luau/prototyping/Properties/Step.agda

86 lines
5.7 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --rewriting #-}
module Properties.Step where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Agda.Builtin.Float using (primFloatPlus; primFloatMinus; primFloatTimes; primFloatDiv)
open import Agda.Builtin.Bool using (true; false)
open import FFI.Data.Maybe using (just; nothing)
open import Luau.Heap using (Heap; _[_]; alloc; ok; function_is_end)
open import Luau.Syntax using (Block; Expr; nil; var; addr; true; false; function_is_end; block_is_end; _$_; local_←_; return; done; _∙_; name; fun; arg; number; binexp; +; ==; ~=)
open import Luau.OpSem using (_⊢_⟶ᴱ_⊣_; _⊢_⟶ᴮ_⊣_; app₁ ; app₂ ; beta; function; block; return; done; local; subst; binOpNumbers; evalNumOp; binOp₁; binOp₂; evalEqOp; evalNeqOp; binOpEquality; binOpInequality)
open import Luau.RuntimeError using (RuntimeErrorᴱ; RuntimeErrorᴮ; FunctionMismatch; BinopMismatch₁; BinopMismatch₂; UnboundVariable; SEGV; app₁; app₂; block; local; return; bin₁; bin₂)
open import Luau.RuntimeType using (function; number)
open import Luau.Substitution using (_[_/_]ᴮ)
open import Luau.Value using (nil; addr; val; number; bool)
open import Properties.Remember using (remember; _,_)
data StepResultᴮ {a} (H : Heap a) (B : Block a) : Set
data StepResultᴱ {a} (H : Heap a) (M : Expr a) : Set
data StepResultᴮ H B where
step : H B (H B ⟶ᴮ B H) StepResultᴮ H B
return : V {B} (B (return (val V) B)) StepResultᴮ H B
done : (B done) StepResultᴮ H B
error : (RuntimeErrorᴮ H B) StepResultᴮ H B
data StepResultᴱ H M where
step : H M (H M ⟶ᴱ M H) StepResultᴱ H M
value : V (M val V) StepResultᴱ H M
error : (RuntimeErrorᴱ H M) StepResultᴱ H M
stepᴱ : {a} H M StepResultᴱ {a} H M
stepᴮ : {a} H B StepResultᴮ {a} H B
stepᴱ H nil = value nil refl
stepᴱ H (var x) = error UnboundVariable
stepᴱ H (addr a) = value (addr a) refl
stepᴱ H (number x) = value (number x) refl
stepᴱ H (true) = value (bool true) refl
stepᴱ H (false) = value (bool false) refl
stepᴱ H (M $ N) with stepᴱ H M
stepᴱ H (M $ N) | step H M D = step H (M $ N) (app₁ D)
stepᴱ H (_ $ N) | value v refl with stepᴱ H N
stepᴱ H (_ $ N) | value v refl | step H N s = step H (val v $ N) (app₂ v s)
stepᴱ H (_ $ _) | value (addr a) refl | value w refl with remember (H [ a ])
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (nothing , p) = error (app₁ (SEGV p))
stepᴱ H (_ $ _) | value (addr a) refl | value w refl | (just(function F is B end) , p) = step H (block (fun F) is B [ w / name (arg F) ]ᴮ end) (beta function F is B end w refl p)
stepᴱ H (_ $ _) | value nil refl | value w refl = error (FunctionMismatch nil w (λ ()))
stepᴱ H (_ $ _) | value (number x) refl | value w refl = error (FunctionMismatch (number x) w (λ ()))
stepᴱ H (_ $ _) | value (bool b) refl | value w refl = error (FunctionMismatch (bool b) w (λ ()))
stepᴱ H (M $ N) | value V p | error E = error (app₂ E)
stepᴱ H (M $ N) | error E = error (app₁ E)
stepᴱ H (block b is B end) with stepᴮ H B
stepᴱ H (block b is B end) | step H B D = step H (block b is B end) (block D)
stepᴱ H (block b is (return _ B) end) | return v refl = step H (val v) (return v)
stepᴱ H (block b is done end) | done refl = step H nil done
stepᴱ H (block b is B end) | error E = error (block E)
stepᴱ H (function F is C end) with alloc H (function F is C end)
stepᴱ H function F is C end | ok a H p = step H (addr a) (function a p)
stepᴱ H (binexp M op N) with stepᴱ H M
stepᴱ H (binexp M op N) | value v refl with stepᴱ H N
stepᴱ H (binexp M op N) | value v refl | step H N s = step H (binexp (val v) op N) (binOp₂ s)
stepᴱ H (binexp M op N) | value v refl | error E = error (bin₂ E)
stepᴱ H (binexp M == N) | value v refl | value w refl = step H (val (evalEqOp v w)) binOpEquality
stepᴱ H (binexp M ~= N) | value v refl | value w refl = step H (val (evalNeqOp v w)) binOpInequality
stepᴱ H (binexp M op N) | value (number m) refl | value (number n) refl = step H (val (evalNumOp m op n)) binOpNumbers
stepᴱ H (binexp M op N) | value nil refl | value w refl = error (BinopMismatch₁ nil w λ ())
stepᴱ H (binexp M op N) | value (addr a) refl | value w refl = error (BinopMismatch₁ (addr a) w λ ())
stepᴱ H (binexp M op N) | value (bool b) refl | value w refl = error (BinopMismatch₁ (bool b) w λ ())
stepᴱ H (binexp M op N) | value v refl | value nil refl = error (BinopMismatch₂ v nil (λ ()))
stepᴱ H (binexp M op N) | value v refl | value (addr a) refl = error (BinopMismatch₂ v (addr a) (λ ()))
stepᴱ H (binexp M op N) | value v refl | value (bool b) refl = error (BinopMismatch₂ v (bool b) (λ ()))
stepᴱ H (binexp M op N) | step H M s = step H (binexp M op N) (binOp₁ s)
stepᴱ H (binexp M op N) | error E = error (bin₁ E)
stepᴮ H (function F is C end B) with alloc H (function F is C end)
stepᴮ H (function F is C end B) | ok a H p = step H (B [ addr a / name (fun F) ]ᴮ) (function a p)
stepᴮ H (local x M B) with stepᴱ H M
stepᴮ H (local x M B) | step H M D = step H (local x M B) (local D)
stepᴮ H (local x _ B) | value v refl = step H (B [ v / name x ]ᴮ) (subst v)
stepᴮ H (local x M B) | error E = error (local E)
stepᴮ H (return M B) with stepᴱ H M
stepᴮ H (return M B) | step H M D = step H (return M B) (return D)
stepᴮ H (return _ B) | value V refl = return V refl
stepᴮ H (return M B) | error E = error (return E)
stepᴮ H done = done refl