mirror of
https://github.com/luau-lang/luau.git
synced 2024-12-13 13:30:40 +00:00
916c83fdc4
* Added a discussion of set-theoretic models of subtyping to the prototype
311 lines
16 KiB
Agda
311 lines
16 KiB
Agda
{-# OPTIONS --rewriting #-}
|
||
|
||
module Properties.Subtyping where
|
||
|
||
open import Agda.Builtin.Equality using (_≡_; refl)
|
||
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
|
||
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; any; none; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
|
||
open import Luau.Type using (Type; Scalar; strict; nil; number; string; boolean; none; any; _⇒_; _∪_; _∩_; tgt)
|
||
open import Properties.Contradiction using (CONTRADICTION; ¬)
|
||
open import Properties.Equality using (_≢_)
|
||
open import Properties.Functions using (_∘_)
|
||
open import Properties.Product using (_×_; _,_)
|
||
|
||
src = Luau.Type.src strict
|
||
|
||
-- Language membership is decidable
|
||
dec-language : ∀ T t → Either (¬Language T t) (Language T t)
|
||
dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ()))
|
||
dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ()))
|
||
dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ()))
|
||
dec-language nil (scalar nil) = Right (scalar nil)
|
||
dec-language nil function = Left (scalar-function nil)
|
||
dec-language nil (function-ok t) = Left (scalar-function-ok nil)
|
||
dec-language nil (function-err t) = Right (scalar-function-err nil)
|
||
dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ()))
|
||
dec-language boolean (scalar boolean) = Right (scalar boolean)
|
||
dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ()))
|
||
dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ()))
|
||
dec-language boolean function = Left (scalar-function boolean)
|
||
dec-language boolean (function-ok t) = Left (scalar-function-ok boolean)
|
||
dec-language boolean (function-err t) = Right (scalar-function-err boolean)
|
||
dec-language number (scalar number) = Right (scalar number)
|
||
dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ()))
|
||
dec-language number (scalar string) = Left (scalar-scalar string number (λ ()))
|
||
dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ()))
|
||
dec-language number function = Left (scalar-function number)
|
||
dec-language number (function-ok t) = Left (scalar-function-ok number)
|
||
dec-language number (function-err t) = Right (scalar-function-err number)
|
||
dec-language string (scalar number) = Left (scalar-scalar number string (λ ()))
|
||
dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ()))
|
||
dec-language string (scalar string) = Right (scalar string)
|
||
dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ()))
|
||
dec-language string function = Left (scalar-function string)
|
||
dec-language string (function-ok t) = Left (scalar-function-ok string)
|
||
dec-language string (function-err t) = Right (scalar-function-err string)
|
||
dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s)
|
||
dec-language (T₁ ⇒ T₂) function = Right function
|
||
dec-language (T₁ ⇒ T₂) (function-ok t) = mapLR function-ok function-ok (dec-language T₂ t)
|
||
dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t))
|
||
dec-language none t = Left none
|
||
dec-language any t = Right any
|
||
dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t)
|
||
dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t)
|
||
|
||
-- ¬Language T is the complement of Language T
|
||
language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t)
|
||
language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q
|
||
language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q
|
||
language-comp t (left p) (q₁ , q₂) = language-comp t p q₁
|
||
language-comp t (right p) (q₁ , q₂) = language-comp t p q₂
|
||
language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl
|
||
language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function
|
||
language-comp (scalar s) none (scalar ())
|
||
language-comp function (scalar-function ()) function
|
||
language-comp (function-ok t) (scalar-function-ok ()) (function-ok q)
|
||
language-comp (function-ok t) (function-ok p) (function-ok q) = language-comp t p q
|
||
language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p
|
||
|
||
-- ≮: is the complement of <:
|
||
¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U)
|
||
¬≮:-impl-<: {T} {U} p t q with dec-language U t
|
||
¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r))
|
||
¬≮:-impl-<: {T} {U} p t q | Right r = r
|
||
|
||
<:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U)
|
||
<:-impl-¬≮: p (witness t q r) = language-comp t r (p t q)
|
||
|
||
-- reflexivity
|
||
≮:-refl : ∀ {T} → ¬(T ≮: T)
|
||
≮:-refl (witness t p q) = language-comp t q p
|
||
|
||
<:-refl : ∀ {T} → (T <: T)
|
||
<:-refl = ¬≮:-impl-<: ≮:-refl
|
||
|
||
-- transititivity
|
||
≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U)
|
||
≮:-trans-≡ p refl = p
|
||
|
||
≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U)
|
||
≡-trans-≮: refl p = p
|
||
|
||
≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U)
|
||
≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t)
|
||
|
||
<:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U)
|
||
<:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ∘ ≮:-trans)
|
||
|
||
-- Properties of scalars
|
||
skalar = number ∪ (string ∪ (nil ∪ boolean))
|
||
|
||
function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U)
|
||
function-≮:-scalar s = witness function function (scalar-function s)
|
||
|
||
scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T))
|
||
scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s)
|
||
|
||
any-≮:-scalar : ∀ {U} → (Scalar U) → (any ≮: U)
|
||
any-≮:-scalar s = witness (function-ok (scalar s)) any (scalar-function-ok s)
|
||
|
||
scalar-≮:-none : ∀ {U} → (Scalar U) → (U ≮: none)
|
||
scalar-≮:-none s = witness (scalar s) (scalar s) none
|
||
|
||
scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U)
|
||
scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p)
|
||
|
||
-- Properties of tgt
|
||
tgt-function-ok : ∀ {T t} → (Language (tgt T) t) → Language T (function-ok t)
|
||
tgt-function-ok {T = nil} (scalar ())
|
||
tgt-function-ok {T = T₁ ⇒ T₂} p = function-ok p
|
||
tgt-function-ok {T = none} (scalar ())
|
||
tgt-function-ok {T = any} p = any
|
||
tgt-function-ok {T = boolean} (scalar ())
|
||
tgt-function-ok {T = number} (scalar ())
|
||
tgt-function-ok {T = string} (scalar ())
|
||
tgt-function-ok {T = T₁ ∪ T₂} (left p) = left (tgt-function-ok p)
|
||
tgt-function-ok {T = T₁ ∪ T₂} (right p) = right (tgt-function-ok p)
|
||
tgt-function-ok {T = T₁ ∩ T₂} (p₁ , p₂) = (tgt-function-ok p₁ , tgt-function-ok p₂)
|
||
|
||
function-ok-tgt : ∀ {T t} → Language T (function-ok t) → (Language (tgt T) t)
|
||
function-ok-tgt (function-ok p) = p
|
||
function-ok-tgt (left p) = left (function-ok-tgt p)
|
||
function-ok-tgt (right p) = right (function-ok-tgt p)
|
||
function-ok-tgt (p₁ , p₂) = (function-ok-tgt p₁ , function-ok-tgt p₂)
|
||
function-ok-tgt any = any
|
||
|
||
skalar-function-ok : ∀ {t} → (¬Language skalar (function-ok t))
|
||
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
|
||
|
||
skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s))
|
||
skalar-scalar number = left (scalar number)
|
||
skalar-scalar boolean = right (right (right (scalar boolean)))
|
||
skalar-scalar string = right (left (scalar string))
|
||
skalar-scalar nil = right (right (left (scalar nil)))
|
||
|
||
tgt-none-≮: : ∀ {T U} → (tgt T ≮: U) → (T ≮: (skalar ∪ (none ⇒ U)))
|
||
tgt-none-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q)
|
||
|
||
none-tgt-≮: : ∀ {T U} → (T ≮: (skalar ∪ (none ⇒ U))) → (tgt T ≮: U)
|
||
none-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁))
|
||
none-tgt-≮: (witness function p (q₁ , scalar-function ()))
|
||
none-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂
|
||
none-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ())))
|
||
|
||
-- Properties of src
|
||
function-err-src : ∀ {T t} → (¬Language (src T) t) → Language T (function-err t)
|
||
function-err-src {T = nil} none = scalar-function-err nil
|
||
function-err-src {T = T₁ ⇒ T₂} p = function-err p
|
||
function-err-src {T = none} (scalar-scalar number () p)
|
||
function-err-src {T = none} (scalar-function-ok ())
|
||
function-err-src {T = any} none = any
|
||
function-err-src {T = boolean} p = scalar-function-err boolean
|
||
function-err-src {T = number} p = scalar-function-err number
|
||
function-err-src {T = string} p = scalar-function-err string
|
||
function-err-src {T = T₁ ∪ T₂} (left p) = left (function-err-src p)
|
||
function-err-src {T = T₁ ∪ T₂} (right p) = right (function-err-src p)
|
||
function-err-src {T = T₁ ∩ T₂} (p₁ , p₂) = function-err-src p₁ , function-err-src p₂
|
||
|
||
¬function-err-src : ∀ {T t} → (Language (src T) t) → ¬Language T (function-err t)
|
||
¬function-err-src {T = nil} (scalar ())
|
||
¬function-err-src {T = T₁ ⇒ T₂} p = function-err p
|
||
¬function-err-src {T = none} any = none
|
||
¬function-err-src {T = any} (scalar ())
|
||
¬function-err-src {T = boolean} (scalar ())
|
||
¬function-err-src {T = number} (scalar ())
|
||
¬function-err-src {T = string} (scalar ())
|
||
¬function-err-src {T = T₁ ∪ T₂} (p₁ , p₂) = (¬function-err-src p₁ , ¬function-err-src p₂)
|
||
¬function-err-src {T = T₁ ∩ T₂} (left p) = left (¬function-err-src p)
|
||
¬function-err-src {T = T₁ ∩ T₂} (right p) = right (¬function-err-src p)
|
||
|
||
src-¬function-err : ∀ {T t} → Language T (function-err t) → (¬Language (src T) t)
|
||
src-¬function-err {T = nil} p = none
|
||
src-¬function-err {T = T₁ ⇒ T₂} (function-err p) = p
|
||
src-¬function-err {T = none} (scalar-function-err ())
|
||
src-¬function-err {T = any} p = none
|
||
src-¬function-err {T = boolean} p = none
|
||
src-¬function-err {T = number} p = none
|
||
src-¬function-err {T = string} p = none
|
||
src-¬function-err {T = T₁ ∪ T₂} (left p) = left (src-¬function-err p)
|
||
src-¬function-err {T = T₁ ∪ T₂} (right p) = right (src-¬function-err p)
|
||
src-¬function-err {T = T₁ ∩ T₂} (p₁ , p₂) = (src-¬function-err p₁ , src-¬function-err p₂)
|
||
|
||
src-¬scalar : ∀ {S T t} (s : Scalar S) → Language T (scalar s) → (¬Language (src T) t)
|
||
src-¬scalar number (scalar number) = none
|
||
src-¬scalar boolean (scalar boolean) = none
|
||
src-¬scalar string (scalar string) = none
|
||
src-¬scalar nil (scalar nil) = none
|
||
src-¬scalar s (left p) = left (src-¬scalar s p)
|
||
src-¬scalar s (right p) = right (src-¬scalar s p)
|
||
src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂)
|
||
src-¬scalar s any = none
|
||
|
||
src-any-≮: : ∀ {T U} → (T ≮: src U) → (U ≮: (T ⇒ any))
|
||
src-any-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p)
|
||
|
||
any-src-≮: : ∀ {S T U} → (U ≮: S) → (T ≮: (U ⇒ any)) → (U ≮: src T)
|
||
any-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p)
|
||
any-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q)))
|
||
any-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ())))
|
||
any-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p)
|
||
|
||
-- Properties of any and none
|
||
any-≮: : ∀ {T U} → (T ≮: U) → (any ≮: U)
|
||
any-≮: (witness t p q) = witness t any q
|
||
|
||
none-≮: : ∀ {T U} → (T ≮: U) → (T ≮: none)
|
||
none-≮: (witness t p q) = witness t p none
|
||
|
||
any-≮:-none : (any ≮: none)
|
||
any-≮:-none = witness (scalar nil) any none
|
||
|
||
function-≮:-none : ∀ {T U} → ((T ⇒ U) ≮: none)
|
||
function-≮:-none = witness function function none
|
||
|
||
-- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf)
|
||
-- defines a "set-theoretic" model (sec 2.5)
|
||
-- Unfortunately we don't quite have this property, due to uninhabited types,
|
||
-- for example (none -> T) is equivalent to (none -> U)
|
||
-- when types are interpreted as sets of syntactic values.
|
||
|
||
_⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set
|
||
(P ⊆ Q) = ∀ a → (P a) → (Q a)
|
||
|
||
_⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set)
|
||
(P ⊗ Q) (a , b) = (P a) × (Q b)
|
||
|
||
Comp : ∀ {A : Set} → (A → Set) → (A → Set)
|
||
Comp P a = ¬(P a)
|
||
|
||
set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} →
|
||
|
||
-- This is the "if" part of being a set-theoretic model
|
||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) →
|
||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂)))
|
||
|
||
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where
|
||
|
||
S₁t : Language S₁ t
|
||
S₁t with dec-language S₁ t
|
||
S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t)
|
||
S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t)
|
||
S₁t | Right r = r
|
||
|
||
¬T₁u : ¬(Language T₁ u)
|
||
¬T₁u T₁u with p (function-ok u) (function-ok T₁u)
|
||
¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u
|
||
|
||
not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} →
|
||
|
||
-- We don't quite have that this is a set-theoretic model
|
||
-- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited
|
||
-- in particular it's not true when T₁ is none, or T₂ is any.
|
||
∀ s₂ t₂ → Language S₂ s₂ → ¬Language T₂ t₂ →
|
||
|
||
-- This is the "only if" part of being a set-theoretic model
|
||
(∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁)) → Q ⊆ Comp((Language S₂) ⊗ Comp(Language T₂))) →
|
||
(Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂))
|
||
|
||
not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where
|
||
|
||
Q : (Tree × Tree) → Set
|
||
Q (t , u) = Either (¬Language S₁ t) (Language T₁ u)
|
||
|
||
q : Q ⊆ Comp((Language S₁) ⊗ Comp(Language T₁))
|
||
q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t
|
||
q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u
|
||
|
||
r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)
|
||
r function function = function
|
||
r (function-err t) (function-err ¬S₁t) with dec-language S₂ t
|
||
r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t
|
||
r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂))
|
||
r (function-ok t) (function-ok T₁t) with dec-language T₂ t
|
||
r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
|
||
r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t
|
||
|
||
-- A counterexample when the argument type is empty.
|
||
|
||
set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language none) ⊗ Comp(Language number)) → Q ⊆ Comp((Language none) ⊗ Comp(Language string)))
|
||
set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p)
|
||
set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p)
|
||
|
||
set-theoretic-counterexample-two : (none ⇒ number) ≮: (none ⇒ string)
|
||
set-theoretic-counterexample-two = witness
|
||
(function-ok (scalar number)) (function-ok (scalar number))
|
||
(function-ok (scalar-scalar number string (λ ())))
|
||
|
||
-- At some point we may deal with overloaded function resolution, which should fix this problem...
|
||
-- The reason why this is connected to overloaded functions is that currently we have that the type of
|
||
-- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U),
|
||
-- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V)
|
||
-- and tgt(none => T) should be any. For example
|
||
--
|
||
-- tgt((number => string) & (string => bool))(number)
|
||
-- is tgt(number => string)(number) & tgt(string => bool)(number)
|
||
-- is tgt(number => string)(number) & tgt(string => bool)(number&any)
|
||
-- is tgt(number => string)(number) & tgt(string&number => bool)(any)
|
||
-- is tgt(number => string)(number) & tgt(none => bool)(any)
|
||
-- is string & any
|
||
-- is string
|
||
--
|
||
-- there's some discussion of this in the Gentle Introduction paper.
|