functions to register
funcs.push_back({nullptr, nullptr});
lua_pushvalue(L, LUA_GLOBALSINDEX);
luaL_register(L, nullptr, funcs.data());
lua_pop(L, 1);
// In some configurations we have a larger C stack consumption which trips some conformance tests
#if defined(LUAU_ENABLE_ASAN) || defined(_NOOPT) || defined(_DEBUG)
lua_pushboolean(L, true);
lua_setglobal(L, "limitedstack");
#endif
// Extra test-specific setup
if (setup)
setup(L);
// Protect core libraries and metatables from modification
luaL_sandbox(L);
// Create a new writable global table for current thread
luaL_sandboxthread(L);
// Lua conformance tests treat _G synonymously with getfenv(); for now cater to them
lua_pushvalue(L, LUA_GLOBALSINDEX);
lua_pushvalue(L, LUA_GLOBALSINDEX);
lua_setfield(L, -1, "_G");
std::string chunkname = "=" + std::string(name);
// note: luau_compile supports nullptr options, but we need to customize our defaults to improve test coverage
lua_CompileOptions opts = options ? *options : defaultOptions();
size_t bytecodeSize = 0;
char* bytecode = luau_compile(source.data(), source.size(), &opts, &bytecodeSize);
int result = luau_load(L, chunkname.c_str(), bytecode, bytecodeSize, 0);
free(bytecode);
if (result == 0 && codegen && !skipCodegen && luau_codegen_supported())
{
Luau::CodeGen::CompilationOptions nativeOpts = codegenOptions ? *codegenOptions : defaultCodegenOptions();
Luau::CodeGen::compile(L, -1, nativeOpts);
}
int status = (result == 0) ? lua_resume(L, nullptr, 0) : LUA_ERRSYNTAX;
while (yield && (status == LUA_YIELD || status == LUA_BREAK))
{
yield(L);
status = lua_resume(L, nullptr, 0);
}
luaC_validate(L);
if (status == 0)
{
REQUIRE(lua_isstring(L, -1));
CHECK(std::string(lua_tostring(L, -1)) == "OK");
}
else
{
std::string error = (status == LUA_YIELD) ? "thread yielded unexpectedly" : lua_tostring(L, -1);
error += "\nstacktrace:\n";
error += lua_debugtrace(L);
FAIL(error);
}
return globalState;
}
static void* limitedRealloc(void* ud, void* ptr, size_t osize, size_t nsize)
{
if (nsize == 0)
{
free(ptr);
return nullptr;
}
else if (nsize > 8 * 1024 * 1024)
{
// For testing purposes return null for large allocations so we can generate errors related to memory allocation failures
return nullptr;
}
else
{
return realloc(ptr, nsize);
}
}
void setupVectorHelpers(lua_State* L)
{
lua_pushcfunction(L, lua_vector, "vector");
lua_setglobal(L, "vector");
#if LUA_VECTOR_SIZE == 4
lua_pushvector(L, 0.0f, 0.0f, 0.0f, 0.0f);
#else
lua_pushvector(L, 0.0f, 0.0f, 0.0f);
#endif
luaL_newmetatable(L, "vector");
lua_pushstring(L, "__index");
lua_pushcfunction(L, lua_vector_index, nullptr);
lua_settable(L, -3);
lua_pushstring(L, "__namecall");
lua_pushcfunction(L, lua_vector_namecall, nullptr);
lua_settable(L, -3);
lua_setreadonly(L, -1, true);
lua_setmetatable(L, -2);
lua_pop(L, 1);
}
Vec2* lua_vec2_push(lua_State* L)
{
Vec2* data = (Vec2*)lua_newuserdatatagged(L, sizeof(Vec2), kTagVec2);
lua_getuserdatametatable(L, kTagVec2);
lua_setmetatable(L, -2);
return data;
}
Vec2* lua_vec2_get(lua_State* L, int idx)
{
Vec2* a = (Vec2*)lua_touserdatatagged(L, idx, kTagVec2);
if (a)
return a;
luaL_typeerror(L, idx, "vec2");
}
static int lua_vec2(lua_State* L)
{
double x = luaL_checknumber(L, 1);
double y = luaL_checknumber(L, 2);
Vec2* data = lua_vec2_push(L);
data->x = float(x);
data->y = float(y);
return 1;
}
static int lua_vec2_dot(lua_State* L)
{
Vec2* a = lua_vec2_get(L, 1);
Vec2* b = lua_vec2_get(L, 2);
lua_pushnumber(L, a->x * b->x + a->y * b->y);
return 1;
}
static int lua_vec2_min(lua_State* L)
{
Vec2* a = lua_vec2_get(L, 1);
Vec2* b = lua_vec2_get(L, 2);
Vec2* data = lua_vec2_push(L);
data->x = a->x < b->x ? a->x : b->x;
data->y = a->y < b->y ? a->y : b->y;
return 1;
}
static int lua_vec2_index(lua_State* L)
{
Vec2* v = lua_vec2_get(L, 1);
const char* name = luaL_checkstring(L, 2);
if (strcmp(name, "X") == 0)
{
lua_pushnumber(L, v->x);
return 1;
}
if (strcmp(name, "Y") == 0)
{
lua_pushnumber(L, v->y);
return 1;
}
if (strcmp(name, "Magnitude") == 0)
{
lua_pushnumber(L, sqrtf(v->x * v->x + v->y * v->y));
return 1;
}
if (strcmp(name, "Unit") == 0)
{
float invSqrt = 1.0f / sqrtf(v->x * v->x + v->y * v->y);
Vec2* data = lua_vec2_push(L);
data->x = v->x * invSqrt;
data->y = v->y * invSqrt;
return 1;
}
luaL_error(L, "%s is not a valid member of vector", name);
}
static int lua_vec2_namecall(lua_State* L)
{
if (const char* str = lua_namecallatom(L, nullptr))
{
if (strcmp(str, "Dot") == 0)
return lua_vec2_dot(L);
if (strcmp(str, "Min") == 0)
return lua_vec2_min(L);
}
luaL_error(L, "%s is not a valid method of vector", luaL_checkstring(L, 1));
}
void setupUserdataHelpers(lua_State* L)
{
// create metatable with all the metamethods
luaL_newmetatable(L, "vec2");
luaL_getmetatable(L, "vec2");
lua_pushvalue(L, -1);
lua_setuserdatametatable(L, kTagVec2, -1);
lua_pushcfunction(L, lua_vec2_index, nullptr);
lua_setfield(L, -2, "__index");
lua_pushcfunction(L, lua_vec2_namecall, nullptr);
lua_setfield(L, -2, "__namecall");
lua_pushcclosurek(
L,
[](lua_State* L)
{
Vec2* a = lua_vec2_get(L, 1);
Vec2* b = lua_vec2_get(L, 2);
Vec2* data = lua_vec2_push(L);
data->x = a->x + b->x;
data->y = a->y + b->y;
return 1;
},
nullptr,
0,
nullptr
);
lua_setfield(L, -2, "__add");
lua_pushcclosurek(
L,
[](lua_State* L)
{
Vec2* a = lua_vec2_get(L, 1);
Vec2* b = lua_vec2_get(L, 2);
Vec2* data = lua_vec2_push(L);
data->x = a->x - b->x;
data->y = a->y - b->y;
return 1;
},
nullptr,
0,
nullptr
);
lua_setfield(L, -2, "__sub");
lua_pushcclosurek(
L,
[](lua_State* L)
{
Vec2* a = lua_vec2_get(L, 1);
Vec2* b = lua_vec2_get(L, 2);
Vec2* data = lua_vec2_push(L);
data->x = a->x * b->x;
data->y = a->y * b->y;
return 1;
},
nullptr,
0,
nullptr
);
lua_setfield(L, -2, "__mul");
lua_pushcclosurek(
L,
[](lua_State* L)
{
Vec2* a = lua_vec2_get(L, 1);
Vec2* b = lua_vec2_get(L, 2);
Vec2* data = lua_vec2_push(L);
data->x = a->x / b->x;
data->y = a->y / b->y;
return 1;
},
nullptr,
0,
nullptr
);
lua_setfield(L, -2, "__div");
lua_pushcclosurek(
L,
[](lua_State* L)
{
Vec2* a = lua_vec2_get(L, 1);
Vec2* data = lua_vec2_push(L);
data->x = -a->x;
data->y = -a->y;
return 1;
},
nullptr,
0,
nullptr
);
lua_setfield(L, -2, "__unm");
lua_setreadonly(L, -1, true);
// ctor
lua_pushcfunction(L, lua_vec2, "vec2");
lua_setglobal(L, "vec2");
lua_pop(L, 1);
}
static void setupNativeHelpers(lua_State* L)
{
lua_pushcclosurek(
L,
[](lua_State* L) -> int
{
extern int luaG_isnative(lua_State * L, int level);
lua_pushboolean(L, luaG_isnative(L, 1));
return 1;
},
"is_native",
0,
nullptr
);
lua_setglobal(L, "is_native");
}
static std::vector<Luau::CodeGen::FunctionBytecodeSummary> analyzeFile(const char* source, const unsigned nestingLimit)
{
Luau::BytecodeBuilder bcb;
Luau::CompileOptions options;
options.optimizationLevel = optimizationLevel;
options.debugLevel = 1;
options.typeInfoLevel = 1;
compileOrThrow(bcb, source, options);
const std::string& bytecode = bcb.getBytecode();
std::unique_ptr<lua_State, void (*)(lua_State*)> globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
int result = luau_load(L, "source", bytecode.data(), bytecode.size(), 0);
REQUIRE(result == 0);
return Luau::CodeGen::summarizeBytecode(L, -1, nestingLimit);
}
TEST_SUITE_BEGIN("Conformance");
TEST_CASE("CodegenSupported")
{
if (codegen && !luau_codegen_supported())
MESSAGE("Native code generation is not supported by the current configuration and will be disabled");
}
TEST_CASE("Assert")
{
runConformance("assert.lua");
}
TEST_CASE("Basic")
{
runConformance("basic.lua");
}
TEST_CASE("Buffers")
{
runConformance("buffers.lua");
}
TEST_CASE("Math")
{
runConformance("math.lua");
}
TEST_CASE("Tables")
{
runConformance(
"tables.lua",
[](lua_State* L)
{
lua_pushcfunction(
L,
[](lua_State* L)
{
if (lua_type(L, 1) == LUA_TNUMBER)
{
unsigned v = luaL_checkunsigned(L, 1);
lua_pushlightuserdata(L, reinterpret_cast<void*>(uintptr_t(v)));
}
else
{
const void* p = lua_topointer(L, 1);
LUAU_ASSERT(p); // we expect the test call to only pass GC values here
lua_pushlightuserdata(L, const_cast<void*>(p));
}
return 1;
},
"makelud"
);
lua_setglobal(L, "makelud");
}
);
}
TEST_CASE("PatternMatch")
{
runConformance("pm.lua");
}
TEST_CASE("Sort")
{
runConformance("sort.lua");
}
TEST_CASE("Move")
{
runConformance("move.lua");
}
TEST_CASE("Clear")
{
runConformance("clear.lua");
}
TEST_CASE("Strings")
{
runConformance("strings.lua");
}
TEST_CASE("StringInterp")
{
runConformance("stringinterp.lua");
}
TEST_CASE("VarArg")
{
runConformance("vararg.lua");
}
TEST_CASE("Locals")
{
runConformance("locals.lua");
}
TEST_CASE("Literals")
{
runConformance("literals.lua");
}
TEST_CASE("Errors")
{
runConformance("errors.lua");
}
TEST_CASE("Events")
{
runConformance("events.lua");
}
TEST_CASE("Constructs")
{
runConformance("constructs.lua");
}
TEST_CASE("Closure")
{
runConformance("closure.lua");
}
TEST_CASE("Calls")
{
runConformance("calls.lua");
}
TEST_CASE("Attrib")
{
runConformance("attrib.lua");
}
TEST_CASE("GC")
{
runConformance("gc.lua");
}
TEST_CASE("Bitwise")
{
runConformance("bitwise.lua");
}
TEST_CASE("UTF8")
{
runConformance("utf8.lua");
}
TEST_CASE("Coroutine")
{
runConformance("coroutine.lua");
}
static int cxxthrow(lua_State* L)
{
#if LUA_USE_LONGJMP
luaL_error(L, "oops");
#else
throw std::runtime_error("oops");
#endif
}
TEST_CASE("PCall")
{
runConformance(
"pcall.lua",
[](lua_State* L)
{
lua_pushcfunction(L, cxxthrow, "cxxthrow");
lua_setglobal(L, "cxxthrow");
lua_pushcfunction(
L,
[](lua_State* L) -> int
{
lua_State* co = lua_tothread(L, 1);
lua_xmove(L, co, 1);
lua_resumeerror(co, L);
return 0;
},
"resumeerror"
);
lua_setglobal(L, "resumeerror");
},
nullptr,
lua_newstate(limitedRealloc, nullptr)
);
}
TEST_CASE("Pack")
{
runConformance("tpack.lua");
}
TEST_CASE("Vector")
{
ScopedFastFlag luauCodegenArmNumToVecFix{FFlag::LuauCodegenArmNumToVecFix, true};
lua_CompileOptions copts = defaultOptions();
Luau::CodeGen::CompilationOptions nativeOpts = defaultCodegenOptions();
SUBCASE("NoIrHooks")
{
SUBCASE("O0")
{
copts.optimizationLevel = 0;
}
SUBCASE("O1")
{
copts.optimizationLevel = 1;
}
SUBCASE("O2")
{
copts.optimizationLevel = 2;
}
}
SUBCASE("IrHooks")
{
nativeOpts.hooks.vectorAccessBytecodeType = vectorAccessBytecodeType;
nativeOpts.hooks.vectorNamecallBytecodeType = vectorNamecallBytecodeType;
nativeOpts.hooks.vectorAccess = vectorAccess;
nativeOpts.hooks.vectorNamecall = vectorNamecall;
SUBCASE("O0")
{
copts.optimizationLevel = 0;
}
SUBCASE("O1")
{
copts.optimizationLevel = 1;
}
SUBCASE("O2")
{
copts.optimizationLevel = 2;
}
}
runConformance(
"vector.lua",
[](lua_State* L)
{
setupVectorHelpers(L);
},
nullptr,
nullptr,
&copts,
false,
&nativeOpts
);
}
static void populateRTTI(lua_State* L, Luau::TypeId type)
{
if (auto p = Luau::get<Luau::PrimitiveType>(type))
{
switch (p->type)
{
case Luau::PrimitiveType::Boolean:
lua_pushstring(L, "boolean");
break;
case Luau::PrimitiveType::NilType:
lua_pushstring(L, "nil");
break;
case Luau::PrimitiveType::Number:
lua_pushstring(L, "number");
break;
case Luau::PrimitiveType::String:
lua_pushstring(L, "string");
break;
case Luau::PrimitiveType::Thread:
lua_pushstring(L, "thread");
break;
case Luau::PrimitiveType::Buffer:
lua_pushstring(L, "buffer");
break;
default:
LUAU_ASSERT(!"Unknown primitive type");
}
}
else if (auto t = Luau::get<Luau::TableType>(type))
{
lua_newtable(L);
for (const auto& [name, prop] : t->props)
{
populateRTTI(L, prop.type());
lua_setfield(L, -2, name.c_str());
}
}
else if (Luau::get<Luau::FunctionType>(type))
{
lua_pushstring(L, "function");
}
else if (Luau::get<Luau::AnyType>(type))
{
lua_pushstring(L, "any");
}
else if (auto i = Luau::get<Luau::IntersectionType>(type))
{
for (const auto& part : i->parts)
LUAU_ASSERT(Luau::get<Luau::FunctionType>(part));
lua_pushstring(L, "function");
}
else
{
LUAU_ASSERT(!"Unknown type");
}
}
TEST_CASE("Types")
{
runConformance(
"types.lua",
[](lua_State* L)
{
Luau::NullModuleResolver moduleResolver;
Luau::NullFileResolver fileResolver;
Luau::NullConfigResolver configResolver;
Luau::Frontend frontend{&fileResolver, &configResolver};
Luau::registerBuiltinGlobals(frontend, frontend.globals);
Luau::freeze(frontend.globals.globalTypes);
lua_newtable(L);
for (const auto& [name, binding] : frontend.globals.globalScope->bindings)
{
populateRTTI(L, binding.typeId);
lua_setfield(L, -2, toString(name).c_str());
}
lua_setglobal(L, "RTTI");
}
);
}
TEST_CASE("DateTime")
{
runConformance("datetime.lua");
}
TEST_CASE("Debug")
{
runConformance("debug.lua");
}
TEST_CASE("Debugger")
{
static int breakhits = 0;
static lua_State* interruptedthread = nullptr;
static bool singlestep = false;
static int stephits = 0;
SUBCASE("")
{
singlestep = false;
}
SUBCASE("SingleStep")
{
singlestep = true;
}
breakhits = 0;
interruptedthread = nullptr;
stephits = 0;
lua_CompileOptions copts = defaultOptions();
copts.debugLevel = 2;
runConformance(
"debugger.lua",
[](lua_State* L)
{
lua_Callbacks* cb = lua_callbacks(L);
lua_singlestep(L, singlestep);
// this will only be called in single-step mode
cb->debugstep = [](lua_State* L, lua_Debug* ar)
{
stephits++;
};
// for breakpoints to work we should make sure debugbreak is installed
cb->debugbreak = [](lua_State* L, lua_Debug* ar)
{
breakhits++;
// make sure we can trace the stack for every breakpoint we hit
lua_debugtrace(L);
// for every breakpoint, we break on the first invocation and continue on second
// this allows us to easily step off breakpoints
// (real implementaiton may require singlestepping)
if (breakhits % 2 == 1)
lua_break(L);
};
// for resuming off a breakpoint inside a coroutine we need to resume the interrupted coroutine
cb->debuginterrupt = [](lua_State* L, lua_Debug* ar)
{
CHECK(interruptedthread == nullptr);
CHECK(ar->userdata); // userdata contains the interrupted thread
interruptedthread = static_cast<lua_State*>(ar->userdata);
};
// add breakpoint() function
lua_pushcclosurek(
L,
[](lua_State* L) -> int
{
int line = luaL_checkinteger(L, 1);
bool enabled = luaL_optboolean(L, 2, true);
lua_Debug ar = {};
lua_getinfo(L, lua_stackdepth(L) - 1, "f", &ar);
lua_breakpoint(L, -1, line, enabled);
return 0;
},
"breakpoint",
0,
nullptr
);
lua_setglobal(L, "breakpoint");
},
[](lua_State* L)
{
CHECK(breakhits % 2 == 1);
lua_checkstack(L, LUA_MINSTACK);
if (breakhits == 1)
{
// test lua_getargument
int a = lua_getargument(L, 0, 1);
REQUIRE(a);
CHECK(lua_tointeger(L, -1) == 50);
lua_pop(L, 1);
int v = lua_getargument(L, 0, 2);
REQUIRE(v);
CHECK(lua_tointeger(L, -1) == 42);
lua_pop(L, 1);
// test lua_getlocal
const char* l = lua_getlocal(L, 0, 1);
REQUIRE(l);
CHECK(strcmp(l, "b") == 0);
CHECK(lua_tointeger(L, -1) == 50);
lua_pop(L, 1);
// test lua_getupvalue
lua_Debug ar = {};
lua_getinfo(L, 0, "f", &ar);
const char* u = lua_getupvalue(L, -1, 1);
REQUIRE(u);
CHECK(strcmp(u, "a") == 0);
CHECK(lua_tointeger(L, -1) == 5);
lua_pop(L, 2);
}
else if (breakhits == 3)
{
// validate assignment via lua_getlocal
const char* l = lua_getlocal(L, 0, 1);
REQUIRE(l);
CHECK(strcmp(l, "a") == 0);
CHECK(lua_tointeger(L, -1) == 6);
lua_pop(L, 1);
}
else if (breakhits == 5)
{
// validate assignment via lua_getlocal
const char* l = lua_getlocal(L, 1, 1);
REQUIRE(l);
CHECK(strcmp(l, "a") == 0);
CHECK(lua_tointeger(L, -1) == 7);
lua_pop(L, 1);
}
else if (breakhits == 7)
{
// validate assignment via lua_getlocal
const char* l = lua_getlocal(L, 1, 1);
REQUIRE(l);
CHECK(strcmp(l, "a") == 0);
CHECK(lua_tointeger(L, -1) == 8);
lua_pop(L, 1);
}
else if (breakhits == 9)
{
// validate assignment via lua_getlocal
const char* l = lua_getlocal(L, 1, 1);
REQUIRE(l);
CHECK(strcmp(l, "a") == 0);
CHECK(lua_tointeger(L, -1) == 9);
lua_pop(L, 1);
}
else if (breakhits == 13)
{
// validate assignment via lua_getlocal
const char* l = lua_getlocal(L, 0, 1);
REQUIRE(l);
CHECK(strcmp(l, "a") == 0);
CHECK(lua_isnil(L, -1));
lua_pop(L, 1);
}
else if (breakhits == 15)
{
// test lua_getlocal
const char* x = lua_getlocal(L, 2, 1);
REQUIRE(x);
CHECK(strcmp(x, "x") == 0);
lua_pop(L, 1);
const char* a1 = lua_getlocal(L, 2, 2);
REQUIRE(!a1);
}
if (interruptedthread)
{
lua_resume(interruptedthread, nullptr, 0);
interruptedthread = nullptr;
}
},
nullptr,
&copts,
/* skipCodegen */ true
); // Native code doesn't support debugging yet
CHECK(breakhits == 16); // 2 hits per breakpoint
if (singlestep)
CHECK(stephits > 100); // note; this will depend on number of instructions which can vary, so we just make sure the callback gets hit often
}
TEST_CASE("NDebugGetUpValue")
{
lua_CompileOptions copts = defaultOptions();
copts.debugLevel = 0;
// Don't optimize away any upvalues
copts.optimizationLevel = 0;
runConformance(
"ndebug_upvalues.lua",
nullptr,
[](lua_State* L)
{
lua_checkstack(L, LUA_MINSTACK);
// push the second frame's closure to the stack
lua_Debug ar = {};
REQUIRE(lua_getinfo(L, 1, "f", &ar));
// get the first upvalue
const char* u = lua_getupvalue(L, -1, 1);
REQUIRE(u);
// upvalue name is unknown without debug info
CHECK(strcmp(u, "") == 0);
CHECK(lua_tointeger(L, -1) == 5);
lua_pop(L, 2);
},
nullptr,
&copts,
/* skipCodegen */ false
);
}
TEST_CASE("SameHash")
{
extern unsigned int luaS_hash(const char* str, size_t len); // internal function, declared in lstring.h - not exposed via lua.h
// To keep VM and compiler separate, we duplicate the hash function definition
// This test validates that the hash function in question returns the same results on basic inputs
// If this is violated, some code may regress in performance due to hash slot misprediction in inline caches
CHECK(luaS_hash("", 0) == Luau::BytecodeBuilder::getStringHash({"", 0}));
CHECK(luaS_hash("lua", 3) == Luau::BytecodeBuilder::getStringHash({"lua", 3}));
CHECK(luaS_hash("luau", 4) == Luau::BytecodeBuilder::getStringHash({"luau", 4}));
CHECK(luaS_hash("luaubytecode", 12) == Luau::BytecodeBuilder::getStringHash({"luaubytecode", 12}));
CHECK(luaS_hash("luaubytecodehash", 16) == Luau::BytecodeBuilder::getStringHash({"luaubytecodehash", 16}));
// Also hash should work on unaligned source data even when hashing long strings
char buf[128] = {};
CHECK(luaS_hash(buf + 1, 120) == luaS_hash(buf + 2, 120));
}
TEST_CASE("Reference")
{
static int dtorhits = 0;
dtorhits = 0;
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
// note, we push two userdata objects but only pin one of them (the first one)
lua_newuserdatadtor(
L,
0,
[](void*)
{
dtorhits++;
}
);
lua_newuserdatadtor(
L,
0,
[](void*)
{
dtorhits++;
}
);
lua_gc(L, LUA_GCCOLLECT, 0);
CHECK(dtorhits == 0);
int ref = lua_ref(L, -2);
lua_pop(L, 2);
lua_gc(L, LUA_GCCOLLECT, 0);
CHECK(dtorhits == 1);
lua_getref(L, ref);
CHECK(lua_isuserdata(L, -1));
lua_pop(L, 1);
lua_gc(L, LUA_GCCOLLECT, 0);
CHECK(dtorhits == 1);
lua_unref(L, ref);
lua_gc(L, LUA_GCCOLLECT, 0);
CHECK(dtorhits == 2);
}
TEST_CASE("NewUserdataOverflow")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
lua_pushcfunction(
L,
[](lua_State* L1)
{
// The following userdata request might cause an overflow.
lua_newuserdatadtor(L1, SIZE_MAX, [](void* d) {});
// The overflow might segfault in the following call.
lua_getmetatable(L1, -1);
return 0;
},
nullptr
);
CHECK(lua_pcall(L, 0, 0, 0) == LUA_ERRRUN);
CHECK(strcmp(lua_tostring(L, -1), "memory allocation error: block too big") == 0);
}
TEST_CASE("SandboxWithoutLibs")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
luaopen_base(L); // Load only base library
luaL_sandbox(L);
CHECK(lua_getreadonly(L, LUA_GLOBALSINDEX));
}
TEST_CASE("ApiTables")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
lua_newtable(L);
lua_pushnumber(L, 123.0);
lua_setfield(L, -2, "key");
lua_pushnumber(L, 456.0);
lua_rawsetfield(L, -2, "key2");
lua_pushstring(L, "test");
lua_rawseti(L, -2, 5);
// lua_gettable
lua_pushstring(L, "key");
CHECK(lua_gettable(L, -2) == LUA_TNUMBER);
CHECK(lua_tonumber(L, -1) == 123.0);
lua_pop(L, 1);
// lua_getfield
CHECK(lua_getfield(L, -1, "key") == LUA_TNUMBER);
CHECK(lua_tonumber(L, -1) == 123.0);
lua_pop(L, 1);
// lua_rawgetfield
CHECK(lua_rawgetfield(L, -1, "key2") == LUA_TNUMBER);
CHECK(lua_tonumber(L, -1) == 456.0);
lua_pop(L, 1);
// lua_rawget
lua_pushstring(L, "key");
CHECK(lua_rawget(L, -2) == LUA_TNUMBER);
CHECK(lua_tonumber(L, -1) == 123.0);
lua_pop(L, 1);
// lua_rawgeti
CHECK(lua_rawgeti(L, -1, 5) == LUA_TSTRING);
CHECK(strcmp(lua_tostring(L, -1), "test") == 0);
lua_pop(L, 1);
// lua_cleartable
lua_cleartable(L, -1);
lua_pushnil(L);
CHECK(lua_next(L, -2) == 0);
lua_pop(L, 1);
}
TEST_CASE("ApiIter")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
lua_newtable(L);
lua_pushnumber(L, 123.0);
lua_setfield(L, -2, "key");
lua_pushnumber(L, 456.0);
lua_rawsetfield(L, -2, "key2");
lua_pushstring(L, "test");
lua_rawseti(L, -2, 1);
// Lua-compatible iteration interface: lua_next
double sum1 = 0;
lua_pushnil(L);
while (lua_next(L, -2))
{
sum1 += lua_tonumber(L, -2); // key
sum1 += lua_tonumber(L, -1); // value
lua_pop(L, 1); // pop value, key is used by lua_next
}
CHECK(sum1 == 580);
// Luau iteration interface: lua_rawiter (faster and preferable to lua_next)
double sum2 = 0;
for (int index = 0; index = lua_rawiter(L, -1, index), index >= 0;)
{
sum2 += lua_tonumber(L, -2); // key
sum2 += lua_tonumber(L, -1); // value
lua_pop(L, 2); // pop both key and value
}
CHECK(sum2 == 580);
// pop table
lua_pop(L, 1);
}
TEST_CASE("ApiCalls")
{
StateRef globalState = runConformance("apicalls.lua", nullptr, nullptr, lua_newstate(limitedRealloc, nullptr));
lua_State* L = globalState.get();
// lua_call
{
lua_getfield(L, LUA_GLOBALSINDEX, "add");
lua_pushnumber(L, 40);
lua_pushnumber(L, 2);
lua_call(L, 2, 1);
CHECK(lua_isnumber(L, -1));
CHECK(lua_tonumber(L, -1) == 42);
lua_pop(L, 1);
}
// lua_pcall
{
lua_getfield(L, LUA_GLOBALSINDEX, "add");
lua_pushnumber(L, 40);
lua_pushnumber(L, 2);
lua_pcall(L, 2, 1, 0);
CHECK(lua_isnumber(L, -1));
CHECK(lua_tonumber(L, -1) == 42);
lua_pop(L, 1);
}
// lua_equal with a sleeping thread wake up
{
lua_State* L2 = lua_newthread(L);
lua_getfield(L2, LUA_GLOBALSINDEX, "create_with_tm");
lua_pushnumber(L2, 42);
lua_pcall(L2, 1, 1, 0);
lua_getfield(L2, LUA_GLOBALSINDEX, "create_with_tm");
lua_pushnumber(L2, 42);
lua_pcall(L2, 1, 1, 0);
// Reset GC
lua_gc(L2, LUA_GCCOLLECT, 0);
// Try to mark 'L2' as sleeping
// Can't control GC precisely, even in tests
lua_gc(L2, LUA_GCSTEP, 8);
CHECK(lua_equal(L2, -1, -2) == 1);
lua_pop(L2, 2);
}
// lua_clonefunction + fenv
{
lua_getfield(L, LUA_GLOBALSINDEX, "getpi");
lua_call(L, 0, 1);
CHECK(lua_tonumber(L, -1) == 3.1415926);
lua_pop(L, 1);
lua_getfield(L, LUA_GLOBALSINDEX, "getpi");
// clone & override env
lua_clonefunction(L, -1);
lua_newtable(L);
lua_pushnumber(L, 42);
lua_setfield(L, -2, "pi");
lua_setfenv(L, -2);
lua_call(L, 0, 1);
CHECK(lua_tonumber(L, -1) == 42);
lua_pop(L, 1);
// this one calls original function again
lua_call(L, 0, 1);
CHECK(lua_tonumber(L, -1) == 3.1415926);
lua_pop(L, 1);
}
// lua_clonefunction + upvalues
{
lua_getfield(L, LUA_GLOBALSINDEX, "incuv");
lua_call(L, 0, 1);
CHECK(lua_tonumber(L, -1) == 1);
lua_pop(L, 1);
lua_getfield(L, LUA_GLOBALSINDEX, "incuv");
// two clones
lua_clonefunction(L, -1);
lua_clonefunction(L, -2);
lua_call(L, 0, 1);
CHECK(lua_tonumber(L, -1) == 2);
lua_pop(L, 1);
lua_call(L, 0, 1);
CHECK(lua_tonumber(L, -1) == 3);
lua_pop(L, 1);
// this one calls original function again
lua_call(L, 0, 1);
CHECK(lua_tonumber(L, -1) == 4);
lua_pop(L, 1);
}
// lua_pcall on OOM
{
lua_getfield(L, LUA_GLOBALSINDEX, "largealloc");
int res = lua_pcall(L, 0, 0, 0);
CHECK(res == LUA_ERRMEM);
}
// lua_pcall on OOM with an error handler
{
lua_getfield(L, LUA_GLOBALSINDEX, "oops");
lua_getfield(L, LUA_GLOBALSINDEX, "largealloc");
int res = lua_pcall(L, 0, 1, -2);
CHECK(res == LUA_ERRMEM);
CHECK((lua_isstring(L, -1) && strcmp(lua_tostring(L, -1), "oops") == 0));
lua_pop(L, 1);
}
// lua_pcall on OOM with an error handler that errors
{
lua_getfield(L, LUA_GLOBALSINDEX, "error");
lua_getfield(L, LUA_GLOBALSINDEX, "largealloc");
int res = lua_pcall(L, 0, 1, -2);
CHECK(res == LUA_ERRERR);
CHECK((lua_isstring(L, -1) && strcmp(lua_tostring(L, -1), "error in error handling") == 0));
lua_pop(L, 1);
}
// lua_pcall on OOM with an error handler that OOMs
{
lua_getfield(L, LUA_GLOBALSINDEX, "largealloc");
lua_getfield(L, LUA_GLOBALSINDEX, "largealloc");
int res = lua_pcall(L, 0, 1, -2);
CHECK(res == LUA_ERRMEM);
CHECK((lua_isstring(L, -1) && strcmp(lua_tostring(L, -1), "not enough memory") == 0));
lua_pop(L, 1);
}
// lua_pcall on error with an error handler that OOMs
{
lua_getfield(L, LUA_GLOBALSINDEX, "largealloc");
lua_getfield(L, LUA_GLOBALSINDEX, "error");
int res = lua_pcall(L, 0, 1, -2);
CHECK(res == LUA_ERRERR);
CHECK((lua_isstring(L, -1) && strcmp(lua_tostring(L, -1), "error in error handling") == 0));
lua_pop(L, 1);
}
}
TEST_CASE("ApiAtoms")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
lua_callbacks(L)->useratom = [](const char* s, size_t l) -> int16_t
{
if (strcmp(s, "string") == 0)
return 0;
if (strcmp(s, "important") == 0)
return 1;
return -1;
};
lua_pushstring(L, "string");
lua_pushstring(L, "import");
lua_pushstring(L, "ant");
lua_concat(L, 2);
lua_pushstring(L, "unimportant");
int a1, a2, a3;
const char* s1 = lua_tostringatom(L, -3, &a1);
const char* s2 = lua_tostringatom(L, -2, &a2);
const char* s3 = lua_tostringatom(L, -1, &a3);
CHECK(strcmp(s1, "string") == 0);
CHECK(a1 == 0);
CHECK(strcmp(s2, "important") == 0);
CHECK(a2 == 1);
CHECK(strcmp(s3, "unimportant") == 0);
CHECK(a3 == -1);
}
static bool endsWith(const std::string& str, const std::string& suffix)
{
if (suffix.length() > str.length())
return false;
return suffix == std::string_view(str.c_str() + str.length() - suffix.length(), suffix.length());
}
TEST_CASE("ApiType")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
lua_pushnumber(L, 2);
CHECK(strcmp(luaL_typename(L, -1), "number") == 0);
CHECK(strcmp(luaL_typename(L, 1), "number") == 0);
CHECK(lua_type(L, -1) == LUA_TNUMBER);
CHECK(lua_type(L, 1) == LUA_TNUMBER);
CHECK(strcmp(luaL_typename(L, 2), "no value") == 0);
CHECK(lua_type(L, 2) == LUA_TNONE);
CHECK(strcmp(lua_typename(L, lua_type(L, 2)), "no value") == 0);
lua_newuserdata(L, 0);
CHECK(strcmp(luaL_typename(L, -1), "userdata") == 0);
CHECK(lua_type(L, -1) == LUA_TUSERDATA);
lua_newtable(L);
lua_pushstring(L, "hello");
lua_setfield(L, -2, "__type");
lua_setmetatable(L, -2);
CHECK(strcmp(luaL_typename(L, -1), "hello") == 0);
CHECK(lua_type(L, -1) == LUA_TUSERDATA);
}
TEST_CASE("ApiBuffer")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
lua_newbuffer(L, 1000);
REQUIRE(lua_type(L, -1) == LUA_TBUFFER);
CHECK(lua_isbuffer(L, -1));
CHECK(lua_objlen(L, -1) == 1000);
CHECK(strcmp(lua_typename(L, LUA_TBUFFER), "buffer") == 0);
CHECK(strcmp(luaL_typename(L, -1), "buffer") == 0);
void* p1 = lua_tobuffer(L, -1, nullptr);
size_t len = 0;
void* p2 = lua_tobuffer(L, -1, &len);
CHECK(len == 1000);
CHECK(p1 == p2);
void* p3 = luaL_checkbuffer(L, -1, nullptr);
CHECK(p1 == p3);
len = 0;
void* p4 = luaL_checkbuffer(L, -1, &len);
CHECK(len == 1000);
CHECK(p1 == p4);
memset(p1, 0xab, 1000);
CHECK(lua_topointer(L, -1) != nullptr);
lua_newbuffer(L, 0);
lua_pushvalue(L, -2);
CHECK(lua_equal(L, -3, -1));
CHECK(!lua_equal(L, -2, -1));
lua_pop(L, 1);
}
TEST_CASE("AllocApi")
{
int ud = 0;
StateRef globalState(lua_newstate(limitedRealloc, &ud), lua_close);
lua_State* L = globalState.get();
void* udCheck = nullptr;
bool allocfIsSet = lua_getallocf(L, &udCheck) == limitedRealloc;
CHECK(allocfIsSet);
CHECK(udCheck == &ud);
}
#if !LUA_USE_LONGJMP
TEST_CASE("ExceptionObject")
{
struct ExceptionResult
{
bool exceptionGenerated;
std::string description;
};
auto captureException = [](lua_State* L, const char* functionToRun)
{
try
{
lua_State* threadState = lua_newthread(L);
lua_getfield(threadState, LUA_GLOBALSINDEX, functionToRun);
CHECK(lua_isLfunction(threadState, -1));
lua_call(threadState, 0, 0);
}
catch (std::exception& e)
{
CHECK(e.what() != nullptr);
return ExceptionResult{true, e.what()};
}
return ExceptionResult{false, ""};
};
StateRef globalState = runConformance("exceptions.lua", nullptr, nullptr, lua_newstate(limitedRealloc, nullptr));
lua_State* L = globalState.get();
{
ExceptionResult result = captureException(L, "infinite_recursion_error");
CHECK(result.exceptionGenerated);
}
{
ExceptionResult result = captureException(L, "empty_function");
CHECK_FALSE(result.exceptionGenerated);
}
{
ExceptionResult result = captureException(L, "pass_number_to_error");
CHECK(result.exceptionGenerated);
CHECK(endsWith(result.description, "42"));
}
{
ExceptionResult result = captureException(L, "pass_string_to_error");
CHECK(result.exceptionGenerated);
CHECK(endsWith(result.description, "string argument"));
}
{
ExceptionResult result = captureException(L, "pass_table_to_error");
CHECK(result.exceptionGenerated);
}
{
ExceptionResult result = captureException(L, "large_allocation_error");
CHECK(result.exceptionGenerated);
}
}
#endif
TEST_CASE("IfElseExpression")
{
runConformance("ifelseexpr.lua");
}
// Optionally returns debug info for the first Luau stack frame that is encountered on the callstack.
static std::optional<lua_Debug> getFirstLuauFrameDebugInfo(lua_State* L)
{
static std::string_view kLua = "Lua";
lua_Debug ar;
for (int i = 0; lua_getinfo(L, i, "sl", &ar); i++)
{
if (kLua == ar.what)
return ar;
}
return std::nullopt;
}
TEST_CASE("TagMethodError")
{
static std::vector<int> expectedHits;
// Loop over two modes:
// when doLuaBreak is false the test only verifies that callbacks occur on the expected lines in the Luau source
// when doLuaBreak is true the test additionally calls lua_break to ensure breaking the debugger doesn't cause the VM to crash
for (bool doLuaBreak : {false, true})
{
expectedHits = {22, 32};
static int index;
static bool luaBreak;
index = 0;
luaBreak = doLuaBreak;
// 'yieldCallback' doesn't do anything, but providing the callback to runConformance
// ensures that the call to lua_break doesn't cause an error to be generated because
// runConformance doesn't expect the VM to be in the state LUA_BREAK.
auto yieldCallback = [](lua_State* L) {};
runConformance(
"tmerror.lua",
[](lua_State* L)
{
auto* cb = lua_callbacks(L);
cb->debugprotectederror = [](lua_State* L)
{
std::optional<lua_Debug> ar = getFirstLuauFrameDebugInfo(L);
CHECK(lua_isyieldable(L));
REQUIRE(ar.has_value());
REQUIRE(index < int(std::size(expectedHits)));
CHECK(ar->currentline == expectedHits[index++]);
if (luaBreak)
{
// Cause luau execution to break when 'error' is called via 'pcall'
// This call to lua_break is a regression test for an issue where debugprotectederror
// was called on a thread that couldn't be yielded even though lua_isyieldable was true.
lua_break(L);
}
};
},
yieldCallback
);
// Make sure the number of break points hit was the expected number
CHECK(index == std::size(expectedHits));
}
}
TEST_CASE("Coverage")
{
lua_CompileOptions copts = defaultOptions();
copts.optimizationLevel = 1; // disable inlining to get fixed expected hit results
copts.coverageLevel = 2;
runConformance(
"coverage.lua",
[](lua_State* L)
{
lua_pushcfunction(
L,
[](lua_State* L) -> int
{
luaL_argexpected(L, lua_isLfunction(L, 1), 1, "function");
lua_newtable(L);
lua_getcoverage(
L,
1,
L,
[](void* context, const char* function, int linedefined, int depth, const int* hits, size_t size)
{
lua_State* L = static_cast<lua_State*>(context);
lua_newtable(L);
lua_pushstring(L, function);
lua_setfield(L, -2, "name");
lua_pushinteger(L, linedefined);
lua_setfield(L, -2, "linedefined");
lua_pushinteger(L, depth);
lua_setfield(L, -2, "depth");
for (size_t i = 0; i < size; ++i)
if (hits[i] != -1)
{
lua_pushinteger(L, hits[i]);
lua_rawseti(L, -2, int(i));
}
lua_rawseti(L, -2, lua_objlen(L, -2) + 1);
}
);
return 1;
},
"getcoverage"
);
lua_setglobal(L, "getcoverage");
},
nullptr,
nullptr,
&copts
);
}
TEST_CASE("StringConversion")
{
runConformance("strconv.lua");
}
TEST_CASE("GCDump")
{
// internal function, declared in lgc.h - not exposed via lua.h
extern void luaC_dump(lua_State * L, void* file, const char* (*categoryName)(lua_State* L, uint8_t memcat));
extern void luaC_enumheap(
lua_State * L,
void* context,
void (*node)(void* context, void* ptr, uint8_t tt, uint8_t memcat, size_t size, const char* name),
void (*edge)(void* context, void* from, void* to, const char* name)
);
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
// push various objects on stack to cover different paths
lua_createtable(L, 1, 2);
lua_pushstring(L, "value");
lua_setfield(L, -2, "key");
lua_pushstring(L, "u42");
lua_setfield(L, -2, "__type");
lua_pushinteger(L, 42);
lua_rawseti(L, -2, 1000);
lua_pushinteger(L, 42);
lua_rawseti(L, -2, 1);
lua_pushvalue(L, -1);
lua_setmetatable(L, -2);
lua_newuserdata(L, 42);
lua_pushvalue(L, -2);
lua_setmetatable(L, -2);
lua_pushinteger(L, 1);
lua_pushcclosure(L, lua_silence, "test", 1);
lua_newbuffer(L, 100);
lua_State* CL = lua_newthread(L);
lua_pushstring(CL, "local x x = {} local function f() x[1] = math.abs(42) end function foo() coroutine.yield() end foo() return f");
lua_loadstring(CL);
lua_resume(CL, nullptr, 0);
#ifdef _WIN32
const char* path = "NUL";
#else
const char* path = "/dev/null";
#endif
FILE* f = fopen(path, "w");
REQUIRE(f);
luaC_dump(L, f, nullptr);
fclose(f);
struct Node
{
void* ptr;
uint8_t tag;
uint8_t memcat;
size_t size;
std::string name;
};
struct EnumContext
{
EnumContext()
: nodes{nullptr}
, edges{nullptr}
{
}
Luau::DenseHashMap<void*, Node> nodes;
Luau::DenseHashMap<void*, void*> edges;
} ctx;
luaC_enumheap(
L,
&ctx,
[](void* ctx, void* gco, uint8_t tt, uint8_t memcat, size_t size, const char* name)
{
EnumContext& context = *(EnumContext*)ctx;
if (tt == LUA_TUSERDATA)
CHECK(strcmp(name, "u42") == 0);
context.nodes[gco] = {gco, tt, memcat, size, name ? name : ""};
},
[](void* ctx, void* s, void* t, const char*)
{
EnumContext& context = *(EnumContext*)ctx;
context.edges[s] = t;
}
);
CHECK(!ctx.nodes.empty());
CHECK(!ctx.edges.empty());
}
TEST_CASE("Interrupt")
{
lua_CompileOptions copts = defaultOptions();
copts.optimizationLevel = 1; // disable loop unrolling to get fixed expected hit results
static int index;
StateRef globalState = runConformance("interrupt.lua", nullptr, nullptr, nullptr, &copts);
lua_State* L = globalState.get();
// note: for simplicity here we setup the interrupt callback when the test starts
// however, this carries a noticeable performance cost. in a real application,
// it's advised to set interrupt callback on a timer from a different thread,
// and set it back to nullptr once the interrupt triggered.
// define the interrupt to check the expected hits
static const int expectedhits[] = {11, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 20, 15, 15, 15, 15, 18, 25, 23, 26};
lua_callbacks(L)->interrupt = [](lua_State* L, int gc)
{
if (gc >= 0)
return;
CHECK(index < int(std::size(expectedhits)));
lua_Debug ar = {};
lua_getinfo(L, 0, "l", &ar);
CHECK(ar.currentline == expectedhits[index]);
index++;
// check that we can yield inside an interrupt
if (index == 4)
lua_yield(L, 0);
};
{
lua_State* T = lua_newthread(L);
lua_getglobal(T, "test");
index = 0;
int status = lua_resume(T, nullptr, 0);
CHECK(status == LUA_YIELD);
CHECK(index == 4);
status = lua_resume(T, nullptr, 0);
CHECK(status == LUA_OK);
CHECK(index == int(std::size(expectedhits)));
lua_pop(L, 1);
}
// redefine the interrupt to break after 10 iterations of a loop that would otherwise be infinite
// the test exposes a few global functions that we will call; the interrupt will force a yield
lua_callbacks(L)->interrupt = [](lua_State* L, int gc)
{
if (gc >= 0)
return;
CHECK(index < 11);
if (++index == 11)
lua_yield(L, 0);
};
for (int test = 1; test <= 10; ++test)
{
lua_State* T = lua_newthread(L);
std::string name = "infloop" + std::to_string(test);
lua_getglobal(T, name.c_str());
index = 0;
int status = lua_resume(T, nullptr, 0);
CHECK(status == LUA_YIELD);
CHECK(index == 11);
// abandon the thread
lua_pop(L, 1);
}
lua_callbacks(L)->interrupt = [](lua_State* L, int gc)
{
if (gc >= 0)
return;
index++;
if (index == 1'000)
{
index = 0;
luaL_error(L, "timeout");
}
};
for (int test = 1; test <= 5; ++test)
{
lua_State* T = lua_newthread(L);
std::string name = "strhang" + std::to_string(test);
lua_getglobal(T, name.c_str());
index = 0;
int status = lua_resume(T, nullptr, 0);
CHECK(status == LUA_ERRRUN);
lua_pop(L, 1);
}
{
lua_State* T = lua_newthread(L);
lua_getglobal(T, "strhangpcall");
index = 0;
int status = lua_resume(T, nullptr, 0);
CHECK(status == LUA_OK);
lua_pop(L, 1);
}
}
TEST_CASE("UserdataApi")
{
static int dtorhits = 0;
dtorhits = 0;
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
// setup dtor for tag 42 (created later)
auto dtor = [](lua_State* l, void* data)
{
dtorhits += *(int*)data;
};
bool dtorIsNull = lua_getuserdatadtor(L, 42) == nullptr;
CHECK(dtorIsNull);
lua_setuserdatadtor(L, 42, dtor);
bool dtorIsSet = lua_getuserdatadtor(L, 42) == dtor;
CHECK(dtorIsSet);
// light user data
int lud;
lua_pushlightuserdata(L, &lud);
CHECK(lua_tolightuserdata(L, -1) == &lud);
CHECK(lua_touserdata(L, -1) == &lud);
CHECK(lua_topointer(L, -1) == &lud);
// regular user data
int* ud1 = (int*)lua_newuserdata(L, 4);
*ud1 = 42;
CHECK(lua_tolightuserdata(L, -1) == nullptr);
CHECK(lua_touserdata(L, -1) == ud1);
CHECK(lua_topointer(L, -1) == ud1);
// tagged user data
int* ud2 = (int*)lua_newuserdatatagged(L, 4, 42);
*ud2 = -4;
CHECK(lua_touserdatatagged(L, -1, 42) == ud2);
CHECK(lua_touserdatatagged(L, -1, 41) == nullptr);
CHECK(lua_userdatatag(L, -1) == 42);
lua_setuserdatatag(L, -1, 43);
CHECK(lua_userdatatag(L, -1) == 43);
lua_setuserdatatag(L, -1, 42);
// user data with inline dtor
void* ud3 = lua_newuserdatadtor(
L,
4,
[](void* data)
{
dtorhits += *(int*)data;
}
);
void* ud4 = lua_newuserdatadtor(
L,
1,
[](void* data)
{
dtorhits += *(char*)data;
}
);
*(int*)ud3 = 43;
*(char*)ud4 = 3;
// user data with named metatable
luaL_newmetatable(L, "udata1");
luaL_newmetatable(L, "udata2");
void* ud5 = lua_newuserdata(L, 0);
luaL_getmetatable(L, "udata1");
lua_setmetatable(L, -2);
void* ud6 = lua_newuserdata(L, 0);
luaL_getmetatable(L, "udata2");
lua_setmetatable(L, -2);
CHECK(luaL_checkudata(L, -2, "udata1") == ud5);
CHECK(luaL_checkudata(L, -1, "udata2") == ud6);
// tagged user data with fast metatable access
luaL_newmetatable(L, "udata3");
luaL_getmetatable(L, "udata3");
lua_setuserdatametatable(L, 50, -1);
luaL_newmetatable(L, "udata4");
luaL_getmetatable(L, "udata4");
lua_setuserdatametatable(L, 51, -1);
void* ud7 = lua_newuserdatatagged(L, 16, 50);
lua_getuserdatametatable(L, 50);
lua_setmetatable(L, -2);
void* ud8 = lua_newuserdatatagged(L, 16, 51);
lua_getuserdatametatable(L, 51);
lua_setmetatable(L, -2);
CHECK(luaL_checkudata(L, -2, "udata3") == ud7);
CHECK(luaL_checkudata(L, -1, "udata4") == ud8);
globalState.reset();
CHECK(dtorhits == 42);
}
TEST_CASE("LightuserdataApi")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
void* value = (void*)0x12345678;
lua_pushlightuserdatatagged(L, value, 1);
CHECK(lua_lightuserdatatag(L, -1) == 1);
CHECK(lua_tolightuserdatatagged(L, -1, 0) == nullptr);
CHECK(lua_tolightuserdatatagged(L, -1, 1) == value);
lua_setlightuserdataname(L, 1, "id");
CHECK(!lua_getlightuserdataname(L, 0));
CHECK(strcmp(lua_getlightuserdataname(L, 1), "id") == 0);
CHECK(strcmp(luaL_typename(L, -1), "id") == 0);
lua_pop(L, 1);
lua_pushlightuserdatatagged(L, value, 0);
lua_pushlightuserdatatagged(L, value, 1);
CHECK(lua_rawequal(L, -1, -2) == 0);
lua_pop(L, 2);
// Check lightuserdata table key uniqueness
lua_newtable(L);
lua_pushlightuserdatatagged(L, value, 2);
lua_pushinteger(L, 20);
lua_settable(L, -3);
lua_pushlightuserdatatagged(L, value, 3);
lua_pushinteger(L, 30);
lua_settable(L, -3);
lua_pushlightuserdatatagged(L, value, 2);
lua_gettable(L, -2);
lua_pushinteger(L, 20);
CHECK(lua_rawequal(L, -1, -2) == 1);
lua_pop(L, 2);
lua_pushlightuserdatatagged(L, value, 3);
lua_gettable(L, -2);
lua_pushinteger(L, 30);
CHECK(lua_rawequal(L, -1, -2) == 1);
lua_pop(L, 2);
lua_pop(L, 1);
if (FFlag::LuauPreserveLudataRenaming)
{
// Still possible to rename the global lightuserdata name using a metatable
lua_pushlightuserdata(L, value);
CHECK(strcmp(luaL_typename(L, -1), "userdata") == 0);
lua_createtable(L, 0, 1);
lua_pushstring(L, "luserdata");
lua_setfield(L, -2, "__type");
lua_setmetatable(L, -2);
CHECK(strcmp(luaL_typename(L, -1), "luserdata") == 0);
lua_pop(L, 1);
}
globalState.reset();
}
TEST_CASE("DebugApi")
{
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
lua_pushnumber(L, 10);
lua_Debug ar;
CHECK(lua_getinfo(L, -1, "f", &ar) == 0); // number is not a function
CHECK(lua_getinfo(L, -10, "f", &ar) == 0); // not on stack
}
TEST_CASE("Iter")
{
runConformance("iter.lua");
}
const int kInt64Tag = 1;
static int64_t getInt64(lua_State* L, int idx)
{
if (void* p = lua_touserdatatagged(L, idx, kInt64Tag))
return *static_cast<int64_t*>(p);
if (lua_isnumber(L, idx))
return lua_tointeger(L, idx);
luaL_typeerror(L, 1, "int64");
}
static void pushInt64(lua_State* L, int64_t value)
{
void* p = lua_newuserdatatagged(L, sizeof(int64_t), kInt64Tag);
luaL_getmetatable(L, "int64");
lua_setmetatable(L, -2);
*static_cast<int64_t*>(p) = value;
}
TEST_CASE("Userdata")
{
runConformance(
"userdata.lua",
[](lua_State* L)
{
// create metatable with all the metamethods
luaL_newmetatable(L, "int64");
// __index
lua_pushcfunction(
L,
[](lua_State* L)
{
void* p = lua_touserdatatagged(L, 1, kInt64Tag);
if (!p)
luaL_typeerror(L, 1, "int64");
const char* name = luaL_checkstring(L, 2);
if (strcmp(name, "value") == 0)
{
lua_pushnumber(L, double(*static_cast<int64_t*>(p)));
return 1;
}
luaL_error(L, "unknown field %s", name);
},
nullptr
);
lua_setfield(L, -2, "__index");
// __newindex
lua_pushcfunction(
L,
[](lua_State* L)
{
void* p = lua_touserdatatagged(L, 1, kInt64Tag);
if (!p)
luaL_typeerror(L, 1, "int64");
const char* name = luaL_checkstring(L, 2);
if (strcmp(name, "value") == 0)
{
double value = luaL_checknumber(L, 3);
*static_cast<int64_t*>(p) = int64_t(value);
return 0;
}
luaL_error(L, "unknown field %s", name);
},
nullptr
);
lua_setfield(L, -2, "__newindex");
// __eq
lua_pushcfunction(
L,
[](lua_State* L)
{
lua_pushboolean(L, getInt64(L, 1) == getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__eq");
// __lt
lua_pushcfunction(
L,
[](lua_State* L)
{
lua_pushboolean(L, getInt64(L, 1) < getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__lt");
// __le
lua_pushcfunction(
L,
[](lua_State* L)
{
lua_pushboolean(L, getInt64(L, 1) <= getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__le");
// __add
lua_pushcfunction(
L,
[](lua_State* L)
{
pushInt64(L, getInt64(L, 1) + getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__add");
// __sub
lua_pushcfunction(
L,
[](lua_State* L)
{
pushInt64(L, getInt64(L, 1) - getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__sub");
// __mul
lua_pushcfunction(
L,
[](lua_State* L)
{
pushInt64(L, getInt64(L, 1) * getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__mul");
// __div
lua_pushcfunction(
L,
[](lua_State* L)
{
// ideally we'd guard against 0 but it's a test so eh
pushInt64(L, getInt64(L, 1) / getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__div");
// __idiv
lua_pushcfunction(
L,
[](lua_State* L)
{
// for testing we use different semantics here compared to __div: __idiv rounds to negative inf, __div truncates (rounds to zero)
// additionally, division loses precision here outside of 2^53 range
// we do not necessarily recommend this behavior in production code!
pushInt64(L, int64_t(floor(double(getInt64(L, 1)) / double(getInt64(L, 2)))));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__idiv");
// __mod
lua_pushcfunction(
L,
[](lua_State* L)
{
// ideally we'd guard against 0 and INT64_MIN but it's a test so eh
pushInt64(L, getInt64(L, 1) % getInt64(L, 2));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__mod");
// __pow
lua_pushcfunction(
L,
[](lua_State* L)
{
pushInt64(L, int64_t(pow(double(getInt64(L, 1)), double(getInt64(L, 2)))));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__pow");
// __unm
lua_pushcfunction(
L,
[](lua_State* L)
{
pushInt64(L, -getInt64(L, 1));
return 1;
},
nullptr
);
lua_setfield(L, -2, "__unm");
// __tostring
lua_pushcfunction(
L,
[](lua_State* L)
{
int64_t value = getInt64(L, 1);
std::string str = std::to_string(value);
lua_pushlstring(L, str.c_str(), str.length());
return 1;
},
nullptr
);
lua_setfield(L, -2, "__tostring");
// ctor
lua_pushcfunction(
L,
[](lua_State* L)
{
double v = luaL_checknumber(L, 1);
pushInt64(L, int64_t(v));
return 1;
},
"int64"
);
lua_setglobal(L, "int64");
}
);
}
TEST_CASE("SafeEnv")
{
runConformance("safeenv.lua");
}
TEST_CASE("Native")
{
// This tests requires code to run natively, otherwise all 'is_native' checks will fail
if (!codegen || !luau_codegen_supported())
return;
SUBCASE("Checked")
{
FFlag::DebugLuauAbortingChecks.value = true;
}
SUBCASE("Regular")
{
FFlag::DebugLuauAbortingChecks.value = false;
}
runConformance(
"native.lua",
[](lua_State* L)
{
setupNativeHelpers(L);
}
);
}
TEST_CASE("NativeTypeAnnotations")
{
// This tests requires code to run natively, otherwise all 'is_native' checks will fail
if (!codegen || !luau_codegen_supported())
return;
runConformance(
"native_types.lua",
[](lua_State* L)
{
setupNativeHelpers(L);
setupVectorHelpers(L);
}
);
}
TEST_CASE("NativeUserdata")
{
lua_CompileOptions copts = defaultOptions();
Luau::CodeGen::CompilationOptions nativeOpts = defaultCodegenOptions();
static const char* kUserdataCompileTypes[] = {"vec2", "color", "mat3", nullptr};
copts.userdataTypes = kUserdataCompileTypes;
SUBCASE("NoIrHooks")
{
SUBCASE("O0")
{
copts.optimizationLevel = 0;
}
SUBCASE("O1")
{
copts.optimizationLevel = 1;
}
SUBCASE("O2")
{
copts.optimizationLevel = 2;
}
}
SUBCASE("IrHooks")
{
nativeOpts.hooks.vectorAccessBytecodeType = vectorAccessBytecodeType;
nativeOpts.hooks.vectorNamecallBytecodeType = vectorNamecallBytecodeType;
nativeOpts.hooks.vectorAccess = vectorAccess;
nativeOpts.hooks.vectorNamecall = vectorNamecall;
nativeOpts.hooks.userdataAccessBytecodeType = userdataAccessBytecodeType;
nativeOpts.hooks.userdataMetamethodBytecodeType = userdataMetamethodBytecodeType;
nativeOpts.hooks.userdataNamecallBytecodeType = userdataNamecallBytecodeType;
nativeOpts.hooks.userdataAccess = userdataAccess;
nativeOpts.hooks.userdataMetamethod = userdataMetamethod;
nativeOpts.hooks.userdataNamecall = userdataNamecall;
nativeOpts.userdataTypes = kUserdataRunTypes;
SUBCASE("O0")
{
copts.optimizationLevel = 0;
}
SUBCASE("O1")
{
copts.optimizationLevel = 1;
}
SUBCASE("O2")
{
copts.optimizationLevel = 2;
}
}
runConformance(
"native_userdata.lua",
[](lua_State* L)
{
Luau::CodeGen::setUserdataRemapper(
L,
kUserdataRunTypes,
[](void* context, const char* str, size_t len) -> uint8_t
{
const char** types = (const char**)context;
uint8_t index = 0;
std::string_view sv{str, len};
for (; *types; ++types)
{
if (sv == *types)
return index;
index++;
}
return 0xff;
}
);
setupVectorHelpers(L);
setupUserdataHelpers(L);
},
nullptr,
nullptr,
&copts,
false,
&nativeOpts
);
}
[[nodiscard]] static std::string makeHugeFunctionSource()
{
std::string source;
// add non-executed block that requires JUMPKX and generates a lot of constants that take available short (15-bit) constant space
source += "if ... then\n";
source += "local _ = {\n";
for (int i = 0; i < 40000; ++i)
{
source += "0.";
source += std::to_string(i);
source += ",";
}
source += "}\n";
source += "end\n";
// use failed fast-calls with imports and constants to exercise all of the more complex fallback sequences
source += "return bit32.lshift('84', -1)";
return source;
}
TEST_CASE("HugeFunction")
{
std::string source = makeHugeFunctionSource();
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
if (codegen && luau_codegen_supported())
luau_codegen_create(L);
luaL_openlibs(L);
luaL_sandbox(L);
luaL_sandboxthread(L);
size_t bytecodeSize = 0;
char* bytecode = luau_compile(source.data(), source.size(), nullptr, &bytecodeSize);
int result = luau_load(L, "=HugeFunction", bytecode, bytecodeSize, 0);
free(bytecode);
REQUIRE(result == 0);
if (codegen && luau_codegen_supported())
{
Luau::CodeGen::CompilationOptions nativeOptions{Luau::CodeGen::CodeGen_ColdFunctions};
Luau::CodeGen::compile(L, -1, nativeOptions);
}
int status = lua_resume(L, nullptr, 0);
REQUIRE(status == 0);
CHECK(lua_tonumber(L, -1) == 42);
}
TEST_CASE("HugeFunctionLoadFailure")
{
// This test case verifies that if an out-of-memory error occurs inside of
// luau_load, we are not left with any GC objects in inconsistent states
// that would cause issues during garbage collection.
//
// We create a script with a huge function in it, then pass this to
// luau_load. This should require two "large" allocations: One for the
// code array and one for the constants array (k). We run this test twice
// and fail each of these two allocations.
std::string source = makeHugeFunctionSource();
static const size_t expectedTotalLargeAllocations = 2;
static size_t largeAllocationToFail = 0;
static size_t largeAllocationCount = 0;
const auto testAllocate = [](void* ud, void* ptr, size_t osize, size_t nsize) -> void*
{
if (nsize == 0)
{
free(ptr);
return nullptr;
}
else if (nsize > 32768)
{
if (largeAllocationCount == largeAllocationToFail)
return nullptr;
++largeAllocationCount;
return realloc(ptr, nsize);
}
else
{
return realloc(ptr, nsize);
}
};
size_t bytecodeSize = 0;
char* const bytecode = luau_compile(source.data(), source.size(), nullptr, &bytecodeSize);
for (largeAllocationToFail = 0; largeAllocationToFail != expectedTotalLargeAllocations; ++largeAllocationToFail)
{
largeAllocationCount = 0;
StateRef globalState(lua_newstate(testAllocate, nullptr), lua_close);
lua_State* L = globalState.get();
luaL_openlibs(L);
luaL_sandbox(L);
luaL_sandboxthread(L);
try
{
luau_load(L, "=HugeFunction", bytecode, bytecodeSize, 0);
REQUIRE(false); // The luau_load should fail with an exception
}
catch (const std::exception& ex)
{
REQUIRE(strcmp(ex.what(), "lua_exception: not enough memory") == 0);
}
luaC_fullgc(L);
}
free(bytecode);
REQUIRE_EQ(largeAllocationToFail, expectedTotalLargeAllocations);
}
TEST_CASE("IrInstructionLimit")
{
if (!codegen || !luau_codegen_supported())
return;
ScopedFastInt codegenHeuristicsInstructionLimit{FInt::CodegenHeuristicsInstructionLimit, 50'000};
std::string source;
// Generate a hundred fat functions
for (int fn = 0; fn < 100; fn++)
{
source += "local function fn" + std::to_string(fn) + "(...)\n";
source += "if ... then\n";
source += "local p1, p2 = ...\n";
source += "local _ = {\n";
for (int i = 0; i < 100; ++i)
{
source += "p1*0." + std::to_string(i) + ",";
source += "p2+0." + std::to_string(i) + ",";
}
source += "}\n";
source += "return _\n";
source += "end\n";
source += "end\n";
}
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
luau_codegen_create(L);
luaL_openlibs(L);
luaL_sandbox(L);
luaL_sandboxthread(L);
size_t bytecodeSize = 0;
char* bytecode = luau_compile(source.data(), source.size(), nullptr, &bytecodeSize);
int result = luau_load(L, "=HugeFunction", bytecode, bytecodeSize, 0);
free(bytecode);
REQUIRE(result == 0);
Luau::CodeGen::CompilationOptions nativeOptions{Luau::CodeGen::CodeGen_ColdFunctions};
Luau::CodeGen::CompilationStats nativeStats = {};
Luau::CodeGen::CompilationResult nativeResult = Luau::CodeGen::compile(L, -1, nativeOptions, &nativeStats);
// Limit is not hit immediately, so with some functions compiled it should be a success
CHECK(nativeResult.result == Luau::CodeGen::CodeGenCompilationResult::Success);
// But it has some failed functions
CHECK(nativeResult.hasErrors());
REQUIRE(!nativeResult.protoFailures.empty());
CHECK(nativeResult.protoFailures.front().result == Luau::CodeGen::CodeGenCompilationResult::CodeGenOverflowInstructionLimit);
CHECK(nativeResult.protoFailures.front().line != -1);
CHECK(nativeResult.protoFailures.front().debugname != "");
// We should be able to compile at least one of our functions
CHECK(nativeStats.functionsCompiled > 0);
// But because of the limit, not all of them (101 because there's an extra global function)
CHECK(nativeStats.functionsCompiled < 101);
}
TEST_CASE("BytecodeDistributionPerFunctionTest")
{
const char* source = R"(
local function first(n, p)
local t = {}
for i=1,p do t[i] = i*10 end
local function inner(_,n)
if n > 0 then
n = n-1
return n, unpack(t)
end
end
return inner, nil, n
end
local function second(x)
return x[1]
end
)";
std::vector<Luau::CodeGen::FunctionBytecodeSummary> summaries(analyzeFile(source, 0));
CHECK_EQ(summaries[0].getName(), "inner");
CHECK_EQ(summaries[0].getLine(), 6);
CHECK_EQ(summaries[0].getCounts(0), std::vector<unsigned>({0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}));
CHECK_EQ(summaries[1].getName(), "first");
CHECK_EQ(summaries[1].getLine(), 2);
CHECK_EQ(summaries[1].getCounts(0), std::vector<unsigned>({0, 0, 1, 0, 2, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}));
CHECK_EQ(summaries[2].getName(), "second");
CHECK_EQ(summaries[2].getLine(), 15);
CHECK_EQ(summaries[2].getCounts(0), std::vector<unsigned>({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}));
CHECK_EQ(summaries[3].getName(), "");
CHECK_EQ(summaries[3].getLine(), 1);
CHECK_EQ(summaries[3].getCounts(0), std::vector<unsigned>({0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}));
}
TEST_CASE("NativeAttribute")
{
if (!codegen || !luau_codegen_supported())
return;
ScopedFastFlag sffs[] = {{FFlag::LuauNativeAttribute, true}};
std::string source = R"R(
@native
local function sum(x, y)
local function sumHelper(z)
return (x+y+z)
end
return sumHelper
end
local function sub(x, y)
@native
local function subHelper(z)
return (x+y-z)
end
return subHelper
end)R";
StateRef globalState(luaL_newstate(), lua_close);
lua_State* L = globalState.get();
luau_codegen_create(L);
luaL_openlibs(L);
luaL_sandbox(L);
luaL_sandboxthread(L);
size_t bytecodeSize = 0;
char* bytecode = luau_compile(source.data(), source.size(), nullptr, &bytecodeSize);
int result = luau_load(L, "=Code", bytecode, bytecodeSize, 0);
free(bytecode);
REQUIRE(result == 0);
Luau::CodeGen::CompilationOptions nativeOptions{Luau::CodeGen::CodeGen_ColdFunctions};
Luau::CodeGen::CompilationStats nativeStats = {};
Luau::CodeGen::CompilationResult nativeResult = Luau::CodeGen::compile(L, -1, nativeOptions, &nativeStats);
CHECK(nativeResult.result == Luau::CodeGen::CodeGenCompilationResult::Success);
CHECK(!nativeResult.hasErrors());
REQUIRE(nativeResult.protoFailures.empty());
// We should be able to compile at least one of our functions
CHECK_EQ(nativeStats.functionsCompiled, 2);
}
TEST_SUITE_END();