luau/prototyping/Luau/TypeCheck.agda
Alan Jeffrey 7721955ba5
Prototyping: add semantic subtyping (#424)
Adds subtyping to strict mode.
2022-03-23 15:02:57 -05:00

162 lines
4.2 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --rewriting #-}
open import Luau.Type using (Mode)
module Luau.TypeCheck (m : Mode) where
open import Agda.Builtin.Equality using (_≡_)
open import FFI.Data.Maybe using (Maybe; just)
open import Luau.Syntax using (Expr; Stat; Block; BinaryOperator; yes; nil; addr; number; bool; string; val; var; var_∈_; _⟨_⟩∈_; function_is_end; _$_; block_is_end; binexp; local_←_; _∙_; done; return; name; +; -; *; /; <; >; ==; ~=; <=; >=; ··)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Heap using (Heap; Object; function_is_end) renaming (_[_] to _[_]ᴴ)
open import Luau.Type using (Type; Mode; nil; any; number; boolean; string; _⇒_; tgt)
open import Luau.VarCtxt using (VarCtxt; ∅; _⋒_; _↦_; _⊕_↦_; _⊝_) renaming (_[_] to _[_]ⱽ)
open import FFI.Data.Vector using (Vector)
open import FFI.Data.Maybe using (Maybe; just; nothing)
open import Properties.Product using (_×_; _,_)
src : Type Type
src = Luau.Type.src m
orAny : Maybe Type Type
orAny nothing = any
orAny (just T) = T
srcBinOp : BinaryOperator Type
srcBinOp + = number
srcBinOp - = number
srcBinOp * = number
srcBinOp / = number
srcBinOp < = number
srcBinOp > = number
srcBinOp == = any
srcBinOp ~= = any
srcBinOp <= = number
srcBinOp >= = number
srcBinOp ·· = string
tgtBinOp : BinaryOperator Type
tgtBinOp + = number
tgtBinOp - = number
tgtBinOp * = number
tgtBinOp / = number
tgtBinOp < = boolean
tgtBinOp > = boolean
tgtBinOp == = boolean
tgtBinOp ~= = boolean
tgtBinOp <= = boolean
tgtBinOp >= = boolean
tgtBinOp ·· = string
data _⊢ᴮ_∈_ : VarCtxt Block yes Type Set
data _⊢ᴱ_∈_ : VarCtxt Expr yes Type Set
data _⊢ᴮ_∈_ where
done : {Γ}
---------------
Γ ⊢ᴮ done nil
return : {M B T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴮ B U
---------------------
Γ ⊢ᴮ return M B T
local : {x M B T U V Γ}
Γ ⊢ᴱ M U
(Γ x T) ⊢ᴮ B V
--------------------------------
Γ ⊢ᴮ local var x T M B V
function : {f x B C T U V W Γ}
(Γ x T) ⊢ᴮ C V
(Γ f (T U)) ⊢ᴮ B W
-------------------------------------------------
Γ ⊢ᴮ function f var x T ⟩∈ U is C end B W
data _⊢ᴱ_∈_ where
nil : {Γ}
--------------------
Γ ⊢ᴱ (val nil) nil
var : {x T Γ}
T orAny(Γ [ x ]ⱽ)
----------------
Γ ⊢ᴱ (var x) T
addr : {a Γ} T
-----------------
Γ ⊢ᴱ val(addr a) T
number : {n Γ}
---------------------------
Γ ⊢ᴱ val(number n) number
bool : {b Γ}
--------------------------
Γ ⊢ᴱ val(bool b) boolean
string : {x Γ}
---------------------------
Γ ⊢ᴱ val(string x) string
app : {M N T U Γ}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------
Γ ⊢ᴱ (M $ N) (tgt T)
function : {f x B T U V Γ}
(Γ x T) ⊢ᴮ B V
-----------------------------------------------------
Γ ⊢ᴱ (function f var x T ⟩∈ U is B end) (T U)
block : {b B T U Γ}
Γ ⊢ᴮ B U
------------------------------------
Γ ⊢ᴱ (block var b T is B end) T
binexp : {op Γ M N T U}
Γ ⊢ᴱ M T
Γ ⊢ᴱ N U
----------------------------------
Γ ⊢ᴱ (binexp M op N) tgtBinOp op
data ⊢ᴼ_ : Maybe(Object yes) Set where
nothing :
---------
⊢ᴼ nothing
function : {f x T U V B}
(x T) ⊢ᴮ B V
----------------------------------------------
⊢ᴼ (just function f var x T ⟩∈ U is B end)
⊢ᴴ_ : Heap yes Set
⊢ᴴ H = a {O} (H [ a ]ᴴ O) (⊢ᴼ O)
_⊢ᴴᴱ_▷_∈_ : VarCtxt Heap yes Expr yes Type Set
(Γ ⊢ᴴᴱ H M T) = (⊢ᴴ H) × (Γ ⊢ᴱ M T)
_⊢ᴴᴮ_▷_∈_ : VarCtxt Heap yes Block yes Type Set
(Γ ⊢ᴴᴮ H B T) = (⊢ᴴ H) × (Γ ⊢ᴮ B T)