luau/prototyping/Properties/Subtyping.agda
2022-04-14 14:44:53 -05:00

199 lines
10 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --rewriting #-}
module Properties.Subtyping where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond)
open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-scalar; function-scalar; function-ok; function-err; left; right; _,_)
open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; __; _∩_; src; tgt)
open import Properties.Contradiction using (CONTRADICTION; ¬)
open import Properties.DecSubtyping using (language-comp; dec-language; tgt-function-ok; function-ok-tgt; function-err-src; ¬function-err-src; src-¬function-err)
open import Properties.Equality using (_≢_)
open import Properties.Functions using (_∘_)
open import Properties.Product using (_×_; _,_)
-- ≮: is the complement of <:
¬≮:-impl-<: : {T U} ¬(T ≮: U) (T <: U)
¬≮:-impl-<: {T} {U} p t q with dec-language U t
¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r))
¬≮:-impl-<: {T} {U} p t q | Right r = r
<:-impl-¬≮: : {T U} (T <: U) ¬(T ≮: U)
<:-impl-¬≮: p (witness t q r) = language-comp t r (p t q)
-- reflexivity
≮:-refl : {T} ¬(T ≮: T)
:-refl (witness t p q) = language-comp t q p
<:-refl : {T} (T <: T)
<:-refl = ¬≮:-impl-<: ≮:-refl
-- transititivity
≮:-trans-≡ : {S T U} (S ≮: T) (T U) (S ≮: U)
:-trans-≡ p refl = p
≡-trans-≮: : {S T U} (S T) (T ≮: U) (S ≮: U)
≡-trans-≮: refl p = p
≮:-trans : {S T U} (S ≮: U) Either (S ≮: T) (T ≮: U)
:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z witness t z q) (dec-language T t)
<:-trans : {S T U} (S <: T) (T <: U) (S <: U)
<:-trans p q = ¬≮:-impl-<: (cond (<:-impl-¬≮: p) (<:-impl-¬≮: q) ≮:-trans)
-- Properties of scalars
skalar = number (string (nil boolean))
function-≮:-scalar : {S T U} (Scalar U) ((S T) ≮: U)
function-≮:-scalar s = witness function function (scalar-function s)
scalar-≮:-function : {S T U} (Scalar U) (U ≮: (S T))
scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s)
unknown-≮:-scalar : {U} (Scalar U) (unknown ≮: U)
unknown-≮:-scalar s = witness (function-ok (scalar s)) unknown (scalar-function-ok s)
scalar-≮:-never : {U} (Scalar U) (U ≮: never)
scalar-≮:-never s = witness (scalar s) (scalar s) never
scalar-≢-impl-≮: : {T U} (Scalar T) (Scalar U) (T U) (T ≮: U)
scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p)
skalar-function-ok : {t} (¬Language skalar (function-ok t))
skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean)))
skalar-scalar : {T} (s : Scalar T) (Language skalar (scalar s))
skalar-scalar number = left (scalar number)
skalar-scalar boolean = right (right (right (scalar boolean)))
skalar-scalar string = right (left (scalar string))
skalar-scalar nil = right (right (left (scalar nil)))
tgt-never-≮: : {T U} (tgt T ≮: U) (T ≮: (skalar (never U)))
tgt-never-≮: (witness t p q) = witness (function-ok t) (tgt-function-ok p) (skalar-function-ok , function-ok q)
never-tgt-≮: : {T U} (T ≮: (skalar (never U))) (tgt T ≮: U)
never-tgt-≮: (witness (scalar s) p (q₁ , q₂)) = CONTRADICTION (≮:-refl (witness (scalar s) (skalar-scalar s) q₁))
never-tgt-≮: (witness function p (q₁ , scalar-function ()))
never-tgt-≮: (witness (function-ok t) p (q₁ , function-ok q₂)) = witness t (function-ok-tgt p) q₂
never-tgt-≮: (witness (function-err (scalar s)) p (q₁ , function-err (scalar ())))
src-¬scalar : {S T t} (s : Scalar S) Language T (scalar s) (¬Language (src T) t)
src-¬scalar number (scalar number) = never
src-¬scalar boolean (scalar boolean) = never
src-¬scalar string (scalar string) = never
src-¬scalar nil (scalar nil) = never
src-¬scalar s (left p) = left (src-¬scalar s p)
src-¬scalar s (right p) = right (src-¬scalar s p)
src-¬scalar s (p₁ , p₂) = (src-¬scalar s p₁ , src-¬scalar s p₂)
src-¬scalar s unknown = never
src-unknown-≮: : {T U} (T ≮: src U) (U ≮: (T unknown))
src-unknown-≮: (witness t p q) = witness (function-err t) (function-err-src q) (¬function-err-src p)
unknown-src-≮: : {S T U} (U ≮: S) (T ≮: (U unknown)) (U ≮: src T)
unknown-src-≮: (witness t x x₁) (witness (scalar s) p (function-scalar s)) = witness t x (src-¬scalar s p)
unknown-src-≮: r (witness (function-ok (scalar s)) p (function-ok (scalar-scalar s () q)))
unknown-src-≮: r (witness (function-ok (function-ok _)) p (function-ok (scalar-function-ok ())))
unknown-src-≮: r (witness (function-err t) p (function-err q)) = witness t q (src-¬function-err p)
-- Properties of unknown and never
unknown-≮: : {T U} (T ≮: U) (unknown ≮: U)
unknown-≮: (witness t p q) = witness t unknown q
never-≮: : {T U} (T ≮: U) (T ≮: never)
never-≮: (witness t p q) = witness t p never
unknown-≮:-never : (unknown ≮: never)
unknown-≮:-never = witness (scalar nil) unknown never
function-≮:-never : {T U} ((T U) ≮: never)
function-≮:-never = witness function function never
-- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf)
-- defines a "set-theoretic" model (sec 2.5)
-- Unfortunately we don't quite have this property, due to uninhabited types,
-- for example (never -> T) is equivalent to (never -> U)
-- when types are interpreted as sets of syntactic values.
_⊆_ : {A : Set} (A Set) (A Set) Set
(P Q) = a (P a) (Q a)
_⊗_ : {A B : Set} (A Set) (B Set) ((A × B) Set)
(P Q) (a , b) = (P a) × (Q b)
Comp : {A : Set} (A Set) (A Set)
Comp P a = ¬(P a)
set-theoretic-if : {S₁ T₁ S₂ T₂}
-- This is the "if" part of being a set-theoretic model
(Language (S₁ T₁) Language (S₂ T₂))
( Q Q Comp((Language S₁) Comp(Language T₁)) Q Comp((Language S₂) Comp(Language T₂)))
set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , u) Qtu (S₂t , ¬T₂u) = q (t , u) Qtu (S₁t , ¬T₁u) where
S₁t : Language S₁ t
S₁t with dec-language S₁ t
S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t)
S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t)
S₁t | Right r = r
¬T₁u : ¬(Language T₁ u)
¬T₁u T₁u with p (function-ok u) (function-ok T₁u)
¬T₁u T₁u | function-ok T₂u = ¬T₂u T₂u
not-quite-set-theoretic-only-if : {S₁ T₁ S₂ T₂}
-- We don't quite have that this is a set-theoretic model
-- it's only true when Language T₁ and ¬Language T₂ t₂ are inhabited
-- in particular it's not true when T₁ is never, or T₂ is unknown.
s₂ t₂ Language S₂ s₂ ¬Language T₂ t₂
-- This is the "only if" part of being a set-theoretic model
( Q Q Comp((Language S₁) Comp(Language T₁)) Q Comp((Language S₂) Comp(Language T₂)))
(Language (S₁ T₁) Language (S₂ T₂))
not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ t₂ S₂s₂ ¬T₂t₂ p = r where
Q : (Tree × Tree) Set
Q (t , u) = Either (¬Language S₁ t) (Language T₁ u)
q : Q Comp((Language S₁) Comp(Language T₁))
q (t , u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t
q (t , u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u
r : Language (S₁ T₁) Language (S₂ T₂)
r function function = function
r (function-err t) (function-err ¬S₁t) with dec-language S₂ t
r (function-err t) (function-err ¬S₁t) | Left ¬S₂t = function-err ¬S₂t
r (function-err t) (function-err ¬S₁t) | Right S₂t = CONTRADICTION (p Q q (t , t₂) (Left ¬S₁t) (S₂t , language-comp t₂ ¬T₂t₂))
r (function-ok t) (function-ok T₁t) with dec-language T₂ t
r (function-ok t) (function-ok T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t))
r (function-ok t) (function-ok T₁t) | Right T₂t = function-ok T₂t
-- A counterexample when the argument type is empty.
set-theoretic-counterexample-one : ( Q Q Comp((Language never) Comp(Language number)) Q Comp((Language never) Comp(Language string)))
set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p)
set-theoretic-counterexample-one Q q ((function-err t) , u) Qtu (scalar-function-err () , p)
set-theoretic-counterexample-two : (never number) ≮: (never string)
set-theoretic-counterexample-two = witness
(function-ok (scalar number)) (function-ok (scalar number))
(function-ok (scalar-scalar number string (λ ())))
-- At some point we may deal with overloaded function resolution, which should fix this problem...
-- The reason why this is connected to overloaded functions is that currently we have that the type of
-- f(x) is (tgt T) where f:T. Really we should have the type depend on the type of x, that is use (tgt T U),
-- where U is the type of x. In particular (tgt (S => T) (U & V)) should be the same as (tgt ((S&U) => T) V)
-- and tgt(never => T) should be unknown. For example
--
-- tgt((number => string) & (string => bool))(number)
-- is tgt(number => string)(number) & tgt(string => bool)(number)
-- is tgt(number => string)(number) & tgt(string => bool)(number&unknown)
-- is tgt(number => string)(number) & tgt(string&number => bool)(unknown)
-- is tgt(number => string)(number) & tgt(never => bool)(unknown)
-- is string & unknown
-- is string
--
-- there's some discussion of this in the Gentle Introduction paper.