luau/prototyping/Luau/Type.agda
Alan Jeffrey 74c84815a0
Prototyping type normalizaton (#466)
* Added type normalization
2022-04-28 15:00:55 -05:00

164 lines
5.6 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module Luau.Type where
open import FFI.Data.Maybe using (Maybe; just; nothing; just-inv)
open import Agda.Builtin.Equality using (_≡_; refl)
open import Properties.Dec using (Dec; yes; no)
open import Properties.Equality using (cong)
open import FFI.Data.Maybe using (Maybe; just; nothing)
data Type : Set where
nil : Type
_⇒_ : Type Type Type
never : Type
unknown : Type
boolean : Type
number : Type
string : Type
__ : Type Type Type
_∩_ : Type Type Type
data Scalar : Type Set where
number : Scalar number
boolean : Scalar boolean
string : Scalar string
nil : Scalar nil
skalar = number (string (nil boolean))
lhs : Type Type
lhs (T _) = T
lhs (T _) = T
lhs (T _) = T
lhs nil = nil
lhs never = never
lhs unknown = unknown
lhs number = number
lhs boolean = boolean
lhs string = string
rhs : Type Type
rhs (_ T) = T
rhs (_ T) = T
rhs (_ T) = T
rhs nil = nil
rhs never = never
rhs unknown = unknown
rhs number = number
rhs boolean = boolean
rhs string = string
_≡ᵀ_ : (T U : Type) Dec(T U)
nil ≡ᵀ nil = yes refl
nil ≡ᵀ (S T) = no (λ ())
nil ≡ᵀ never = no (λ ())
nil ≡ᵀ unknown = no (λ ())
nil ≡ᵀ number = no (λ ())
nil ≡ᵀ boolean = no (λ ())
nil ≡ᵀ (S T) = no (λ ())
nil ≡ᵀ (S T) = no (λ ())
nil ≡ᵀ string = no (λ ())
(S T) ≡ᵀ string = no (λ ())
never ≡ᵀ string = no (λ ())
unknown ≡ᵀ string = no (λ ())
boolean ≡ᵀ string = no (λ ())
number ≡ᵀ string = no (λ ())
(S T) ≡ᵀ string = no (λ ())
(S T) ≡ᵀ string = no (λ ())
(S T) ≡ᵀ nil = no (λ ())
(S T) ≡ᵀ (U V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S T) ≡ᵀ (S T) | yes refl | yes refl = yes refl
(S T) ≡ᵀ (U V) | _ | no p = no (λ q p (cong rhs q))
(S T) ≡ᵀ (U V) | no p | _ = no (λ q p (cong lhs q))
(S T) ≡ᵀ never = no (λ ())
(S T) ≡ᵀ unknown = no (λ ())
(S T) ≡ᵀ number = no (λ ())
(S T) ≡ᵀ boolean = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
never ≡ᵀ nil = no (λ ())
never ≡ᵀ (U V) = no (λ ())
never ≡ᵀ never = yes refl
never ≡ᵀ unknown = no (λ ())
never ≡ᵀ number = no (λ ())
never ≡ᵀ boolean = no (λ ())
never ≡ᵀ (U V) = no (λ ())
never ≡ᵀ (U V) = no (λ ())
unknown ≡ᵀ nil = no (λ ())
unknown ≡ᵀ (U V) = no (λ ())
unknown ≡ᵀ never = no (λ ())
unknown ≡ᵀ unknown = yes refl
unknown ≡ᵀ number = no (λ ())
unknown ≡ᵀ boolean = no (λ ())
unknown ≡ᵀ (U V) = no (λ ())
unknown ≡ᵀ (U V) = no (λ ())
number ≡ᵀ nil = no (λ ())
number ≡ᵀ (T U) = no (λ ())
number ≡ᵀ never = no (λ ())
number ≡ᵀ unknown = no (λ ())
number ≡ᵀ number = yes refl
number ≡ᵀ boolean = no (λ ())
number ≡ᵀ (T U) = no (λ ())
number ≡ᵀ (T U) = no (λ ())
boolean ≡ᵀ nil = no (λ ())
boolean ≡ᵀ (T U) = no (λ ())
boolean ≡ᵀ never = no (λ ())
boolean ≡ᵀ unknown = no (λ ())
boolean ≡ᵀ boolean = yes refl
boolean ≡ᵀ number = no (λ ())
boolean ≡ᵀ (T U) = no (λ ())
boolean ≡ᵀ (T U) = no (λ ())
string ≡ᵀ nil = no (λ ())
string ≡ᵀ (x x₁) = no (λ ())
string ≡ᵀ never = no (λ ())
string ≡ᵀ unknown = no (λ ())
string ≡ᵀ boolean = no (λ ())
string ≡ᵀ number = no (λ ())
string ≡ᵀ string = yes refl
string ≡ᵀ (U V) = no (λ ())
string ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ nil = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ never = no (λ ())
(S T) ≡ᵀ unknown = no (λ ())
(S T) ≡ᵀ number = no (λ ())
(S T) ≡ᵀ boolean = no (λ ())
(S T) ≡ᵀ (U V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S T) ≡ᵀ (S T) | yes refl | yes refl = yes refl
(S T) ≡ᵀ (U V) | _ | no p = no (λ q p (cong rhs q))
(S T) ≡ᵀ (U V) | no p | _ = no (λ q p (cong lhs q))
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ nil = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ never = no (λ ())
(S T) ≡ᵀ unknown = no (λ ())
(S T) ≡ᵀ number = no (λ ())
(S T) ≡ᵀ boolean = no (λ ())
(S T) ≡ᵀ (U V) = no (λ ())
(S T) ≡ᵀ (U V) with (S ≡ᵀ U) | (T ≡ᵀ V)
(S T) ≡ᵀ (U V) | yes refl | yes refl = yes refl
(S T) ≡ᵀ (U V) | _ | no p = no (λ q p (cong rhs q))
(S T) ≡ᵀ (U V) | no p | _ = no (λ q p (cong lhs q))
_≡ᴹᵀ_ : (T U : Maybe Type) Dec(T U)
nothing ≡ᴹᵀ nothing = yes refl
nothing ≡ᴹᵀ just U = no (λ ())
just T ≡ᴹᵀ nothing = no (λ ())
just T ≡ᴹᵀ just U with T ≡ᵀ U
(just T ≡ᴹᵀ just T) | yes refl = yes refl
(just T ≡ᴹᵀ just U) | no p = no (λ q p (just-inv q))
optional : Type Type
optional nil = nil
optional (T nil) = (T nil)
optional T = (T nil)
normalizeOptional : Type Type
normalizeOptional (S T) with normalizeOptional S | normalizeOptional T
normalizeOptional (S T) | (S nil) | (T nil) = (S T) nil
normalizeOptional (S T) | S | (T nil) = (S T) nil
normalizeOptional (S T) | (S nil) | T = (S T) nil
normalizeOptional (S T) | S | nil = optional S
normalizeOptional (S T) | nil | T = optional T
normalizeOptional (S T) | S | T = S T
normalizeOptional T = T